
Last Lecture 
  Overview of the transport layer 
  Principles of Reliable Data Transfers 

  Error detection/correction 
  ACK/NACK & retransmission (ARQ) 
  Timeout 
  Sequence numbers 
  Sliding window protocols 

  Go back N 
  Selective repeat 

  Problems not addressed yet 
  Delayed duplicates 
  Timeout estimation 
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This Lecture 
  How TCP Actually Works 

  Reliable and efficient data transfer 

  Next lecture 
  Connection management 
  Flow control 

  Congestion control will be addressed separately 
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TCP Evolution 
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1975 1980 1985 1990 

1982 
TCP & IP 

RFC 793 & 791 

1974 
TCP described by 

Vint Cerf and Bob Kahn 
In IEEE Trans Comm 

1983 
BSD Unix 4.2 

supports TCP/IP 

1984 
Nagel’s algorithm 
to reduce overhead 

of small packets; 
predicts congestion 

collapse 

1987 
Karn’s algorithm 
to better estimate 

round-trip time 

1986 
Congestion 

collapse 
observed 

1988 
Van Jacobson’s 

algorithms 
congestion avoidance 
and congestion control 
(most implemented in 

4.3BSD Tahoe) 

1990 
4.3BSD Reno 
fast retransmit 
delayed ACK’s 

1975 
Three-way handshake 

Raymond Tomlinson 
In SIGCOMM 75 

Reno is the “least common denominator” 



TCP Evolution 

•   This history is incomplete (see website & RFC 4614 for more links) 
•   Not all implementations implement all these features 
•   We won’t be able to cover every feature, only most common ones 
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1993 1994 1996 

1994 
ECN 

(Floyd) 
Explicit  

Congestion 
Notification 

1993 
TCP Vegas  

(Brakmo et al) 
delay-based 

congestion avoidance 

1994 
T/TCP 

(Braden) 
Transaction 

TCP 

1996 
SACK TCP 
(Floyd et al) 
Selective 

Acknowledgement 

1996 
Hoe 

NewReno startup 
and loss recovery 

1996 
FACK TCP 

(Mathis et al) 
extension to SACK 



Tips and Tricks 

  Why TCP Tahoe, TCP Reno? 
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Answer 

  TCP Tahoe: TCP implementation from 4.3BSD-Tahoe 
(released in June 1988) 

The name Tahoe came from the development name used by 
Computer Consoles, Incorporated, for the machine that they 
eventually released as the Power 6/32. Computer Consoles 
gave CSRG a few machines to develop cross-platform BSD 

  TCP Reno: TCP implementation from 4.3BSD-Reno (released 
in 1988) 

The release was named after a big gambling city in Nevada as 
an oblique reminder to its recipients that running the interim 
release was a bit of a gamble.  
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TCP Overview 
1.  Multiplexing and Demultiplexing 
2.  Byte-stream service 

  Stream of bytes sent and received, not stream of packets 

3.  Reliable data transfer 
  A combination of go-back-N and selective repeat 

4.  Connection management 
  Connection establishment and tear down 

5.  Flow control 
  Prevent sender from overflowing receiver 

6.  Congestion control (later) 
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1. Multiplexing & De-multiplexing 
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2. TCP Byte-Stream Service 
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… Emulated by Breaking Up into Segments 
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Typically, segment sent when: 
1.  Segment full (Max Segment Size - MSS), 
2.  Not full, but times out, or 
3.  “Pushed” by application. 



How Large Should a Segment Be? 

  IP packet size 
  Should be ≤ Maximum Transmission Unit (MTU) along 

the path to the destination 
  E.g., Ethernet has MTU = 1500 bytes 

  IP Header + TCP Header is typically 40 bytes 
  TCP data segment 

  Should be ≤ Maximum Segment Size (MSS) 
  MSS should be MTU minus 40 
  E.g., up to 1460 consecutive bytes from the stream 
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IP Hdr 
IP Data 

TCP Hdr TCP Data (segment) 



Typical MTU for Various Networks 
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Hyperchannel 65535 

16Mbps token ring (IBM) 17914 

4Mbps token ring 4464 

FDDI 4352 

Ethernet 1500 

802.3/802.2 1492 

X.25 576 



Maximum Segment Size (MSS) 
  MSS for opposite directions of the same connection 

might be different! 

  MSS is negotiated at connect time 
  Remember the small packet vs. large packet tradeoff? 

  TCP default MSS: 536 (which is 576-40) 

  Implementation options: 
  At the very least least, TCP will check the outgoing 

interface MTU, minus IP and TCP header, to get max MSS 
  There’s also a path MTU discovery mechanism 
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Path MTU Discovery (RFC 1191) 

  Path MTU discovery algorithm: 
  Initially use min(MSS, MTU of the outgoing interface) 
  Set “Don’t Fragment” (DF) bit for all transmissions 

  ICMP “fragmentation needed” is reported – when appropriate -- 
from a router with the next-hop MTU in it 

  TCP decreases its estimated MTU accordingly 

  There are a few problems with this process 
  Security devices block ICMP packets 
  Path MTU might change; kernel periodically probes 

(about 10 minutes in Linux) 

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 14 



In TCP Every Byte Has a Sequence Number 
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3. Basic TCP Reliable Data Transfer 
  Basic TCP (for TCP/IP stacks of the 90’s) is a 

variation of the go-back-N protocol 
  One single timer for all outstanding segments 
  When a timer expires, the first segment is retransmitted 
  Major implementations do buffer out of order segments if 

within window (basic RFCs do not require this!) 
  ACKs are cumulative, if sender receives ACK up to byte # 

n, then it will not retransmit bytes with # < n 

  More about extensions beyond the basic TCP later 
  Implementation dependent 
  Following all the RFCs makes the implementation very 

complicated 
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Sender’s and Receiver’s Windows 
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Receiver’s Window 

First byte/segment 
sent but not yet 
ack’ed; to be 
retransmitted if 
timeout expires 

ACK sequence 
number = next 
expected byte 

Sender’s Window 
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TCP’s Cumulative 
ACKs and Full-
Duplex Operation. 

Note the Piggy-Backing 
of ACKs in the replies 



TCP’s Typical Retransmission Scenarios 
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TCP’s Cumulative ACK Scenario 
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TCP ACK Generation [RFC 1122, RFC 2581] 
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Event at Receiver 

Arrival of in-order segment with 
expected seq #. All data up to 
expected seq # already ACKed 

Arrival of in-order segment with 
expected seq #. One other  
segment has ACK pending 

Arrival of out-of-order segment 
higher-than-expect seq. # . 
Gap detected 

Arrival of segment that  
partially or completely fills gap 

TCP Receiver action 

Delayed ACK. Wait up to 500ms 
for next segment. If no next segment, 
send ACK. 

Immediately send single cumulative  
ACK, ACKing both in-order segments  

Immediately send duplicate ACK,  
indicating seq. # of next expected byte 

Immediate send ACK, provided that 
segment starts at lower end of gap 



Tips and Tricks 
  (TCP/UDP) Session Hijacking 

  How do you know you’re talking to the party you’re supposed to be 
talking to? 

  Many toolkits available for script kiddies 
  Susceptible applications: telnet, ftp, dns, rlogin, rsh 
  (Partial) solution: ssh, SSL, IPSec, and the likes 
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Now, if this was a telnet session, replace ‘Z’ by ‘rm *’  



Tips and Trics 
  TCP ACK Storm 

  28/07/2006: CERT advisory – No. 2006/VULN414 
  Solaris Hosts are Vulnerable to a DoS induced by a TCP "ACK Storm” 
  Product: Solaris 8, 9, and 10 
  Solution: install a patch, which stops replying after a few bad ACKs 
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How’s Retransmission Timeout Computed? 
  Ideally, RTO should be just a little more than RTT 

  Question: but RTT fluctuates 
  Answer:  

  Take sample RTT R and “smooth” it out to get SRTT 
  Set RTO = some function of SRTT 

  Question: but initially there’s no R yet 
  Answer: (RFC 2988) 

  Before having the first R, set RTO = 3sec 
  (But also use exponential backoff.) 
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Exponential Back-off 
  This is implementation dependent 

  On BSD, it goes something like 
  By default RTO = 1.5 sec 
  First retransmission: RTO 
  nth  retransmission: 2n-1 RTO 
  up to 64 sec (implementation specific) 

  On Windows, I think you can edit some registries to 
set these (and many other) parameters 
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After the First Sample RTT R is Measured 

  SRTT = R 

  RTTVAR = R/2 
   (RTTVAR is RTT’s variance) 

  RTO = SRTT + max (G, 4*RTTVAR) 
  Where G is the clock’s granularity (in seconds) 
  Thus, typically RTO = SRTT + 4*RTTVAR 

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 26 



For Each Newly Measured R 

  RTTVAR = (1 - β) * RTTVAR + β * |SRTT - R| 
  Typical value: β = ¼ 

  SRTT = (1 - α) * SRTT + α * R 
  Exponential weighted moving average 
  Influence of past sample decreases exponentially fast 
  Typical value: α = 1/8 

  They must be updated in the above order 

  Finally, RTO = SRTT + max (G, 4*RTTVAR) 
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Smoothed RTT vs. Real RTT 
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How to Measure Sample RTT R? 
  Method 1: 

  Segment sent, timer start -------R------- ACK comes back 
  Flaw: 

  If we retransmitted the segment, no idea if ACK is for which copy 

  Karn/Partridge Algorithm: 
  Do not measure R using retransmitted segments 

  Method 2: 
  TCP timestamp option 

  Sender stamps a packet with sending time 
  Receiver puts the stamp on the ACK 
  Sender subtracts current time from the stamp 
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More on Timer Management [RFC 2988] 

  An implementation MUST manage the 
retransmission timer(s) in such a way that a 
segment is never retransmitted before RTO 
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RFC 2988: Recommended Timer Management  

  Every time a packet containing data is sent (including a 
retransmission), if the timer is not running, start it running 
so that it will expire after RTO seconds (for the current value 
of RTO). 

  When all outstanding data has been acknowledged, turn off 
the retransmission timer. 

  When an ACK is received that acknowledges new data, restart 
the retransmission timer so that it will expire after RTO 
seconds (for the current value of RTO). 

  When timer expires: 
  Retransmit oldest segment 
  Recompute RTO (double it) 
  Start new timer 

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 31 



Performance Tuning: Fast Retransmit 
  Long RTO  long delay before retransmission 

  Need a way to detect loss packets before timing out 

  Idea: detect lost segments via duplicate ACKs. 
  Sender often sends many segments back-to-back 
  If segment is lost, there will likely be many duplicate 

ACKs. 
  Fast retransmit 

  If sender receives 3 duplicate ACKs for the same data, it 
assumes that segment after ACKed data was lost 

  Resend segment before timer expires 
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Effectiveness of Fast Retransmission 
  When does Fast Retransmit work best? 

  High likelihood of many packets in flight 
  Long data transfers 
  High window size 

  Low burstiness in packet losses 
  Higher likelihood that later packets arrive successfully 

  Implications for Web traffic 
  Most Web transfers are short (e.g., 10 packets) 

  Short HTML files or small images 

  So, often there aren’t many packets in flight 
  … making fast retransmit less likely to “kick in” 
  Forcing users to like “reload” more often…  

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 33 


