
Last Lecture
  Overview of the transport layer
  Principles of Reliable Data Transfers

  Error detection/correction
  ACK/NACK & retransmission (ARQ)
  Timeout
  Sequence numbers
  Sliding window protocols

  Go back N
  Selective repeat

  Problems not addressed yet
  Delayed duplicates
  Timeout estimation

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 1

This Lecture
  How TCP Actually Works

  Reliable and efficient data transfer

  Next lecture
  Connection management
  Flow control

  Congestion control will be addressed separately

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 2

TCP Evolution

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 3

1975 1980 1985 1990

1982
TCP & IP

RFC 793 & 791

1974
TCP described by

Vint Cerf and Bob Kahn
In IEEE Trans Comm

1983
BSD Unix 4.2

supports TCP/IP

1984
Nagel’s algorithm
to reduce overhead

of small packets;
predicts congestion

collapse

1987
Karn’s algorithm
to better estimate

round-trip time

1986
Congestion

collapse
observed

1988
Van Jacobson’s

algorithms
congestion avoidance
and congestion control
(most implemented in

4.3BSD Tahoe)

1990
4.3BSD Reno
fast retransmit
delayed ACK’s

1975
Three-way handshake

Raymond Tomlinson
In SIGCOMM 75

Reno is the “least common denominator”

TCP Evolution

•  This history is incomplete (see website & RFC 4614 for more links)
•  Not all implementations implement all these features
•  We won’t be able to cover every feature, only most common ones

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 4

1993 1994 1996

1994
ECN

(Floyd)
Explicit

Congestion
Notification

1993
TCP Vegas

(Brakmo et al)
delay-based

congestion avoidance

1994
T/TCP

(Braden)
Transaction

TCP

1996
SACK TCP
(Floyd et al)
Selective

Acknowledgement

1996
Hoe

NewReno startup
and loss recovery

1996
FACK TCP

(Mathis et al)
extension to SACK

Tips and Tricks

  Why TCP Tahoe, TCP Reno?

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 5

Answer

  TCP Tahoe: TCP implementation from 4.3BSD-Tahoe
(released in June 1988)

The name Tahoe came from the development name used by
Computer Consoles, Incorporated, for the machine that they
eventually released as the Power 6/32. Computer Consoles
gave CSRG a few machines to develop cross-platform BSD

  TCP Reno: TCP implementation from 4.3BSD-Reno (released
in 1988)

The release was named after a big gambling city in Nevada as
an oblique reminder to its recipients that running the interim
release was a bit of a gamble.

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 6

TCP Overview
1.  Multiplexing and Demultiplexing
2.  Byte-stream service

  Stream of bytes sent and received, not stream of packets

3.  Reliable data transfer
  A combination of go-back-N and selective repeat

4.  Connection management
  Connection establishment and tear down

5.  Flow control
  Prevent sender from overflowing receiver

6.  Congestion control (later)

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 7

1. Multiplexing & De-multiplexing

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 8

Client
IP:B

P1

client
 IP: A

P1 P2 P4

server
IP: C

SP: 9157
DP: 80

SP: 9157
DP: 80

P5 P6 P3

D-IP:C
S-IP: A
D-IP:C

S-IP: B

SP: 5775
DP: 80

D-IP:C
S-IP: B

2. TCP Byte-Stream Service

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 9

B
yte 0

B
yte 1

B
yte 2

B
yte 3

B
yte 0

B
yte 1

B
yte 2

B
yte 3

Host A

Host B

B
yte 80

B
yte 80

… Emulated by Breaking Up into Segments

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 10

B
yte 0

B
yte 1

B
yte 2

B
yte 3

B
yte 0

B
yte 1

B
yte 2

B
yte 3

Host A

Host B

B
yte 80

TCP Data

TCP Data

B
yte 80

Typically, segment sent when:
1.  Segment full (Max Segment Size - MSS),
2.  Not full, but times out, or
3.  “Pushed” by application.

How Large Should a Segment Be?

  IP packet size
  Should be ≤ Maximum Transmission Unit (MTU) along

the path to the destination
  E.g., Ethernet has MTU = 1500 bytes

  IP Header + TCP Header is typically 40 bytes
  TCP data segment

  Should be ≤ Maximum Segment Size (MSS)
  MSS should be MTU minus 40
  E.g., up to 1460 consecutive bytes from the stream

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 11

IP Hdr
IP Data

TCP Hdr TCP Data (segment)

Typical MTU for Various Networks

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 12

Hyperchannel 65535

16Mbps token ring (IBM) 17914

4Mbps token ring 4464

FDDI 4352

Ethernet 1500

802.3/802.2 1492

X.25 576

Maximum Segment Size (MSS)
  MSS for opposite directions of the same connection

might be different!

  MSS is negotiated at connect time
  Remember the small packet vs. large packet tradeoff?

  TCP default MSS: 536 (which is 576-40)

  Implementation options:
  At the very least least, TCP will check the outgoing

interface MTU, minus IP and TCP header, to get max MSS
  There’s also a path MTU discovery mechanism

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 13

Path MTU Discovery (RFC 1191)

  Path MTU discovery algorithm:
  Initially use min(MSS, MTU of the outgoing interface)
  Set “Don’t Fragment” (DF) bit for all transmissions

  ICMP “fragmentation needed” is reported – when appropriate --
from a router with the next-hop MTU in it

  TCP decreases its estimated MTU accordingly

  There are a few problems with this process
  Security devices block ICMP packets
  Path MTU might change; kernel periodically probes

(about 10 minutes in Linux)

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 14

In TCP Every Byte Has a Sequence Number

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 15

Host A

Host B

TCP Data

TCP Data

ISN (initial sequence number – more on this later)

Sequence
number = 1st
byte

B
yte 81

3. Basic TCP Reliable Data Transfer
  Basic TCP (for TCP/IP stacks of the 90’s) is a

variation of the go-back-N protocol
  One single timer for all outstanding segments
  When a timer expires, the first segment is retransmitted
  Major implementations do buffer out of order segments if

within window (basic RFCs do not require this!)
  ACKs are cumulative, if sender receives ACK up to byte #

n, then it will not retransmit bytes with # < n

  More about extensions beyond the basic TCP later
  Implementation dependent
  Following all the RFCs makes the implementation very

complicated
SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 16

Sender’s and Receiver’s Windows

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 17

Receiver’s Window

First byte/segment
sent but not yet
ack’ed; to be
retransmitted if
timeout expires

ACK sequence
number = next
expected byte

Sender’s Window

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 18

TCP’s Cumulative
ACKs and Full-
Duplex Operation.

Note the Piggy-Backing
of ACKs in the replies

TCP’s Typical Retransmission Scenarios

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 19

Host A

Seq=100, 20 bytes data

time

premature timeout

Host B

Seq=92, 8 bytes data

Seq=92, 8 bytes data

Se
q=

92
 t

im
eo

ut

Host A

Seq=92, 8 bytes data

ACK=100

loss

tim
eo

ut

lost ACK scenario

Host B

X

Seq=92, 8 bytes data

ACK=100

time
Se

q=
92

 t
im

eo
ut

SendBase
= 100 SendBase

= 120

Sendbase=100
Sendbase=120

TCP’s Cumulative ACK Scenario

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 20

Host A

Seq=92, 8 bytes data

ACK=100

loss

tim
eo

ut

Host B

X

Seq=100, 20 bytes data

ACK=120

time

SendBase = 120

TCP ACK Generation [RFC 1122, RFC 2581]

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 21

Event at Receiver

Arrival of in-order segment with
expected seq #. All data up to
expected seq # already ACKed

Arrival of in-order segment with
expected seq #. One other
segment has ACK pending

Arrival of out-of-order segment
higher-than-expect seq. # .
Gap detected

Arrival of segment that
partially or completely fills gap

TCP Receiver action

Delayed ACK. Wait up to 500ms
for next segment. If no next segment,
send ACK.

Immediately send single cumulative
ACK, ACKing both in-order segments

Immediately send duplicate ACK,
indicating seq. # of next expected byte

Immediate send ACK, provided that
segment starts at lower end of gap

Tips and Tricks
  (TCP/UDP) Session Hijacking

  How do you know you’re talking to the party you’re supposed to be
talking to?

  Many toolkits available for script kiddies
  Susceptible applications: telnet, ftp, dns, rlogin, rsh
  (Partial) solution: ssh, SSL, IPSec, and the likes

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 22

Now, if this was a telnet session, replace ‘Z’ by ‘rm *’ 

Tips and Trics
  TCP ACK Storm

  28/07/2006: CERT advisory – No. 2006/VULN414
  Solaris Hosts are Vulnerable to a DoS induced by a TCP "ACK Storm”
  Product: Solaris 8, 9, and 10
  Solution: install a patch, which stops replying after a few bad ACKs

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 23

How’s Retransmission Timeout Computed?
  Ideally, RTO should be just a little more than RTT

  Question: but RTT fluctuates
  Answer:

  Take sample RTT R and “smooth” it out to get SRTT
  Set RTO = some function of SRTT

  Question: but initially there’s no R yet
  Answer: (RFC 2988)

  Before having the first R, set RTO = 3sec
  (But also use exponential backoff.)

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 24

Exponential Back-off
  This is implementation dependent

  On BSD, it goes something like
  By default RTO = 1.5 sec
  First retransmission: RTO
  nth retransmission: 2n-1 RTO
  up to 64 sec (implementation specific)

  On Windows, I think you can edit some registries to
set these (and many other) parameters

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 25

After the First Sample RTT R is Measured

  SRTT = R

  RTTVAR = R/2
  (RTTVAR is RTT’s variance)

  RTO = SRTT + max (G, 4*RTTVAR)
  Where G is the clock’s granularity (in seconds)
  Thus, typically RTO = SRTT + 4*RTTVAR

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 26

For Each Newly Measured R

  RTTVAR = (1 - β) * RTTVAR + β * |SRTT - R|
  Typical value: β = ¼

  SRTT = (1 - α) * SRTT + α * R
  Exponential weighted moving average
  Influence of past sample decreases exponentially fast
  Typical value: α = 1/8

  They must be updated in the above order

  Finally, RTO = SRTT + max (G, 4*RTTVAR)

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 27

Smoothed RTT vs. Real RTT

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 28

How to Measure Sample RTT R?
  Method 1:

  Segment sent, timer start -------R------- ACK comes back
  Flaw:

  If we retransmitted the segment, no idea if ACK is for which copy

  Karn/Partridge Algorithm:
  Do not measure R using retransmitted segments

  Method 2:
  TCP timestamp option

  Sender stamps a packet with sending time
  Receiver puts the stamp on the ACK
  Sender subtracts current time from the stamp

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 29

More on Timer Management [RFC 2988]

  An implementation MUST manage the
retransmission timer(s) in such a way that a
segment is never retransmitted before RTO

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 30

RFC 2988: Recommended Timer Management

  Every time a packet containing data is sent (including a
retransmission), if the timer is not running, start it running
so that it will expire after RTO seconds (for the current value
of RTO).

  When all outstanding data has been acknowledged, turn off
the retransmission timer.

  When an ACK is received that acknowledges new data, restart
the retransmission timer so that it will expire after RTO
seconds (for the current value of RTO).

  When timer expires:
  Retransmit oldest segment
  Recompute RTO (double it)
  Start new timer

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 31

Performance Tuning: Fast Retransmit
  Long RTO  long delay before retransmission

  Need a way to detect loss packets before timing out

  Idea: detect lost segments via duplicate ACKs.
  Sender often sends many segments back-to-back
  If segment is lost, there will likely be many duplicate

ACKs.
  Fast retransmit

  If sender receives 3 duplicate ACKs for the same data, it
assumes that segment after ACKed data was lost

  Resend segment before timer expires

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 32

Effectiveness of Fast Retransmission
  When does Fast Retransmit work best?

  High likelihood of many packets in flight
  Long data transfers
  High window size

  Low burstiness in packet losses
  Higher likelihood that later packets arrive successfully

  Implications for Web traffic
  Most Web transfers are short (e.g., 10 packets)

  Short HTML files or small images

  So, often there aren’t many packets in flight
  … making fast retransmit less likely to “kick in”
  Forcing users to like “reload” more often… 

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 33

