
Last Lecture

  Introduction to Networking and the Internet
  Protocol Architecture

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 1

This Lecture

  Elementary BSD socket API for network programming in C
under Unix

  Client/server design alternatives

  (No time for) Some brief mentioning of several advanced
features
  Multicasting/broadcasting, Socket options, IPv4/v6,

interoperability, Daemon processes, Raw sockets, Out of
band data

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 2

TCP/IP Protocol Suite – A Reminder

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 3

Supports Network Applications

Transports applications’ messages
TCP: connection-oriented, reliable
UDP: connectionless, unreliable

Routes data packets from hosts to hosts
IP: Internet Protocol, and many routing protocols

Deals with algorithms to achieve reliable, efficient
communication between two adjacent machines

Moves raw bits (0/1) between adjacent nodes
depending on the physical medium used

TCP Overview

  Establish connection: 3-way handshake
  Data transmission

  Byte-stream service
  Reliable (retransmission with timer)
  In-order delivery (reorder packets if necessary)
  Support flow control (fast sender vs slow receiver)
  Full-duplex (data transferred both ways)

  Close connection

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 4

Typical TCP Client-Server

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 5

Why Connection Establishment?
  TCP is a “reliable” transport protocol
  Before the protocol can be realized, connection

establishment phase is needed for
  Allowing each side to know the other exists
  Negotiation of optional parameters

  Max segment size
  Initial Sequence Numbers (ISN)

  Triggering allocation of transport entity resources
  Buffer
  Timers (if any)

  The above are done by mutual agreement

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 6

TCP Connection Establishment

  Server gets ready (socket, bind, listen)
  Client gets ready (socket)
  Client requests connection (connect)

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 7

Timeout of Connection Establishment

  Retransmissions of SYNs (typically on Unix):
  6 seconds after the first SYN
  24 seconds after the second SYN
  48 seconds after the third SYN
  give up
  Most Berkeley derived OSs have an upper limit of 75 sec

  In reality, there is one timer that goes off every
500ms
  All timeouts are based on this timer (just a count of the

number of ticks)

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 8

Tips and Tricks

  What’s a quick way to find out how long your
machine’s TCP module would try to establish a
connection?

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 9

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 10

TCP Connection Termination

  A performs active close, sends FIN
  B performs passive close & acknowledges
  B closes its socket and sends FIN
  A acknowledges the FIN

Ports, Sockets, Socket Pairs

  Ports
  Well-known ports: 0 – 1023 (assigned by IANA)
  Registered ports: 1024 – 49151 (not controlled but

recommended by IANA for some services)
  Dynamic (ephemeral) ports: 49152 – 65535

  Socket (prot, local_IP, local_port, remote_IP, remote_port)

  prot (i.e. protocol) is TCP for TCP sockets
  For each TCP/UDP connection, the quadruple (local_IP,

local_port, remote_IP, remote_port) must be unique!
  The quadruple is also called a socket pair

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 11

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 12

TCP State Transition Diagram

The Time_Wait (2MSL) State

  MSL: Maximum Segment Lifetime (common
implementations are either 30sec, 1min, 2min)

  Let TCP resend the final ACK if needed (when?)
  The socket can only be reused after 2MSL (why?)

  Sometime you can’t bind a server port because of this
2MSL state

  However, setting socket option SO_REUSEADDR allows
us to reuse the port number (violation of RFC)

  But still, no two identical socket pairs

  “Quiet time” (RFC 793): no connection creation
within 2MSL after crashing (what for?)

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 13

Half-Open Connections

  One end quits w/o the knowledge of the other
  For example, you turn off your PC while a telnet is

still on, or your OS freezes and you have to reboot

  How to solve this problem?
  Timing out alone does not work (look at a web browser)
  TCP has the keep alive option

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 14

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 15

RESET Segment

  RST is used to
  Reply to connection requests to some port no-one is

listening on
  Reply to connection requests within 2MSL after crashing

  In UDP, an ICMP port unreachable is generated
instead

UDP Overview

  Client gets ready (socket)
  Server gets ready (socket, bind)
  Data transfer

  client sendto - server recvfrom!
  server sendto – client recvfrom!

  Client closes its socket (close)
  Server keeps waiting for other data

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 16

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 17

Typical UDP Client-Server

Choices, choices
  read()/write()!

  Everything in Unix is a “file”
  Used on TCP/UDP connected sockets
  Doesnot work in Windows!

  send()/recv()!
  Used on TCP/UDP connected sockets

  sendto()/recvfrom()!
  Used on UDP sockets
  Good if you need peer’s information (IP/port)

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 18

“Connected” UDP Socket
  Why?

  Get (ICMP) error report ECONNREFUSED on the next
system call to socket

  Can write()/send() without specifying the
destination address/port, can read()/recv() too

  Can sendto() with a null destination address
  Packets from other IP/port are ignored
  Can call connect() multiple times to different IP/port

  Why not?
  Packets from other IP/port are ignored

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 19

TCP vs. UDP, When to Use What?

  You should be able to partly answer this question on
your own

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 20

Common Applications & Protocol Usage

Applications IP ICMP UDP TCP

Ping x

Traceroute x x

OSPF x

RIP x

BGP x

BOOTP, DHCP, NTP, TFTP, SNMP x

SMTP, Telnet, FTP, HTTP, NNTP x

DNS, NFS, Sun RPC, DCE RPC x x

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 21

The Sample Codes
1.  UDP echo client server
2.  TCP echo client server, two types of clients

  Plain client
  IO-multiplexing client (using select)
  Multi-processing server (using fork)

3.  Echo server with IO-multiplexing which can handle
both TCP & UDP

4.  Echo server with multi-threading which can handle
both TCP & UDP

  Ordered in increasing level of sophistication

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 22

SC 1: UDP Echo Client

  Specify server address (IP, port)
  Create socket [socket(AF_INET, SOCK_DGRAM, 0)]
  Read from socket with recvfrom()
  Write to socket with sendto()

  inet_pton() inet_ntop()

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 23

SC 1: UDP Echo Server

  Create socket
  Bind to port

  Tell kernel: give me things sent to this port
  INADDR_ANY or a specific IP

  Read and write with recvfrom() and sendto()

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 24

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 25

SC 1: Problems

  From client: which (IP, port) kernel has assigned?
  getsockname(…)

  From server: which (IP, port) the request is from?
  getpeername(…)

  Start client first, type something and press "Return",
then start the server:
  the client has no reaction on your typing anymore, even

Ctrl^D does not work.
  You're to explain and fix this problem yourselves

in assignment 1

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 26

SC 1: Problems

  The UDP socket in this example is not “connected,”
thus asynchronous errors are not reported
  Suppose server is down (ICMP “port unreachable”)
  sendto() does not return the error (asynchronous error)

  Solution: connect() the UDP socket. By products:
  Can no longer specify destination IP, port
  Should use read() and write() instead of sendto() and

recvfrom() on this socket
  Asynchronous errors are returned to the socket

  connect() can be called multiple times on a UDP socket
  To specify a new (IP, port)
  To disconnect

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 27

About Coding

 “Computer language is not just a way of getting a
computer to perform operations but rather that it is
a novel formal medium for expressing ideas about
methodology. Thus, programs must be written for
people to read, and only incidentally for machines
to execute.”

Harold Belson and Gerald Jay Sussman
[From the "Structure and Interpretation of

Computer Programs"]

SC 2: TCP Echo Client

Plain Client:
  Create “active” socket

[socket(AF_INET, SOCK_STREAM, 0)]
  Specify server address (IP, port)
  Connect to server [connect()]
  Read from and write to the socket

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 28

SC 2: TCP Echo Server

Server:
  Create “passive” socket [socket(), bind(), listen()]
  Accept incoming connection request [accept()]
  New child handles new request [fork()]
  Parent closes new socket
  Child closes listening socket

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 29

SC 2: Big Endians and Little Endians
  There are two ways to store an integer (2 byte, 4

byte, etc) in memory
  Big endian: least significant bit (LSB) at highest address
  Little endian: LSB at lowest address
  There are pros and cons in terms of computational

efficiency
  Little-endian

  Intel 80x86 families & Pentiums
  AMD Duron, Athlon, Thunderbird
  Apple 6502, DEC PDP & VAX

  Big-endian
  Sun’s SPARC, Motorola 68K, PowerPC, Cray
  JVM & most IBM processors

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 30

SC 2: The Endians & Network Programming

  TCP/IP use big-endian for all its integers (IP
addresses, port numbers, etc)
  We have to convert them to big-endian (network byte

order) before use
  Serious run-time performance penalties occur when

using TCP/IP on a little endian processor.

  Thus, it may be unwise to select a little endian
processor for use in a device, such as a router or
gateway, with an abundance of network
functionality.

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 31

SC 2: Where do these terms come from?
From the book "Gulliver's Travels" (1726) by Jonathan Swift.

Gulliver, a traveler, finds himself stranded on the island of
Lilliput (a land of tiny men and women). The Lilliputians
inform him of a civil war that happened on their island
many years before he arrived. The debate was between two
groups of people ... those who chose to break their eggs on
the larger end ("the big endians“ or the Blefuscudians) and
those who broke their eggs on the smaller end ("the little
endians“ - Lilliputians). The little endians won in Lilliput
and the big endians were exiled to another island
(Blefuscud).

In 1981, Danny Cohen coined the term in an article in IEEE
Computer (vol. 14, no. 10)

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 32

SC 2: Byte Order Conversion Functions

#include <netinet/in.h>!

uint16_t htons(uin16_t host16bitvalue);!
uint32_t htonl(uin32_t host32bitvalue);!

uint16_t ntohs(uin16_t net16bitvalue);!
uint32_t ntohl(uin32_t net16bitvalue);!

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 33

SC 2: Handling SIGCHLD!

  Do not want any zombies, thus wait for all children
who have finished

  wait() and waitpid()!
  accept()might be interrupted (w/o error), need to

handle this gracefully (check for EINTR and
continues accepting)

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 34

SC 2: SIGPIPE & Other Errors

  Normally read() returns 0 if the other side already
closed the connection

  Sometimes read() returns an error with
errno=ECONNRESET!
  The other end already closed (FIN was sent but not read)
  Some time later read() is called, we get RST instead
  SIGPIPE is delivered in this case

  To check this: let client sleep for a few seconds
before read the echoed message

  Some common errors: ETIMEDOUT,
EHOSTUNREACH, ENETUNREACH!

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 35

SC 2: Some C Programming Notes

  (My) Error handling routines use variable-length
arguments

  Network utility routines sometimes a static function
  Try the rio_* routines

  Separation of header files from source files
  Makefile contains most things you need to

compile it under Linux, Solaris, Mac OS X
  A little change and it’ll work with Windows too (install

cygwin)

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 36

SC 2: Some Network Programming Notes

  readn(), writen(), readline() are self-
explanatory in terms of functionalities

  rio_* are also self-explanatory in terms of
functionalities; please look into the codes

  We need them to read/write/read a line gracefully
(even in cases when there’s some signal interrupting
the system calls)

  Use them as I provided, do not re-invent the wheel

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 37

SC 2: Plain Client Problems

  If server (child process) is killed, client doesn’t know
since it’s hung on fgets()
[try ls –la and kill -9 to see]
  I/O multiplexing can fix this

  Suppose parent is killed, child keeps serving
  Restart server and bind() fails [why?]
  SO_REUSEADDR socket option will fix this

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 38

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 39

Tips & Tricks

  truss

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 40

I/O Models under Unix

  Blocking I/O
  read(), write(), sendto(), recvfrom(), connect(), accept(), …

  Nonblocking I/O (use fcntl() and select())
  I/O Multiplexing (select() and poll())
  Signal Driven I/O (SIGIO)
  Asynchronous I/O (Posix.1 aio_ functions)

  This is relatively new, not all systems support it.
Process tells kernel to perform an operation and then
let it know when the operation is completed.

  aio_read(), aio_write(), …

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 41

SC 2: TCP echo client with select

  Client select() on the socket and stdin
  This basically solves the problem of client being

hung on the call to fgets()
  More sophisticated use of select in the next

sample code

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 42

SC 2: I/O Multiplexing with select()

#include <sys/select.h>
#inlucde <sys/time.h>
int select(int maxfdp1, fd_set *read_set, fd_set *write_set,
 fd_set *exceptset, const struct timeval *timeout)
  If timeout is NULL, wait until one fd is ready;

otherwise return when time is up
  If timeout indicates 0, returns immediately if

nothing is ready (this is called polling)
  Must remember

  maxfdp1 = max fd plus one!
  FD_SET descriptors inside the loop

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 43

Tips and Tricks

  How do you write a program in C or Java or
Scheme (or any other language of choice) that
prints itself out?

  What’s a speculative implication of this?

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 44

Tips and Tricks

  Bill Joy’s quote:

"If I had to rewrite Unix from scratch, I could do it
in a summer, easily, And it would be much better.
A much, much better job. The ideas are old."

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 45

SC 3: Generic Server

  Reuse address (allow parent to die and restart
while child still running):

 setsockopt(listen_fd, SOL_SOCKET, SO_REUSEADDR,
&on, sizeof(on))

  Take care of EINTR for select() too

  Nothing else is really new

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 46

For the Programming Projects

  More useful functions, in case you don’t know
  gethostname()!
  gethostbyname() [not reentrant]
  gethostbyaddr() [not reentrant]
  Reentrancy problem because both functions return a

pointer to a static structure
  getaddrinfo()!
  freeaddrinfo()!
  getnameinfo()!

Client Server Design Alternatives
1.  Iterative server (no forking, no IO Mux)
2.  Concurrent server, one new child per request
3.  Concurrent server, one new thread per request
4.  Concurrent server with I/O multiplexing

 select() and poll()
5.  Concurrent server with pre-forking
6.  Concurrent server with pre-threading
7.  Some combination of 4, 5 and 6
8.  …

http://www.kegel.com/c10k.html
SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 47

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 48

Some initial findings

  If server is not heavily loaded, one fork per client is
fine

  Creating a pool of children or a pool of threads is a
good idea

  Threading creates some technicalities, but it often
runs faster – still, it depends on the operating
environment

  Having all children or threads call accept() is often
faster than having the parent doing it (and then
passing it to the child

  Need experimentation to know what to do with
your system!

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 49

Advanced features

  Socket options
  IPv4 and IPv6 interoperability
  Name & address conversions
  Raw Socket
  Data-link access
  Daemons
  Out-of-band data
  Debugging techniques and tools
  Broadcasting and Multicasting

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 50

AF 1: Socket Options

getsockopt(), setsockopt(), fnctl(), ioctl()
There are many, a few more important ones are
  SO_KEEPALIVE, TCP_KEEPALIVE
  SO_LINGER (affects close() – send buffered data or

not?)
  SO_REUSEADDR
  TCP_NODELAY (disables Nagle algorithm)

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 51

AF 2: IPv4 and IPv6 interoperability

  Most Linux distributions now run dual stacks
  In x years, v4-stack will be turned off

(x is a solution to the three-body problem )

  Assuming dual-stack, in most cases servers and
clients can talk to each other, except when
  A IPv6 client connects to an IPv4 server using AAAA

record

  Changes mostly occur with name/address
conversions and specification
  Create IPv6 socket is easy (struct sockaddr_in6, …)
  gethostbyname() and gethostbyaddr() are protocol dependent
  Use getaddrinfo() instead (see my solution to project 1)

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 52

Tips & Tricks

  What does bcheck() do?

AF 3: Name and Address Conversions

  See my solution to project 1
  getaddrinfo(), getnameinfo() are reentrant functions and

IPv4/v6 compatible

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 53

AF 4: Raw sockets
  Explore on your own

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 54

AF 5: Datalink access
  Explore on your own

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 55

AF 6: Writing Daemons
  Explore on your own

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 56

AF 7: Out-of-band Data
  Explore on your own

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 57

AF 8: Debugging Techniques and Tools
  Explore on your own

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 58

AF 9: Broadcasting & Multicasting
  Explore on your own

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 59

