
Last Lecture: TCP
1.  Multiplexing and Demultiplexing ✔
2.  Byte-stream service ✔

  Stream of bytes sent and received, not stream of packets

3.  Reliable data transfer ✔
  A combination of go-back-N and selective repeat, and

performance tuning heuristics

4.  Connection management
  Connection establishment and tear down

5.  Flow control
  Prevent sender from overflowing receiver

6.  Congestion control (later)

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 1

This Lecture: TCP
1.  Multiplexing and Demultiplexing
2.  Byte-stream service

  Stream of bytes sent and received, not stream of packets

3.  Reliable data transfer
  A combination of go-back-N and selective repeat, and

performance tuning heuristics

4.  Connection management ✔
  Connection establishment and tear down

5.  Flow control ✔
  Prevent sender from overflowing receiver

6.  Congestion control (later)

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 2

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 3

TCP Segment Structure

source port # dest port #

32 bits

application
data

(variable length)

sequence number
acknowledgement number

Receive window

Urg data pnter checksum
F S R P A U head

len
not
used

Options (variable length)

URG: urgent data
(generally not used)

ACK: ACK #
valid

PSH: push data now
(generally not used)

RST, SYN, FIN:
connection estab
(setup, teardown

commands)

bytes
rcvr willing
to accept

counting
by bytes
of data
(not segments!)

Internet
checksum

(as in UDP)

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 4

TCP Options
Options is a list of options, in one of two formats:
  (kind) [1 byte]
  (kind, length, data) [1 byte, 1 byte, N bytes]

  length counts all bytes in the option
List of common options:

Kind Length Meaning RFC

0 - End of option list 793

1 - No Operation, for padding 793

2 4 MSS 793

3 3 Window Scale 1323

4 2 SACK permitted 2018

5 N SACK 2018

8 10 Timestamp option 1323

4. TCP Connection Management
  Connection establishment

  Allow each end to know the other exists
  Trigger allocation of transport entity resources
  Buffer
  Timers (if any), …

  Set up optional parameters
  Max segment size (MSS)
  Initial Sequence Numbers (ISN)
  Window size, ...

  Connection termination
  Tell the other end you’re done
  Clean up after yourself (e.g., wait for delayed duplicates to

die)

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 5

o Three-way handshake to establish connection
1.  Host A sends a SYN (open) to the host B
2.  Host B returns a SYN acknowledgment (SYN ACK)
3.  Host A sends an ACK to acknowledge the SYN ACK

Establishment Using 3-way Handshake

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 6

Each side tells its
ISN to the other
side."

Step 1: A’s Initial SYN Segment

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 7

A’s port B’s port

A’s Initial Sequence Number
Acknowledgment

Advertised window 24 Flags 0
Checksum Urgent pointer

Options (variable) (MSS here)

Flags: SYN
FIN
RST
PSH
URG
ACK

A tells B it wants to open a connection…"

Step 2: B’s SYN/ACK Segment

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 8

B’s port A’s port

B’s Initial Sequence Number
A’s ISN plus 1

Advertised window 20 Flags 0
Checksum Urgent pointer

Options (variable)

Flags: SYN
FIN
RST
PSH
URG
ACK

B tells A it accepts, and is ready to hear the next byte…"

… upon receiving this packet, A can start sending data"

Step 3: A Acknowledges the SYN/ACK

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 9

A’s port B’s port

B’s ISN plus 1
Advertised window 20 Flags 0

Checksum Urgent pointer
Options (variable)

Flags: SYN
FIN
RST
PSH
URG
ACK

A tells B it is okay to start sending"

Sequence number

… upon receiving this packet, B can start sending data"

Timeout for SYN Retransmission

On BSD and the likes:
  6 seconds after the first SYN
  24 seconds after the second SYN
  48 seconds after the third SYN
  give up

  Most Berkeley-derived OS have an upper limit of
75 seconds

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 10

SYN Loss and Web Download
  User clicks on a hypertext link

  Browser creates a socket and does a “connect”
  The “connect” triggers the OS to transmit a SYN

  If the SYN is lost…
  The 6 seconds of delay may be very long
  The user may get impatient
  … and click the hyperlink again, or click “reload”

  “Reload” triggers an “abort” of the “connect”
  Browser creates a new socket and does a “connect”
  Essentially, forces a faster send of a new SYN packet!
  Sometimes very effective, and the page comes fast

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 11

Tips and Tricks
  The Morris attack (1985)

  Robert H. Morris is the father of the other Morris
  He worked for Bell Labs, then chief scientist at NSA

  Up to the early 90’s, ISN is chosen sort of like this
  RFC 793 says: “counter++ every 4μs”, use counter for ISN
  Berkeley-derived kernels: “counter += C every second, and

+= D for every new connection”, C&D are constants

  To attack server S who trusts host A (rlogin/rsh)
  Wait for A to be turned off (or DoS it)
  Spoof a SYN from A, ignore the SYN/ACK from S
  Send final ACK from A with correct ISN + 1 (how?)
  Send commands to server S

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 12

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 13

Security Issue: SYN Flooding

  The attack:
  IP-spoof a SYN packet, send it to server.
  Server sends back SYN-ACK, wait for connection timeout

(typically 75 seconds)
  Thousands of SYN packets can eat up server’s resources

and new requests can’t be granted

  No “best” solution
  Routers can reduce IP-spoofed packets
  Routers (Cisco & others) have the “TCP intercept” mode
  SYN cookies, SYN cache, SYN proxying, SYNkill, etc.
  (Some defenses subject to the attack themselves!!!)

History of SYN Flooding
  Discovered in 1994 (Bill Cheswick, Bellovin)

  “Firewalls and Internet Security: Repelling the Wily Hacker”

  No countermeasure developed in next 2 years

  Description and exploit tool: Phrack P48-13 (1996)

  Sep 1996, SYN Flooding attacks seen in the wild
  CERT Advisory released

  Remedies quickly developed (partial solution)
  Some made their ways to OS codes

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 14

SYN Flooding – Some Technical Details
  Implementation dependent

  Linux kernel 2.6.10: 1300-byte “sock” structure per SYN
  Other OS: at least 280 bytes
  The “backlog” parameter of listen() has an effect on the

queue size

  Defenses
  Avoid IP-spoofing (more later): RFCs 2827, 3013, 3704
  SYN Cache, SYN Cookies:

  Drawback: can’t pigging back application data in SYN segment
  Sometime disabled by default in implementations
  Most BSD-derived OS implement one of these
  Linux version > 2.6.5 does too
  Windows 2K and later does too (modify some registry)

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 15

Connection Termination
  Asymmetric release: close the connection when one

side asks for it
  Abrupt and may result in data loss

  Symmetric release: two separate directions
  FIN and ACK for each direction
  Not an easy task.
  What about a 3-way handshake?

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 16

Data Loss in Asymmetric Release

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 17

Symmetric Release is Hard Too

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 18

TCP’s Connection Termination

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 19

client

FIN

server

ACK

ACK

FIN

close

close

closed

ti
m

ed
 w

ai
t

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 20

Normal Operations

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 21

TCP Allows Half-Close with Shutdown()

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 22

Simultaneous Close Allowed

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 23

BTW, Simultaneous Open is Possible Too

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 24

The Time_Wait (2MSL) state

  MSL stands for Maximum Segment Lifetime
  Common implementations are either 30sec, 1min, 2min

  Purposes of the 2MSL state
  Let TCP resend the final ACK if needed (when?)
  The socket can only be reused after 2MSL (why?)

  Sometime you can’t bind a server port because of this 2MSL state
  However, setting socket option SO_REUSEADDR allows us to

reuse the port number (violation of RFC)
  But still, no two identical socket quadruples

  “Quiet time” (RFC 793):
  no connection creation within 2MSL after crashing (why?)

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 25

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 26

RESET Segments

RST is used to
  Reply to connection requests to some port no-one is

listening on
  In UDP, an ICMP port unreachable is generated instead

  Reply to connection requests within 2MSL after
crashing

  Abort an existing connection

Note: RST has its own sequence number

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 27

Crash Recovery

  After restart all state information is lost
  Connection is half open

  Side that did not crash still thinks it is connected

  We should close connections using keep-alive timer
  This is controversial: is TCP or application responsible?
  Implementation dependent

  Crashed side (after reboot) sends RST i in response
to any segment i arriving

  User must decide whether to reconnect
  Problems with lost or duplicate data

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 28

Tips and Tricks

  TCP Connection Killing
  Using RST
  Using FIN
  Again, just need to know the right sequence number

Network

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 29

5. Flow Control in TCP
  Flow Control:

  Avoid fast sender overflowing slow receiver

  Basic Mechanism:
  Receiver advertises its available window size (FWind)
  Sender ensures that

LastByteSent – LastByteAcked ≤ FWind
  FWind is re-advertised in packets flowing back

TCP Flow Control: Sender Side

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 30

Sent but not acked Not yet sent

 FWind
Advertised by receiver

LastByteSent

Sent and acked

LastByteACKed
by receiver

LastByteWritten

Window slides
As data is
ACK’ed

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 31

acknowledged sent to be sent

Source Port Dest. Port
Sequence Number
Acknowledgment

HL/Flags Window
D. Checksum Urgent Pointer

Options..

Source Port Dest. Port
Sequence Number
Acknowledgment

HL/Flags FWind
D. Checksum Urgent Pointer

Options..

Packet Sent Packet Received

App write

TCP Flow Control: Sender Side

Picture taken and modified from Shiv Kalyanaraman’s slides

outside window

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 32

Acked but not
delivered to user

Not yet
acked

Receive buffer

FWind

TCP Flow Control: Receiver Side

Picture taken and modified from Shiv Kalyanaraman’s slides

Not yet
acked

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 33

FWind Size In Practice

  Old implementations’ default: 4KB
  Newer implementations: up to 16KB
  How large should it be, suppose we have plenty of

memory and receiver’s CPU is infinitely fast?
  Recall the bandwidth-delay product:

  RTT x transmission rate
  For T1 link across US: 60ms x 1.544M bps 11.58 KB
  For T3 link across US: 60ms x 45 Mbps 337.5 KB
  Note: 337.5 KB >> 16-bit window size ≈ 65KB
  For OC-12 link across US: 60ms x 622 Mbps 4.7MB

  Solution: use the Window Scale option

Technical Issues with Flow Control
A.  Deadlock

  Can deadlock occur with current flow control
mechanism?

B.  Performance tuning for interactive data flow
  telnet, SSH, Rlogin, …, 10% of TCP segments (with a few

to tens of data bytes per segment)

C.  Performance tuning for bulk data flow
  FTP, Email, HTTP, …, 90% of TCP segments (with

hundred of data bytes)

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 34

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 35

A. Deadlock & TCP Persistence Timer

  To prevent deadlock, persistence timer is used to
send window probes
  Normal segment with just one byte of data (past current

window)
  Host required to respond to data sent past window

  Exponential back-off is used for persistence timer
  Start with 1.5 seconds
  Double every time up to 60 seconds

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 36

Tips and Tricks

  Talking about interactive data flows: how fast can
people type?

  Guinness record is about 190 wpm (Natalie Lantos,
1999)
  If each word has 5 letters on average, then it is about

950cpm or 15.8 characters per second.
  If each word has 10 letters on average, then it’s still only

about 31 characters per second! (or ~ 1 byte for each
32ms, twice longer than typical local RTT)

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 37

B. TCP Interactive Data Flow

  Data might be sent 1 byte at a time
  Heuristics to improve performance for interactive

data flow?
  Delayed ACK (200ms, or every other segment)
  Nagle Algorithm: try to delay sending “small” segments

until outstanding data is acknowledged or a full-sized
segment is available

  This algorithm is self-clocking!
  In an Ethernet with RTT ≈ 16ms, would Nagle algorithm have

any effect for an interactive data flow ?
  Sometime Nagle needs to be turned off (e.g. for X-server, each

mouse movement needs to be reported), using TCP_NODELAY
socket option

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 38

Nagle’s Algorithm in More Details

Sender does not transmit unless one of the following
conditions is true:

  a full-sized segment can be sent
  at least ½ of the maximum FWind which has ever

been advertised
  no outstanding unacknowledged data

What are the pros and cons of Nagle’s algorithm?

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 39

Silly Window Syndrome
  Receiver advertises small FWind gradually

  Suppose starting from FWind=0, application reads 1 byte of
data at a time, slowly

  Sender then would send a few bytes at a time, wasting lots
of header overhead

  Symmetric to Nagle’s algorithm, we can impose the
following rule (David Clark’s algorithm)
  receiver should not advertise larger window than the

current FWind until FWind can be increased by
min(MSS, ½ buffer space)

C. Bulk Data Flow

  Sliding window with scale option

  Delayed ACK also helps

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 40

