1. Design goals and issues
2. (More on) Error Control and Detection
3. Multiple Access Control (MAC)
4. Ethernet, LAN Addresses and ARP ✔
5. Hubs, Bridges, Switches
6. Wireless LANs
7. WLAN Security
8. Mobile Networking
This Lecture: Data Link Layer

1. Design goals and issues
2. (More on) Error Control and Detection
3. Multiple Access Control (MAC)
4. Ethernet, LAN Addresses and ARP
5. Hubs, Bridges, Switches ✔
 o Credits: some slides from Jennifer Rexford @ Princeton
6. Wireless LANs
7. WLAN Security
8. Mobile Networking
Shuttleing Data at Different Layers

<table>
<thead>
<tr>
<th>Layer</th>
<th>Unit type</th>
<th>Device</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network</td>
<td>Packets</td>
<td>Routers</td>
</tr>
<tr>
<td>Datalink</td>
<td>Frames</td>
<td>Switches, Bridges</td>
</tr>
<tr>
<td>Physical</td>
<td>Electrical signals</td>
<td>Repeaters, Hubs</td>
</tr>
</tbody>
</table>

Diagram:
- **Application gateway**
- **Transport gateway**
- **Router**
- **Bridge, switch**
- **Repeater, hub**

Breakdown:
- **Frame header**
- **Packet header**
- **TCP header**
- **User data**
Physical Layer: Repeaters

- Distance limitation in local-area networks
 - Electrical signal becomes weaker as it travels
 - Imposes a limit on the length of a LAN
- *Repeaters* join LANs together
 - Analog electronic device
 - Continuously monitors electrical signals on each LAN
 - *Transmits an amplified copy*
Magnum 200X Two-Port Repeater
Physical Layer: Hubs

- Joins multiple input lines electrically
 - Designed to hold multiple line cards
 - *Do not necessarily amplify the signal*
- Very similar to repeaters
 - Also operates at the physical layer
Magnum 3000 Series Stackable Hubs
Limitations of Repeaters and Hubs

- **One large shared link, thus throughput limited**
 - Each bit is sent everywhere
 - E.g., three departments each get 10 Mbps independently
 - ... and then connect via a hub and must share 10 Mbps

- **Cannot support multiple LAN technologies**
 - Does not buffer or interpret frames
 - So, can’t interconnect between different rates or formats
 - E.g., 10 Mbps Ethernet and 100 Mbps Ethernet

- **Limitations on maximum nodes and distances**
 - Shared medium imposes length limits \((2\tau R)\)
 - E.g., cannot go beyond 2500 meters on Ethernet
Link Layer: Bridges

- Connects two or more LANs at the link layer
 - Extracts destination address from the frame
 - Looks up the destination in a table
 - Forwards the frame to the appropriate LAN segment
- Each segment can carry its own traffic
Link Layer: Switches

- Typically connects individual computers
 - A switch is essentially the same as a bridge
 - ... though typically used to connect hosts, not LANs
- Like bridges, support concurrent communications
 - Host A can talk to C, while B talks to D

![Diagram of a network with switches and hosts]
Netgear PE102 Ethernet/PNA Bridge
Some Modern Switches

Cisco Nexus 7000 Network Switch
(15 Tbps total capacity)
Dedicated Access and Full Duplex

- **Dedicated access**
 - Host has direct connection to the switch
 - ... rather than a shared LAN connection

- **Full duplex**
 - Each connection can send in both directions
 - Host sending to switch, and host receiving from switch
 - E.g., in 10BaseT and 100BaseT

- Completely supports concurrent transmissions
 - Each connection is a bidirectional point-to-point link
Bridges/Switches: Traffic Isolation

- Switch breaks subnet into LAN segments
- Switch filters packets
 - Frame only forwarded to the necessary segments
 - Segments can support separate (concurrent) transmissions
Advantages Over Hubs/Repeaters

- Only forwards frames as needed, higher throughput
 - Filters frames to avoid unnecessary load on segments
 - Sends frames only to segments that need to see them
- Extends the geographic span of the network
 - Separate segments allow longer distances
- Improves security by limiting scope of frames
 - Hosts can “snoop” the traffic traversing their segment
 - ... but not all the rest of the traffic
- Can join segments using different technologies
Disadvantages Over Hubs/Repeaters

- Delay in forwarding frames
 - Bridge/switch must receive and parse the frame
 - ... and perform a look-up to decide where to forward
 - Storing and forwarding the packet introduces delay
 - Solution: *cut-through switching*

- Need to learn where to forward frames
 - Bridge/switch needs to construct a forwarding table
 - Ideally, without intervention from network administrators
 - Solution: *self-learning*

- Higher cost
 - More complicated devices that *cost more* money
Motivation For Cut-Through Switching

- Buffering a frame takes time
 - Suppose L is the length of the frame
 - And R is the transmission rate of the links
 - Then, receiving the frame takes L/R time units

- Buffering delay can be a high fraction of total delay
 - Propagation delay is small over short distances
 - Making buffering delay a large fraction of total
Cut-Through Switching

- Start transmitting as soon as possible
 - Inspect the frame header and do the look-up
 - If outgoing link is idle, start forwarding the frame
- Overlapping transmissions
 - Transmit the head of the packet via the outgoing link
 - ... while still receiving the tail via the incoming link
 - Analogy: different folks crossing different intersections
Motivation For Self Learning

- Switches forward frames selectively
 - Forward frames only on segments that need them
- Switch table
 - Maps destination MAC address to outgoing interface
 - Goal: construct the switch table automatically
Self Learning: Building the Table

- When a frame arrives
 - Inspect the source MAC address
 - Associate the address with the incoming interface
 - Store the mapping in the switch table
 - Use a time-to-live field to eventually forget the mapping

Switch learns how to reach A.
Self Learning: Handling Misses

- When frame arrives with unfamiliar destination
 - Forward the frame out all of the interfaces
 - ... except for the one where the frame arrived
 - Hopefully, this case won’t happen very often

When in doubt, shout!
Switch Filtering/Forwarding

When switch receives a frame:

Index switch table using MAC destination address

if entry found for destination

then{

if dest on segment from which frame arrived

then drop the frame

else forward the frame on interface indicated

}

else flood

forward on all but the interface on which the frame arrived
Self-learning, forwarding: example

- Frame destination unknown: *flood*

- Frame destination known: *selective forward*

```
\begin{tabular}{|c|c|c|}
\hline
MAC addr & interface & TTL \\
\hline
A & 1 & 60 \\
A' & 4 & 60 \\
\hline
\end{tabular}
```

Switch table (initially empty)
Flooding Can Lead to Loops

- Switches sometimes need to broadcast frames
 - Upon receiving a frame with an unfamiliar destination
 - Upon receiving a frame sent to the broadcast address

- Broadcasting is implemented by flooding
 - Transmitting frame out every interface
 - ... except the one where the frame arrived

- Flooding can lead to forwarding loops
 - E.g., if the network contains a cycle of switches
 - Either accidentally, or by design for higher reliability
For Instance
Loops ➔ Incorrect Learning

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo
Loops ➔ Frame Looping
Loops: Frame looping

![Diagram showing a network topology with loops]

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo
A message from A will mark A’s location
Loop-free: tree

A message from A will mark A’s location
Loop-free: tree

A message from A will mark A’s location
A message from A will mark A’s location
A message from A will mark A’s location
So a message to A will go by marks…

A message from A will mark A’s location
Solution: Spanning Trees

- Ensure the topology has no loops
 - Avoid using some of the links when flooding
 - ... to avoid forming a loop
- **Spanning tree**
 - Sub-graph that covers all vertices but contains no cycles
 - Links not in the spanning tree do not forward frames
Constructing a Spanning Tree

- Need a distributed algorithm
 - Switches cooperate to build the spanning tree
 - ... and adapt automatically when failures occur

- Key ingredients of the algorithm
 - Switches need to elect a “root”
 - The switch with the smallest identifier
 - Each switch identifies if its interface is on the shortest path from the root
 - And it exclude from the tree if not
 - Messages (Y, d, X)
 - From node X
 - Claiming Y is the root
 - And the distance is d
Steps in Spanning Tree Algorithm

- Initially, each switch thinks it is the root
 - Switch sends a message out every interface
 - ... identifying itself as the root with distance 0
 - Example: switch X announces \((X, 0, X)\)
- Switches update their view of the root
 - Upon receiving a message, check the root id
 - If the new id is smaller, start viewing that switch as root
- Switches compute their distance from the root
 - Add 1 to the distance received from a neighbor
 - Identify interfaces not on a shortest path to the root
 - ... and exclude them from the spanning tree
Example From Switch #4’s Viewpoint

- Switch #4 thinks it is the root
 - Sends (4, 0, 4) message to 2 and 7
- Then, switch #4 hears from #2
 - Receives (2, 0, 2) message from 2
 - ... and thinks that #2 is the root
 - And realizes it is just one hop away
- Then, switch #4 hears from #7
 - Receives (2, 1, 7) from 7
 - And realizes this is a longer path
 - So, prefers its own one-hop path
 - And removes 4-7 link from the tree
Example From Switch #4’s Viewpoint

- Switch #2 hears about switch #1
 - Switch 2 hears (1, 1, 3) from 3
 - Switch 2 starts treating 1 as root
 - And sends (1, 2, 2) to neighbors
- Switch #4 hears from switch #2
 - Switch 4 starts treating 1 as root
 - And sends (1, 3, 4) to neighbors
- Switch #4 hears from switch #7
 - Switch 4 receives (1, 3, 7) from 7
 - And realizes this is a longer path
 - So, prefers its own three-hop path
 - And removes 4-7 link from the tree
Robust Spanning Tree Algorithm

- Algorithm must react to failures
 - Failure of the root node
 - Need to elect a new root, with the next lowest identifier
 - Failure of other switches and links
 - Need to recompute the spanning tree
- Root switch continues sending messages
 - Periodically reannouncing itself as the root (1, 0, 1)
 - Other switches continue forwarding messages
- Detecting failures through timeout (soft state!)
 - Switch waits to hear from others
 - Eventually times out and claims to be the root
In the olden days...
- Thick cables snaked through cable ducts in buildings
- Every computer they passed was plugged in
- All people in adjacent offices were put on the same LAN
- Independent of whether they belonged together or not

More recently...
- Hubs and switches changed all that
- Every office connected to central wiring closets
- Often multiple LANs (k hubs) connected by switches
- Flexibility in mapping offices to different LANs

Group users based on organizational structure, rather than the physical layout of the building.
Why Group by Organizational Structure?

- **Security**
 - Ethernet is a shared media
 - Any interface card can be put into “promiscuous” mode
 - ... and get a copy of all of the traffic (e.g., final exam)
 - So, isolating traffic on separate LANs improves security

- **Load**
 - Some LAN segments are more heavily used than others
 - E.g., researchers running experiments get out of hand
 - ... can saturate their own segment and not the others
 - Plus, there may be natural locality of communication
 - E.g., traffic between people in the same research group
People Move, and Roles Change

- Organizational changes are frequent
 - E.g., faculty office becomes a grad-student office
 - E.g., graduate student becomes a faculty member

- Physical rewiring is a major pain
 - Requires unplugging the cable from one port
 - ... and plugging it into another
 - ... and hoping the cable is long enough to reach
 - ... and hoping you don’t make a mistake

- Would like to “rewire” the building in software
 - The resulting concept is a Virtual LAN (VLAN)
VLANs: motivation

What’s wrong with this picture?

What happens if:

- CS user moves office to EE, but wants connect to CS switch?
- single broadcast domain:
 - all layer-2 broadcast traffic (ARP, DHCP) crosses entire LAN (security/privacy, efficiency issues)
- each lowest level switch has only few ports in use
VLANs

Port-based VLAN: switch ports grouped (by switch management software) so that single physical switch ...

Virtual Local Area Network

Switch(es) supporting VLAN capabilities can be configured to define multiple virtual LANS over single physical LAN infrastructure.

... operates as multiple virtual switches
Port-based VLAN

- **traffic isolation:** frames to/from ports 1-8 can only reach ports 1-8
 - can also define VLAN based on MAC addresses of endpoints, rather than switch port
- **dynamic membership:** ports can be dynamically assigned among VLANs
- **forwarding between VLANs:** done via routing (just as with separate switches)
 - in practice vendors sell combined switches plus routers
VLANS spanning multiple switches

- **trunk port**: carries frames between VLANS defined over multiple physical switches
 - frames forwarded within VLAN between switches can’t be vanilla 802.1 frames (must carry VLAN ID info)
 - 802.1q protocol adds/removed additional header fields for frames forwarded between trunk ports

Electrical Engineering (VLAN ports 1-8)
Computer Science (VLAN ports 9-15)
Ports 2,3,5 belong to EE VLAN
Ports 4,6,7,8 belong to CS VLAN
802.1Q VLAN Frame Format

- Type
 - 2-byte Tag Protocol Identifier (value: 81-00)
- Tag Control Information
 - 12 bit VLAN ID field
 - 3 bit priority field like IP TOS
- Recomputed CRC

802.1 frame

802.1Q frame

Tag Control Information (12 bit VLAN ID field, 3 bit priority field like IP TOS)
Summary: Making VLANs Work

- Bridges/switches need configuration tables
 - Saying which VLANs are accessible via which interfaces

- Approaches to mapping to VLANs
 - Each interface has a VLAN “color” (i.e. number)
 - Only works if all hosts on same segment belong to same VLAN
 - Each MAC address has a VLAN color
 - Useful when hosts on same segment belong to different VLANs
 - Useful when hosts move from one physical location to another

- Changing the Ethernet header
 - Adding a field for a VLAN tag
 - Implemented on the bridges/switches
 - ... but can still interoperate with old Ethernet cards
Moving From Switches to Routers

- Advantages of switches over routers
 - Plug-and-play
 - Fast filtering and forwarding of frames
 - No pronunciation ambiguity (e.g., “rooter” vs. “rowter”)

- Disadvantages of switches over routers
 - Topology is restricted to a spanning tree
 - Large networks require large ARP tables
 - *Broadcast storms* can cause the network to collapse
Comparing Hubs, Switches, Routers

<table>
<thead>
<tr>
<th></th>
<th>Hub/Repeater</th>
<th>Bridge/Switch</th>
<th>Router</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traffic isolation</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Plug and Play</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>Efficient routing</td>
<td>no</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>Cut through</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
</tr>
</tbody>
</table>
Conclusion

- Shuttling data from one link to another
 - Bits, frames, packets, ...
 - Repeaters/hubs, bridges/switches, routers, ...

- Key ideas in switches
 - Cut-through switching
 - Self learning of the switch table
 - Spanning trees
 - Virtual LANs (VLANs)