- 1. Design goals and issues
- 2. Basic Routing Algorithms & Protocols
- 3. Addressing, Fragmentation and reassembly
- 4. Internet Routing Protocols and Inter-networking
- 5. Router design
 - 1. Short History + Architectures
 - 2. Switching fabrics
 - 3. Address lookup problem 🖌
- 6. Congestion Control, Quality of Service
- 7. More on the Internet's Network Layer

This Lecture: Data Link Layer

- 1. Design goals and issues 🖌
- 2. (More on) Error Control and Detection 🖌
- 3. Multiple Access Control (MAC)
- 4. Ethernet, LAN Addresses and ARP
- 5. Hubs, Bridges, Switches
- 6. Wireless LANs

What Does Link Layer Do?

Some terminology:

- Hosts and routers are nodes
- Communication channels that connect adjacent nodes along communication path are *links*
 - Wired links
 - Wireless links
 - O LANS
- Layer-2 packet is a *frame*, encapsulates datagram

Message, Segment, Packet, Frame

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo

Link Layer for Each Hop

- IP packet transferred over multiple hops
 - Each hop has a link layer protocol
 - May be different on different hops
- Analogy: trip from Buffalo to New York
 - Limo: Buffalo to BNI Airport
 - Plane: BNI to JFK
 - Train: JFK to Hotel
- *Refining the analogy*
 - Tourist == packet
 - Transport segment == communication link
 - Transportation mode == link-layer protocol
 - Travel agent == routing algorithm

Where Does Link Layer "Happen"?

- Link layer implemented in adaptor (net. interface card) – Ethernet card, PCMCIA card, 802.11 card
- Sending side:
 - Encapsulates datagram in a frame
 - Adds error checking bits, flow control, etc.
- *Receiving side:*
 - Looks for errors, flow control, etc.
 - Extracts datagram and passes to receiving node

Basic services:

- Framing and encoding
- Error detection, correction

Access services:

- Sharing a broadcast channel: multiple access
- Link layer addressing

Performance services:

• Reliable data transfer, flow control: *done!*

Link Layer Basic Services

- Encoding
 - Representing the os and 1s
- Framing
 - Encapsulating packet into frame, adding header, trailer
 - Using MAC addresses, rather than IP addresses

Error detection

- Errors caused by signal attenuation, noise.
- Receiver detecting presence of errors
- Error correction
 - Receiver correcting errors without retransmission

Principles of Error Detecting/Correcting Codes

The Problem

Aoccdrnig to rscheearch at an Elingsh uinervtisy, it deosn't mttaer in waht oredr the ltteers in a wrod are, the olny iprmoetnt tihng is that the frist and lsat ltteer are at the rghit pclae. The rset can be a toatl mses and you can sitll raed it wouthit a porbelm. Tihs is bcuseae we do not raed ervey lteter by it slef but the wrod as a wlohe.

Principles of Error Detecting/Correcting Codes

- Messages: vectors of length m, i.e. $\{0, 1\}^m$
- Encoding function: $f: \{0,1\}^m \to \{0,1\}^n$ (n > m to add redundancy)
- Given message x, send y = f(x)
- Receiver receive y' (possibly different from y)
- *Decoding*: get back *x* from *y*'

The Solution

• How much extra redundancy added?

- *n/m* is the *code rate*, want to keep near *1*
- How many errors can the system detect, correct?
 Say, it can detect *e* bit-errors, want it to be large
- Natural tradeoff between rate and error detection capability
 - Small n/m implies small e

What Shannon + Hamming Taught Us

$$C = \{ f(x) \mid x \in \{0, 1\}^m \}$$

Is called the set of *codewords*

The *minimum distance* of *C* is

$$\Delta(C) = \min_{c_1 \neq c_2 \in C} \left(\text{Hamming-Distance}(c_1, c_2) \right)$$

We can always detect
$$\Delta(C) - 1$$
 errors
We can always correct $\left\lfloor \frac{\Delta(C) - 1}{2} \right\rfloor$ errors

Examples We've Seen: Parity Checking

Single Bit Parity: Detect single bit errors

Two Dimensional Bit Parity:

Detect 3 bit-errors and correct single bit errors

CRC Code: More Sophisticated Error Detection

- View data bits, **D**, as a binary number
- Choose r+1 bit pattern (generator), G
- Goal: choose r CRC bits, **R**, such that
 - [D,R] exactly divisible by G (modulo 2)
 - Receiver knows G, divides [D,R] by G. If non-zero remainder: error detected!
- *Widely used in practice* (Ethernet, 802.11 WiFi, ATM)

CRC Example

CRC in terms of Polynomials

- Message M length k (110011)
 - $M(x) = x^5 + x^4 + x + 1$
- *G* is given as a *Generator Polynomial* of degree *r*
 - $CRC-12 = x^{12} + x^{11} + x^3 + x^2 + x^1$
 - *CRC-16, CRC-CCITT, CRC-32*
- Arithmetic Modulo 2 is now done in terms of these polynomials
 - $M(x) x^r = G(x)Q(x) + R(x)$
 - *R*(*x*) represent the bits to be added to message
- In practice: use circuit consisting of XOR-gates and shift registers → very fast

CRC Can Detect

- All single-bit errors
- All double-bit errors, as long as G has at least 3 1's
- Any odd number of errors, as long as G contains a factor (x+1) (why?)
- Any burst error of length *n* or less
- Most larger burst errors
- Probability of undetected (n+1)-burst error is $1/2^{n-1}$
- Probability of undetected longer burst error is $1/2^n$