Last Lecture: Network Layer

- 1. Design goals and issues 🖌
- 2. Basic Routing Algorithms & Protocols 🖌
 - Packet Forwarding
 - Shortest-Path Algorithms
 - Routing Protocols
- 3. Addressing, fragmentation and reassembly
- 4. Internet Routing Protocols and Inter-networking
- 5. Router design
- 6. Congestion Control, Quality of Service
- 7. More on the Internet's Network Layer

This Lecture: Network Layer

- 1. Design goals and issues
- 2. Basic Routing Algorithms & Protocols
- 3. Addressing, Fragmentation and reassembly 🖌
 - Hierarchical addressing
 - Address allocation & CIDR
 - *IP fragmentation and reassembly*
- 4. Internet Routing Protocols and Inter-networking
- 5. Router design
- 6. Congestion Control, Quality of Service
- 7. More on the Internet's Network Layer

1. IP Addressing

Dotted-quad notation: here's timberlake.cse's IP

- *Theoretically*, up to $2^{3^2} \approx 4$ billion hosts
- *Practically*, about 768 millions (Jul 2010, ISC Survey), still huge!
- Routing table with 768M entries? No no.

Hierarchical Addressing: Rough Idea

- Each "network" assigned a prefix
- Foreign routers' routing tables only need an entry for the entire "network"
 - The entry points to the network's "gateway(s)"

Subnet Mask: Extracting the Network Prefix

Address

Scalability Improved

- Routing tables are smaller (but still too big)
- No need to update the routers when new host added
 - E.g., adding a new host 5.6.7.213 on the right
 - Doesn't require adding a new forwarding-table entry

Address Allocation

- How to partition the address space into "blocks"
- Who gets which block?

Classful Allocation (The Old Way)

This is why dotted-quad notation is used

CIDR: Reduce Routing Table Sizes

About 350K entries to date

(BGP) Routing Table Size Growth

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo

Scalability: Address Aggregation

Routers in the rest of the Internet just need to know how to reach 201.10.0.0/21. The provider can direct the IP packets to the appropriate customer.

But, Aggregation Not Always Possible

Multi-homed customer with 201.10.6.0/23 has two providers. Other parts of the Internet need to know how to reach these destinations through *both* providers.

CIDR Not a Free Lunch

ISPs-R-Us has a more specific route to Organization 1

Requires routers to do *longest prefix match*, per packet, every few nanosecond

2. IP Fragmentation and Reassembly

- A packet may hit networks with different MTUs
- Fragmentation needed at networks whose MTUs are smaller than the packet
- *Reassemble* the packet after getting out

Where to do Reassembly

At end nodes or routers?

• At routers:

- Con: How much buffer space required at routers?
- Con: What if routes in network change? Or there are multiple paths to the same destination?

• At end (receiving) nodes

- Pro: avoids unnecessary work where large packets are fragmented multiple times
- Pro: at routers, less buffer space & less computation
- Con: if any fragment missing, retransmit entire packet through entire path, wasting bandwidth
- TCP/IP takes this approach

IP Packet Format

- Length
 - Length of IP fragment
- Identifier
 - To match up with other fragments
- Flags
 - Don't fragment flag
 - More fragments flag
- Fragment offset
 - Where this fragment lies in entire IP datagram
 - Measured in 8 octet units (13 bit field)

IP Fragmentation Example #1

IP Fragmentation Example #2

IP Fragmentation Example #3

IP Reassembly

- Fragments might arrive out-oforder
 - Don't know how much memory required until receive final fragment
- Some fragments may be duplicated
 - Keep only one copy
- Some fragments may never arrive
 - After a while, give up entire process

Fragmentation and Reassembly Concepts

- *Decentralized*: Every network can choose MTU
- Connectionless
 - Each (fragment of a) packet contains full routing information
 - Fragments travel independently
- Best effort
 - Fail by dropping packet
 - Destination can give up on reassembly
 - No need to signal sender that failure occurred
- E2E principle
 - Reassembly at endpoints
- These are key networking principles!

Fragmentation is Harmful

- Uses resources poorly
 - Forwarding costs per packet
 - Best if we can send large chunks of data
 - Worst case: packet just bigger than MTU
- Poor end-to-end performance
- Solution: *Path MTU discovery* protocol
- Common theme in system design
 - Assure correctness by implementing complete protocol
 - Optimize common cases to avoid full complexity