Last Lecture: TCP

- 1. Multiplexing and Demultiplexing 🖌
- 2. Byte-stream service 🖌
 - Stream of bytes sent and received, not stream of packets
- 3. Reliable data transfer 🖌
 - A combination of go-back-N and selective repeat, and performance tuning heuristics
- 4. Connection management
 - Connection establishment and tear down
- 5. Flow control
 - Prevent sender from overflowing receiver
- 6. *Congestion control* (later)

This Lecture: TCP

- 1. Multiplexing and Demultiplexing
- 2. Byte-stream service
 - Stream of bytes sent and received, not stream of packets
- 3. Reliable data transfer
 - A combination of go-back-N and selective repeat, and performance tuning heuristics
- ₄. Connection management ✔
 - Connection establishment and tear down
- 5. Flow control 🖌
 - Prevent sender from overflowing receiver
- 6. Congestion control (later)

TCP Segment Structure

TCP Options

Options is a list of options, in one of two formats:

- *(kind)* [1 byte]
- (kind, length, data) [1 byte, 1 byte, N bytes]
 - *length* counts all bytes in the option

List of common options:

Kind	Length	Meaning	RFC
0	-	End of option list	793
1	-	No Operation, for padding	793
2	4	MSS	793
3	3	Window Scale	1323
4	2	SACK permitted	2018
5	Ν	SACK	2018
8	10	Timestamp option	1323

4. TCP Connection Management

Connection establishment

- Allow each end to know the other exists
 - Trigger allocation of transport entity resources
 - Buffer
 - Timers (if any), ...
- Set up optional parameters
 - Max segment size (MSS)
 - Initial Sequence Numbers (ISN)
 - Window size, ...
- Connection termination
 - Tell the other end you're done
 - Clean up after yourself (e.g., wait for delayed duplicates to die)

Establishment Using 3-way Handshake

Three-way handshake to establish connection

- 1. Host A sends a **SYN** (open) to the host B
- 2. Host B returns a SYN acknowledgment (SYN ACK)
- 3. Host A sends an **ACK** to acknowledge the SYN ACK

Step 1: A's Initial SYN Segment

Step 2: B's SYN/ACK Segment

... upon receiving this packet, A can start sending data

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo

Step 3: A Acknowledges the SYN/ACK

... upon receiving this packet, B can start sending data

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: *Hung Q. Ngo*

Timeout for SYN Retransmission

On BSD and the likes:

- 6 seconds after the first SYN
- 24 seconds after the second SYN
- 48 seconds after the third SYN
- give up
- Most Berkeley-derived OS have an upper limit of 75 seconds

SYN Loss and Web Download

- User clicks on a hypertext link
 - Browser creates a socket and does a "connect"
 - The "connect" triggers the OS to transmit a SYN
- If the SYN is lost...
 - The 6 seconds of delay may be very long
 - The user may get impatient
 - ... and click the hyperlink again, or click "reload"
- "Reload" triggers an "abort" of the "connect"
 - Browser creates a new socket and does a "connect"
 - Essentially, forces a faster send of a new SYN packet!
 - Sometimes very effective, and the page comes fast

Tips and Tricks

• The Morris attack (1985)

- Robert H. Morris is the father of the other Morris
- He worked for Bell Labs, then chief scientist at NSA
- Up to the early 90's, ISN is chosen sort of like this
 - RFC 793 says: "counter++ every 4µs", use counter for ISN
 - Berkeley-derived kernels: "counter += *C* every second, and += D for every new connection", C&D are constants
- To attack server S who trusts host A (rlogin/rsh)
 - Wait for A to be turned off (or DoS it)
 - Spoof a SYN from A, ignore the SYN/ACK from S
 - Send final ACK from A with correct ISN + 1 (how?)
 - Send commands to server S

Security Issue: SYN Flooding

- The attack:
 - IP-spoof a SYN packet, send it to server.
 - Server sends back SYN-ACK, wait for connection timeout (typically 75 seconds)
 - Thousands of SYN packets can eat up server's resources and new requests can't be granted
- No "best" solution
 - Routers can reduce IP-spoofed packets
 - Routers (Cisco & others) have the "*TCP intercept*" mode
 - *SYN cookies*, SYN cache, SYN proxying, SYNkill, etc.
 - (Some defenses subject to the attack themselves!!!)

History of SYN Flooding

- Discovered in 1994 (Bill Cheswick, Bellovin)
 - "Firewalls and Internet Security: Repelling the Wily Hacker"
 - No countermeasure developed in next 2 years
- Description and exploit tool: *Phrack P48-13* (1996)
- Sep 1996, SYN Flooding attacks seen in the wild
 CERT Advisory released
- Remedies quickly developed (partial solution)
 Some made their ways to OS codes

SYN Flooding – Some Technical Details

- Implementation dependent
 - Linux kernel 2.6.10: 1300-byte "sock" structure per SYN
 - Other OS: at least 280 bytes
 - The "backlog" parameter of listen() has an effect on the queue size
- Defenses
 - Avoid IP-spoofing (more later): RFCs 2827, 3013, 3704
 - SYN Cache, SYN Cookies:
 - Drawback: can't pigging back application data in SYN segment
 - Sometime disabled by default in implementations
 - Most BSD-derived OS implement one of these
 - Linux version > 2.6.5 does too
 - Windows 2K and later does too (modify some registry)

Connection Termination

- *Asymmetric release*: close the connection when one side asks for it
 - Abrupt and may result in data loss
- Symmetric release: two separate directions
 - FIN and ACK for each direction
 - Not an easy task.
 - What about a 3-way handshake?

Data Loss in Asymmetric Release

Symmetric Release is Hard Too

TCP's Connection Termination

Normal Operations

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo

TCP Allows Half-Close with Shutdown()

state transitions in simultaneous close

BTW, Simultaneous Open is Possible Too

state transitions in simultaneous open

The Time_Wait (2MSL) state

- MSL stands for Maximum Segment Lifetime
 - Common implementations are either 30sec, 1min, 2min
- Purposes of the 2MSL state
 - Let TCP resend the final ACK if needed (when?)
 - The socket can only be reused after 2MSL (why?)
 - Sometime you can't bind a server port because of this 2MSL state
 - However, setting socket option SO_REUSEADDR allows us to reuse the port number (violation of RFC)
 - But still, no two identical socket quadruples
- *"Quiet time"* (RFC 793):
 - no connection creation within 2MSL after crashing (why?)

RST is used to

- Reply to connection requests to some port no-one is listening on
 - In UDP, an *ICMP port unreachable* is generated instead
- Reply to connection requests within 2MSL after crashing
- Abort an existing connection

Note: RST has its own sequence number

Crash Recovery

- After restart all state information is lost
- Connection is *half open*
 - Side that did not crash still thinks it is connected
- We should close connections using *keep-alive timer*
 - This is controversial: is TCP or application responsible?
 - Implementation dependent
- Crashed side (after reboot) sends *RST i* in response to any *segment i* arriving
- User must decide whether to reconnect
 - Problems with lost or duplicate data

Tips and Tricks

TCP Connection Killing

- Using RST
- Using FIN
- Again, just need to know the right sequence number

5. Flow Control in TCP

- Flow Control:
 - Avoid fast sender overflowing slow receiver
- Basic Mechanism:
 - Receiver advertises its available window size (FWind)
 - Sender ensures that
 LastByteSent
 LastByteSent
 - LastByteSent LastByteAcked ≤ FWind
 - FWind is re-advertised in packets flowing back

TCP Flow Control: Sender Side

TCP Flow Control: Sender Side

Packet Sent

Packet Received

Picture taken and modified from Shiv Kalyanaraman's slides

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo

TCP Flow Control: Receiver Side

Picture taken and modified from Shiv Kalyanaraman's slides

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo

- Old implementations' default: 4KB
- Newer implementations: up to 16KB
- How large should it be, suppose we have plenty of memory and receiver's CPU is infinitely fast?
- Recall the *bandwidth-delay product*:
 - RTT x transmission rate
 - For T1 link across US: 60ms x 1.544M bps \rightarrow 11.58 KB
 - For T3 link across US: 60ms x 45 Mbps \rightarrow 337.5 KB
 - Note: *337.5 KB* >> *16-bit window size* ≈ *65KB*
 - For OC-12 link across US: $60ms \times 622 \text{ Mbps} \rightarrow 4.7MB$
- Solution: use the Window Scale option

Technical Issues with Flow Control

A. Deadlock

- Can deadlock occur with current flow control mechanism?
- B. Performance tuning for *interactive data flow*
 - telnet, SSH, Rlogin, ..., 10% of TCP segments (with a few to tens of data bytes per segment)
- c. Performance tuning for *bulk data flow*
 - FTP, Email, HTTP, ..., 90% of TCP segments (with hundred of data bytes)

A. Deadlock & TCP Persistence Timer

- To prevent deadlock, *persistence timer* is used to send *window probes*
 - Normal segment with just *one* byte of data (past current window)
 - Host required to respond to data sent past window
- Exponential back-off is used for persistence timer
 - Start with 1.5 seconds
 - Double every time up to 60 seconds

Tips and Tricks

- Talking about interactive data flows: how fast can people type?
- Guinness record is about *190 wpm* (Natalie Lantos, 1999)
 - If each word has 5 letters on average, then it is about 950cpm or 15.8 characters per second.
 - If each word has 10 letters on average, then it's still only about 31 characters per second! (or ~ 1 byte for each 32ms, twice longer than typical local RTT)

B. TCP Interactive Data Flow

- Data might be sent 1 byte at a time
- Heuristics to improve performance for interactive data flow?
 - *Delayed ACK* (200ms, or every other segment)
 - Nagle Algorithm: try to delay sending "small" segments until outstanding data is acknowledged or a full-sized segment is available
 - This algorithm is self-clocking!
 - In an Ethernet with RTT ≈ 16ms, would Nagle algorithm have any effect for an interactive data flow ?
 - Sometime Nagle needs to be turned off (e.g. for X-server, each mouse movement needs to be reported), using TCP_NODELAY socket option

Nagle's Algorithm in More Details

Sender does not transmit unless one of the following conditions is true:

- a full-sized segment can be sent
- at least ¹/₂ of the maximum FWind which has ever been advertised
- no outstanding unacknowledged data

What are the pros and cons of Nagle's algorithm?

Silly Window Syndrome

- Receiver advertises small FWind gradually
 - Suppose starting from FWind=0, application reads 1 byte of data at a time, slowly
 - Sender then would send a few bytes at a time, wasting lots of header overhead
- Symmetric to Nagle's algorithm, we can impose the following rule (*David Clark's algorithm*)
 - receiver should not advertise larger window than the current FWind until FWind can be increased by min(MSS, ¹/₂ buffer space)

C. Bulk Data Flow

- Sliding window with scale option
- Delayed ACK also helps