Last Lecture

= Overview of the transport layer

= Principles of Reliable Data Transfers
= Error detection/correction
= ACK/NACK & retransmission (ARQ)
= Timeout
= Sequence numbers

= Sliding window protocols
= Goback N
= Selective repeat
= Problems not addressed yet

= Delayed duplicates
= Timeout estimation

SUNY at Buffalo; CSE 489/589 — Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo

This Lecture

= How TCP Actually Works
= Reliable and efficient data transfer

= Next lecture
= Connection management
= Flow control

= Congestion control will be addressed separately

SUNY at Buffalo; CSE 489/589 — Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo

TCP Evolution

1975
Three-way handshake

Raymond Tomlinson
In SIGCOMM 75

1974
TCP described by
Vint Cerf and Bob Kahn
In IEEE Trans Comm

A
—IIIIIIII
1975 1980

1984
Nagel’s algorithm
to reduce overhead 1987 .
of small packets; Karn’s algorithm 1990
predicts congestion to better estimate 4.3BSD Reno
collapse round-trip time fast retransmit
delayed ACK’s
1983 A
BSD Unix 4.2 1986 1988
supports TCP/IP Congestion Van Jacobson’s
collapse algorithms
A observed congestion avoidance
1982 and congestion control
TCP & IP A (most implemented in
RFC 793 & 791 4.3BSD Tahoe)
1985 1990

Reno is the “least common denominator”

SUNY at Buffalo; CSE 489/589 — Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo

TCP Evolution

1994 1996
T/TCP SACK TCP
(Braden) (Floyd et al)
Transaction Selective
TCP Acknowledgement
A
A
1993 1994 1996 1996
TCP Vegas ECN Hoe FACK TCP
(Brakmo et al) (Floyd) NewReno startup (Mathis et al)
delay-based Explicit and loss recovery extension to SACK
congestion avoidance Congestion A A
Notification
A
1993 1994 1996

This history is incomplete (see website & RFC 4614 for more links)
Not all implementations implement all these features
We won’t be able to cover every feature, only most common ones

SUNY at Buffalo; CSE 489/589 — Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo

Tips and Tricks

= Why TCP Tahoe, TCP Reno?

SUNY at Buffalo; CSE 489/589 — Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo

Answer

= TCP Tahoe: TCP implementation from 4.3BSD-Tahoe
(released in June 1988)

The name Tahoe came from the development name used by
Computer Consoles, Incorporated, for the machine that they
eventually released as the Power 6/32. Computer Consoles
gave CSRG a few machines to develop cross-platform BSD

= TCP Reno: TCP implementation from 4.3BSD-Reno (released
in 1988)
The release was named after a big gambling city in Nevada as

an oblique reminder to its recipients that running the interim
release was a bit of a gamble.

SUNY at Buffalo; CSE 489/589 — Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 6

TCP Overview

.. Multiplexing and Demultiplexing
2. Byte-stream service
= Stream of bytes sent and received, not stream of packets
3. Reliable data transfer
= A combination of go-back-N and selective repeat
4. Connection management
= Connection establishment and tear down
5. Flow control
= Prevent sender from overflowing receiver

6. Congestion control (later)

SUNY at Buffalo; CSE 489/589 — Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo

1. Multiplexing & De-multiplexing

e
SP: 5775
DP: 80
S-1P: B
D-IP:C
N4
SP: 9157 SP: 9157
client DP: 80 server DP: 80 Client
IP: A S-1P: A IP: C S-1P: B IP:B
D-IP:C D-IP:C

SUNY at Buffalo; CSE 489/589 — Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo

2. TCP Byte-Stream Service

Host A

wwww vo)
=< >
(gl Eonall Konall Kol —
Q0|00 te]
o~ww o0
[=)

0 94
[JAg
7 9Ag
€ 9Ag

08 A

SUNY at Buffalo; CSE 489/589 — Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo

... Emulated by Breaking Up into Segments

Host A
ST 5
Yy v Typically, segment sent when:
TCP Data 1. Segment full (Max Segment Size - MSS),
2. Not full, but times out, or
3. “Pushed” by application.
TCP Data

Host B

0 A |«
[4G |«

7RG |«
€ 91ig |«
08 4d |«

SUNY at Buffalo; CSE 489/589 — Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 10

How Large Should a Segment Be?

IP Data
TCP Data (segment) TcP Hdr || IP Hdr ::>

m IP packet size

= Should be < Maximum Transmission Unit (MTU) along
the path to the destination

= E.g., Ethernet has MTU = 1500 bytes
s [P Header + TCP Header is typically 40 bytes

s TCP data segment
= Should be < Maximum Segment Size (MSS)
= MSS should be MTU minus 40
« E.g., up to 1460 consecutive bytes from the stream

SUNY at Buffalo; CSE 489/589 — Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo

Typical MTU for Various Networks

Hyperchannel 65535
16Mbps token ring (IBM) 17914
4Mbps token ring 4464
FDDI 4352
Ethernet 1500
802.3/802.2 1492
X.25 576

SUNY at Buffalo; CSE 489/589 — Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo

12

Maximum Segment Size (MSS)

= MSS for opposite directions of the same connection
might be different!

= MSS is negotiated at connect time
= Remember the small packet vs. large packet tradeoft?

s TCP default MSS: 536 (which is 576-40)

= Implementation options:

= At the very least least, TCP will check the outgoing
interface MTU, minus IP and TCP header, to get max MSS

= There’s also a path MTU discovery mechanism

SUNY at Buffalo; CSE 489/589 — Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 13

Path MTU Discovery (RFC 1191)

= Path MTU discovery algorithm:

= Initially use min(MSS, MTU of the outgoing interface)

= Set “Don’t Fragment” (DF) bit for all transmissions

= ICMP “fragmentation needed” is reported — when appropriate --
from a router with the next-hop MTU in it

= TCP decreases its estimated MTU accordingly

= There are a few problems with this process
= Security devices block ICMP packets

= Path MTU might change; kernel periodically probes
(about 10 minutes in Linux)

SUNY at Buffalo; CSE 489/589 — Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 14

In TCP Every Byte Has a Sequence Number

Host A

ISN (initial sequence number - more on this later)

IS

>

y VVY A 4

TCP Data

Sequence
humber = 15t
byte

TCP Data
HostB ||| -

SUNY at Buffalo; CSE 489/589 — Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo

3. Basic TCP Reliable Data Transfer

s Basic TCP (tor TCP/IP stacks of the 90’s) is a
variation of the go-back-N protocol
= One single timer for all outstanding segments

= When a timer expires, the first segment is retransmitted

= Major implementations do buffer out of order segments if
within window (basic RFCs do not require this!)

= ACKs are cumulative, it sender receives ACK up to byte #
n, then it will not retransmit bytes with # < n

= More about extensions beyond the basic TCP later

» Implementation dependent

= Following all the RFCs makes the implementation very
complicated

SUNY at Buffalo; CSE 489/589 — Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 16

Sender’s and Receiver’s Windows

Sender's Window

A

First byte/segment
sent but not yet
ack'ed; to be
retransmitted if
timeout expires

ACK sequence
humber = next
expected byte

v

A

Receiver's Window

SUNY at Buffalo; CSE 489/589 — Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo

Client
L.UNA = SND.WND = 360
s U#A - Usable = 360
R
A
SND.NXT =1
Request
1. Send Request ~Length-140
L.UNA = SND.WND = 360 -
SND. U#A 1 =2 Seq Num 1*
140 Reply
Length =80
A Seq Num = 241
SND.NXT = 141 /Ack Num = 141
9 ° 3. Receive Combined Ack &
TCP’s Cumulative mesnscmomssment [ey
- = Ack Num =321 _.
SND.UNA = 141 SNlPé‘gb‘NFf: % crium File (part 1) ~|
Length =120
I 140 Seq Num = 321
S dll ull-
SND.NXT = 141

Duplex Operation.

Note the Piggy-Backing
of ACKs in the replies

5. Receive Part 1 of File,
Send Acknowledgment

9. Receive Part 2 of File,
Send Acknowledgment

Server

Acknowledgment
Ack Num = 441

File (part2) _|

Length = 160
/Seq flum =441
™ Acknowledgment

Ack Num = 601

RCV.WND = 360

2. Receive Request, Send

.| combined Ack & Reply

RCV.WND = 360

| 140

A
RCV.NXT = 141

4. Send Part 1 of Requested File

6. Receive Ack For Reply

7. Receive Ack For Part 1 of File

8. Send Part 2 of File

10. Receive Ack For Part 2 of File

SUNY at Buffalo; CSE 489/589 — Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 18

TCP’s Typical Retransmission Scenarios

«—{timeout——
%)
2
1l
A $
oo
(@)
o /5
~ »
\\} Q
> @
o o)
92 timeout —»

92 timeout —y+— Seq

Seq=9
2, 8 bytes dats Sendbase=100
Sendbase=1205

(0]
SendBase 1

=120 v premature timeout
time

eq=

SendBase
= 100

<
<

v

time :
lost ACK scenario

SUNY at Buffalo; CSE 489/589 — Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo

TCP’s Cumulative ACK Scenario

SendBase = 120

SUNY at Buffalo; CSE 489/589 — Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo

20

TCP ACK Generation [RFC 1122, RFC 2581]

Event at Receiver TCP Receiver action

Arrival of in-order segment with Delayed ACK. Wait up to 500ms
expected seq #. All data up to for next segment. If no next segment,
expected seq # already ACKed send ACK.

Arrival of in-order segment with Immediately send single cumulative
expected seq #. One other ACK, ACKing both in-order segments
segment has ACK pending

Arrival of out-of-order segment Immediately send duplicate ACK,
higher-than-expect seq. # . indicating seq. # of next expected byte
Gap detected

Arrival of segment that Immediate send ACK, provided that
partially or completely fills gap segment starts at lower end of gap

SUNY at Buffalo; CSE 489/589 — Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo

Tips and Tricks
s (TCP/UDP) Session Hijacking

= How do you know you're talking to the party you're supposed to be
talking to?

= Many toolkits available for script kiddies
= Susceptible applications: telnet, ftp, dns, rlogin, rsh
= (Partial) solution: ssh, SSL, IPSec, and the likes

Server

Client

Server
Client
Data: "A", Sequence Number X+1
> P Acknowledgment Number X+3
< Acknowledgment Number X+2
Attacker

Data: 2", Sequence
Number X+2

Now, if this was a telnet session, replace Z’ by ‘rm *’ ©

SUNY at Buffalo; CSE 489/589 — Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 22

Tips and Trics
s ICP ACK Storm

Server

Client

< @ Acknowledges data with ACK packet

© Confused dient sends its last ACK
to try to resynchronize

@ and O repeat over and over

>
Attacker

© Injects data T

into session

= 28/07/2006: CERT advisory — No. 2006/VULN414
= Solaris Hosts are Vulnerable to a DoS induced by a TCP "ACK Storm”
= Product: Solaris 8, 9, and 10
= Solution: install a patch, which stops replying after a few bad ACKs

SUNY at Buffalo; CSE 489/589 — Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 23

How’s Retransmission Timeout Computed?
= Ideally, RTO should be just a little more than RTT

s Question: but RTT fluctuates

= Answer:

» Take sample RTT R and “smooth” it out to get SRTT
= Set RTO = some function of SRTT

= Question: but initially there’s no R yet

= Answer: (RFC 2988)

= Before having the first R, set RTO = 3sec
= (But also use exponential backoff.)

SUNY at Buffalo; CSE 489/589 — Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 24

Exponential Back-oft

= This is implementation dependent

= On BSD, it goes something like
= By default RTO = 1.5 sec
» First retransmission: RTO
=« nth retransmission: 2% RTO
= up to 64 sec (implementation specific)

= On Windows, I think you can edit some registries to
set these (and many other) parameters

SUNY at Buffalo; CSE 489/589 — Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo

25

After the First Sample RTT R is Measured

= SRTT =R

s RTTVAR =R/2
= (RTTVAR is RTT’s variance)

s RTO = SRTT + max (G, 4*RTTVAR)

= Where G is the clock’s granularity (in seconds)
= Thus, typically RTO = SRTT + 4*RTTVAR

SUNY at Buffalo; CSE 489/589 — Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo

26

For Each Newly Measured R

s RTTVAR=(1-) * RTTVAR + * |[SRTT - R|
= Typical value: f = /4

s SRITT=(1-a)* SRTT+a *R
=« Exponential weighted moving average
= Influence of past sample decreases exponentially fast
»« Typical value: . = 1/8

= They must be updated in the above order

= Finally, RTO = SRTT + max (G, 4*RTTVAR)

SUNY at Buffalo; CSE 489/589 — Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo

27

Smoothed RTT vs. Real RTT

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

350 -

300

f T, 1 f M

200 -

RTT (milliseconds)

150

1 00 T T T T T T T T T T T T T T T
1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106

time (seconnds)

|——SampleRTT —=—Estimated RTT |

SUNY at Buffalo; CSE 489/589 — Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 28

How to Measure Sample RTT R?
s Method 1:

= Segment sent, timer start ------- R------- ACK comes back

=« Flaw:
= If we retransmitted the segment, no idea if ACK is for which copy

» Karn/Partridge Algorithm:

= Do not measure R using retransmitted segments

s Method 2:

« TCP timestamp option
= Sender stamps a packet with sending time
= Receiver puts the stamp on the ACK
= Sender subtracts current time from the stamp

SUNY at Buffalo; CSE 489/589 — Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo

29

More on Timer Management [RFC 2988]

= An implementation MUST manage the
retransmission timer(s) in such a way that a
segment is never retransmitted before RTO

SUNY at Buffalo; CSE 489/589 — Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 30

RFC 2988: Recommended Timer Management

= Every time a packet containing data is sent (including a
retransmission), if the timer is not running, start it running
so that it will expire after RTO seconds (for the current value
of RTO).

= When all outstanding data has been acknowledged, turn off
the retransmission timer.

= When an ACK is received that acknowledges new data, restart
the retransmission timer so that it will expire after RTO
seconds (for the current value of RTO).

= When timer expires:

= Retransmit oldest segment
= Recompute RTO (double it)
= Start new timer

SUNY at Buffalo; CSE 489/589 — Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 31

Performance Tuning: Fast Retransmit

= Long RTO - long delay before retransmission
= Need a way to detect loss packets before timing out

s Idea: detect lost segments via duplicate ACKs.
= Sender often sends many segments back-to-back

= If segment is lost, there will likely be many duplicate
ACK:s.

m Fast retransmit

= If sender receives 3 duplicate ACKs for the same data, it
assumes that segment after ACKed data was lost

= Resend segment before timer expires

SUNY at Buffalo; CSE 489/589 — Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo

32

Effectiveness of Fast Retransmission

= When does Fast Retransmit work best?
= High likelihood of many packets in flight

= Long data transfers
= High window size

= Low burstiness in packet losses
= Higher likelihood that later packets arrive successfully

= Implications for Web traffic

= Most Web transfers are short (e.g., 10 packets)
= Short HTML files or small images

= So, often there aren’t many packets in flight
= ... making fast retransmit less likely to “kick in”
» Forcing users to like “reload” more often... ©

SUNY at Buffalo; CSE 489/589 — Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo

33

