Last Lecture: Data Link Layer

- 1. Design goals and issues
- 2. (More on) Error Control and Detection
- 3. Multiple Access Control (MAC)
- 4. Ethernet, LAN Addresses and ARP
- 5. Hubs, Bridges, Switches
- 6. Wireless LANs 🖌
- 7. Mobile Networking
- 8. WLAN Security

Last Lecture: Data Link Layer

- 1. Design goals and issues
- 2. (More on) Error Control and Detection
- 3. Multiple Access Control (MAC)
- 4. Ethernet, LAN Addresses and ARP
- 5. Hubs, Bridges, Switches
- 6. Wireless LANs
- 7. Mobile Networking 🖌
 - Credits: some slides from Jennifer Rexford @ Princeton
- 8. WLAN Security

Varying Degrees of User Mobility

- Moves only within same access network
 - Single access point: mobility is irrelevant
 - Multiple access points: only link-link layer changes
 - Either way, users is not mobile at the network layer
- Shuts down between changes access networks
 - Host gets new IP address at the new access network
 - No need to support any ongoing transfers
 - Applications have become good at supporting this
- Maintains connections while changing networks
 - Surfing the 'net while driving in a car or flying a plane
 - Need to ensure traffic continues to reach the host

Maintaining Ongoing Transfers

Seamless transmission to a mobile host

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: *Hung Q. Ngo*

E.g., Keep Track of Friends on the Move

- Sending a letter to a friend who moves often
 How do you know where to reach him?
- Option #1: have him update you
 - Friend contacts you on each move
 - So you can mail him directly
 - E.g., Boeing Connexion service

- Option #2: ask his parents when needed
 - Parents serve as "permanent address"
 - So they can forward your letter to him
 - E.g., Mobile IP

Option #1: Let Routing Protocol Handle It

- Mobile node has a single, persistent address
- Address injected into routing protocol (e.g., OSPF)

Mobile host with IP address 12.34.45.7

Example: Boeing Connexion Service

- Example: Boeing Connexion service
 - Mobile Internet access provider
 - WiFi "hot spot" at 35,000 feet moving 600 mph
- Communication technology
 - Antenna on the plane to leased satellite transponders
 - Ground stations serve as Internet gateways
- Using BGP for mobility
 - IP address block per airplane
 - Ground station advertises into BGP
 - http://www.nanog.org/mtg-0405/abarbanel.html

Example: Boeing Connexion Service

- Boeing Connexion Service
 - Cost structure horrible: installation took weeks, gears too heavy (800 pounds) → Cost > benefit
 - Worked well! Went out of business in December 2006 ...
- 2009: other in-flight ISPs started to "take off"
 - PDAs, Laptops, Social Networking more popular → nore users "need" Internet access in-flight
 - Better cost structures
 - AirCell & Row 44 in the US
 - OnAir in Europe and the Middle East

Some restrictions

- No US airline allows VoIP calling, voice chats, video chats, or any variant thereof
 - People prefer quiet flights
 - Aircell blocks well-known ports
 - If you use VPN, you can do it anyhow!

AirCell

In a 2006 auction, AirCell won

- 3 MHz in the 800 MHz band
- Split into 1.5 MHz for uplink and 1.5 MHz for downlink

- AirCell uses 3G-cellular technology
 - Qualcomm's *EVDO Rev*. A service
 - Few Mbps to the plane, few hundred Mbps from the plane
 - Built a network of ground stations that have antennas that point up

• Example service: gogo Inflight Internet

AirCell's Antennas (under the Jet planes)

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: *Hung Q. Ngo*

Row 44

Similar to Connexion: use satellites

- K_u-band satellites
- 4 to 20 Mbps to a single plane
- Can cover larger areas (than that of AirCell)
- Satellites are geostationary, orbiting above the equator
 - Flights near the poles can't have service

 BTW, OnAir uses satellites too (Inmarsat fourthgeneration BGAN) Summary: Letting Routing Handle It

Advantages

- No changes to the end host
- Traffic follows an efficient path to new location
- Disadvantages
 - Does not scale to large number of mobile hosts
 - Large number of routing-protocol messages
 - Larger routing tables to store smaller address blocks

AlternativeMobile IP

Option #2: Home Network and Home Agent

Visited Network and Care-of Address

Mobility: Registration

Foreign agent knows about mobileHome agent knows location of mobile

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo

Mobility via Indirect Routing

Indirect Routing: Efficiency Issues

- Mobile uses two addresses
 - Permanent address: used by correspondent (making mobile's location is transparent to correspondent)
 - Care-of-address: used by the home agent to forward datagrams to the mobile
- Mobile may perform the foreign agent functions
- Triangle routing is inefficient
 - E.g., correspondent and mobile in the same network

Mobility via Direct Routing

No longer transparent to the correspondent

Mobility Today

- Limited support for mobility
 - E.g., among base stations on a campus
- Applications increasingly robust under mobility
 - Robust to changes in IP address, and disconnections
 - E.g., e-mail client contacting the e-mail server
 - ... and allowing reading/writing while disconnected
 - New Google Gears for offline Web applications
- Increasing demand for seamless IP mobility
 - E.g., continue a VoIP call while on the train
- Increasing integration of WiFi and cellular
 - E.g., dual-mode cell phones that can use both networks
 - Called Unlicensed Mobile Access (UMA)

Impact on Higher-Layer Protocols

- Wireless and mobility change path properties
 - Wireless: higher packet loss, not from congestion
 - Mobility: transient disruptions, and changes in RTT
- Logically, impact should be minimal ...
 - Best-effort service model remains unchanged
 - TCP and UDP can (and do) run over wireless, mobile
- But, performance definitely *is* affected
 - TCP treats packet loss as a sign of congestion
 - TCP tries to estimate the RTT to drive retransmissions
 - TCP does not perform well under out-of-order packets

Internet not designed with these issues in mind