Last Lecture: Network Layer

.. Design goals and issues

. Basic Routing Algorithms & Protocols

5. Addressing, Fragmentation and reassembly

+. Internet Routing Protocols and Inter-networking

5. Router design
. Short History + Router architectures ¢
.. Switching fabrics
5. Address lookup problem

6. Congestion Control, Quality of Service
7. More on the Internet’s Network Layer
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Five Common Switch Fabric Designs

= Shared Memory

= Shared Medium

= Disjoint Paths

= Crossbar, Knockout Switch

s Multi-state Interconnection Network
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Shared Memory Switch
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SMS: Pros and Cons

m Pros
= Functionally an OQ switch, optimal throughput & delay
= Can reduce total amount of memory needed
= Broadcast/multicast ready

s Cons

= Under “hot-spot” traffic, might be unfair
= Can fix with separate memory segments per output
= But then doesn’t save as much memory

= Need a controller & memory speedup of 2N
= Single point of failure

a Commercial routers:

» Juniper Networks’ E-series/ERX edge router
= M-series/M20, M40, M160 core routers
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Shared Medium Switch
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SMedS: Pros and Cons

m Pros

= Functionally an OQ switch, optimal throughput & delay
= TDM bus technology is well-understood & advanced
= Broadcast/multicast ready

s Cons

= Need speedup of (N+1) for output memory, N for filter

= Can also be unfair under “hot-spot” traffic, need
sophisticated scheduling/balancing algorithm

= Single point of failure

s Commercial routers:
= Cisco 7500 series
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Disjoint Paths Switch
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AF == Address Filter
OB == Output Buffer
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DPS: Pros and Cons

m Pros
= Functionally an OQ switch, optimal throughput & delay
= No contention of any kind (neither input nor output)
= No “mechanical” speedup needed
= Broadcast/multicast ready
= Suited for both bursty & uniform traffics
= Fault tolerant, Straightforward implementation

s Cons
= Complexity scales as O(N?2), can’t make large switches
= (Too much memory)

s Commercial routers:
= Cisco 7500 series
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Crossbar/Crosspoint Switch
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Crosspint Switch

Crosspoint switch Permutation
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A crosspoint switch supports all permutations
So it is “non-blocking”
But it needs N crosspoints
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Crossbar: Pros and Cons

m Pros
= Simple control, internally non-blocking
» Can perform well, depending on how buffers are managed
= Can be used to build larger switches
m Cons
= Complexity scale as O(N2), can’t make large switches
= Can multicast, but require sophisticated scheduling
s Commercial routers
= IQ-crossbar: Cisco 12416
= CIOQ-crossbar: Lucent’s PacketStar 6400 IP Switch
= Lucent GRF 400 Multi-gigabit Router
» Foundry Network’s Big Iron
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Knockout Switch

Basic 1dea: use a concentrator to reduce bufter size
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Concentrator: Select a Few from Many

D = delay elements to ensure
all packets exit at same time
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Shifter: Balance Output Buffers
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Multi-state Interconnection Networks

Can we build functionally crossbar-equivalent switch using
significantly fewer than N2 2x2 switching elements (or crosspoints?)

* Yes! Theoretically we can even achieve O(N log N)

* Practically: a little worse — O(IN log? N) — with, e.g., Clos and Banyan
types of topologies
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3-Stage Clos Network — C(n,m,r)

rxXr m = # middle crossbars
= # input/output crossbars
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Rearrangeably Nonblocking Condition

= A switch is rearrangeably nonblocking if it can route
any (sub)-permutation of inputs to outputs
simultaneously

Theorem: C(n,m,r) is rearrangeably nonblocking if
and only if m = n; In particular, C(n,n,r) is!

e
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Proof of Theorem

Routing matches is equivalent to edge-coloring in a bipartite multigraph.

Colors correspond to middle-stage switches.

(1,1),(24),(3,3),(4,2)
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|, ——

[\

Each vertex corresponds
toann X kor kX n
switch.

I /. ®

No two edges at a vertex
may be colored the same.

Konig 1931: a D-degree bipartite graph can be colored in D colors.
Therefore, if k=n, a 3-stage Clos network is rearrangeably non-blocking
(and can therefore perform any permutation).
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Is C(n,n,r) better than a crossbar?

= Given N inputs, how to choose n and r?
= Total # of crosspoints is

2rn? +nr? = N(2N/r +r) > 2v/2N3/2

= Can be achieved if we choose

r~vV2N,n~\/N/2

= So the answer is YES
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The Price: Rearrangement Running Time

o Method 1: Find a maximum size
bipartite matching for each of D colors
1n turn:

O(DM+VN) = O(DN?%*®) worst case
o Method 2: Partition graph into Euler

sets

O(M

Cole et al. ‘00]

log D) = O(N?log D) worst case

o Both are slow and complex
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Benes Network

= Can we do better than O(N3/2) for rearrangeability?
= Yes: use Clos recursively
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Benes Network — Recursive Construction
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Benes Network — Recursive Construction
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16 port, 7 stage Clos network = Benes topology
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Benes Network Complexity

= Symmetric

a Size:
« F(N) = 2(N/2) + 2F(N/2) = O(N log N)

s Itisrearrangable
= Clos network with m=n=2
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Rearrangeable Clos: Pros & Cons

Pros

= A rearrangeably non-blocking switch can perform
any permutation

= A cell switch is time-slotted, so all connections are
rearranged every time slot anyway

Cons

= Rearrangement algorithms are complex (in addition
to the scheduler)

Can we eliminate the need to rearrange?
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Strictly Non-blocking Clos Network

= A switch is strictly non-blocking if a new request
from a free input to a free output can be

accommodated without disturbing existing
connections

Theorem: C(n,m,r) is strictly nonblocking if and
only if m > 2n-1

n-1 S | mxn

— />O
—> I nxm >O} n-1
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Strictly Non-blocking Clos: Complexity

= Given N inputs, how to choose n and r?
= Total # of crosspoints is (set m = 2n for simplicity)

An®r + 2nr? = 2N(2N/r +r) > 4V/2N3/2

= Can be achieved if we choose

r~vV2N,n~\/N/2

= Seem a little high. Can we do better?
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Cantor Network — Strictly nonblocking
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Log N copies of Benes, complexity O(N log? N)
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Proof Sketch
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Proof Sketch
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Proof Sketch

= Benes network:
= 2log N -1 layers,
= N/2 nodes in layer.
= Middle layer= layer log N -1

= Consider the middle layer of the Benes Networks.
= There are Nm/2 nodes in in all of them combined.

= Bound (from below) the number of nodes reachable from an
input and output.

= If the sum is more than Nm/2:

= There is an intersection
= there has to be a route.
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Proof Sketch

= Let A(k) = number of nodes reachable at level k.

N A(O)=II1
s A(1)=2A(0)-1
s A(2)=2A(1)-2
s A(k)=2A(k-1) - 2kt = 2k A(Q) - k 2k
s A(logN-1) =Nm/2 - (logN -1) N/4
= Need that: 2A(log N -1) > Nm/2.
= 2[Nm/2 - (log N-1) N/4] > Nm/2.
= Hold for m> log N-1.
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