
Last Lecture

  Peer-to-Peer (P2P) Applications

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 1

This Lecture

  Overview of the transport layer

  Principles of Reliable Data Transfers

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 2

The Transport Layer

  Provide services to applications
  What kind of services?
  How to implement them?

  Make use of services provided by the network layer
  Network gives best-effort packet delivery service

  Help networks out too
  Don’t pump too much data in if networks can’t handle, i.e.

congestion control

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 3

What Services to Provide to Applications?
  Difficult to decide, because

  Can’t envision all future applications
  Even current applications are too diverse in requirements
  Can’t provide services which can’t be implemented

  Currently, two main services are
  TCP: reliable, connection-oriented
  UDP: unreliable, connectionless

  There are many other proposals & implementations, but not
widespread
  RTP, RSTP for real-time streaming
  SCTP, DCCP: somewhere between UDP and TCP

  Many applications have transport functionalities built-in

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 4

Services Provided by the Network Layer
  Depend on the network

  Datagram network:
service sucks! Just best-
effort

  ATM network:
connection-oriented,
virtual-circuit, some QoS
guarantee

  …

  A general transport
protocol can only assume
that network service is
best effort

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 5

application
transport
network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

application
transport
network
data link
physical

What Is Best-Effort Again?

  Packets may be corrupted
  Packets may be lost
  Packets may be duplicated
  Packets may be delivered out of order
  Inter-arrival times can vary wildly
  End-to-end delay may vary wildly

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 6

We Will Focus on TCP Alone
  Multiplexing & de-multiplexing
  Reliable data transfer (& try to be efficient too)
  Connection-oriented
  Flow control
  Help network with congestion control & avoidance
  No guarantee on timing (delay, jitter, bandwidth)

  TCP is sufficiently complex to illustrate fundamental
ideas

  Services suitable for media streaming like RTP,
RSTP, etc. are still active research topics!

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 7

Multiplexing & De-multiplexing

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 8

Client
IP:B

P1

client
 IP: A

P1 P2 P4

server
IP: C

SP: 9157
DP: 80

SP: 9157
DP: 80

P5 P6 P3

D-IP:C
S-IP: A
D-IP:C

S-IP: B

SP: 5775
DP: 80

D-IP:C
S-IP: B

Principles of Reliable Data Transfer
  Before looking at how TCP does it, let’s try to design

a reliable data transfer protocol (RDT) ourselves

  Main question: how to reliably transfer data when
1.  Network can corrupt packets (bit error)
2.  Network can lose packets
3.  Network can deliver duplicates
4.  Network can deliver packets out of order

  We address the 4 problems one by one, in that order

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 9

The Bird-Eye View

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 10

The Bird-Eye View

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 11

  Characteristics of unreliable channel will determine
complexity of the RDT protocol

RDT: Getting Started

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 12

send
side

receive
side

rdt_send(): called from above,
(e.g., by app.). Passed data to
deliver to receiver upper layer

udt_send(): called by rdt,
to transfer packet over
unreliable channel to receiver

rdt_rcv(): called when packet
arrives on rcv-side of channel

deliver_data(): called by
rdt to deliver data to upper layer

Finite State Machines
  FSMs are convenient for specifying protocol’s

behaviors

  FSM notations:

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 13

state
 1

state
 2

event causing state transition
actions taken on state transition

state: when in this “state”
next state uniquely
determined by next

event

event
actions

RDT 1.0: Perfectly Reliable Channel

  Next: suppose network can corrupt packets (i.e., bit
errors may occur)

  But still: no packet loss, no out of order packets, no
duplicate packets

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 14

Wait for
call from
above packet = make_pkt(data)

udt_send(packet)

rdt_send(data)

extract (packet,data)
deliver_data(data)

Wait for
call from
below

rdt_rcv(packet)

Sender Receiver

RDT 2.0: Dealing with Bit-Errors
1.  How to detect that a packet has been corrupted?

  Error-detecting code (e.g. checksuming)

2.  What to do when corrupted packet received?
  Error-correcting code

  May not always work, depend on how much error
  Too much (time/space) overhead if error is rare
  Decoding time might be too long

  Tell sender to retransmit
  ACK: acknowledgement of a good packet
  NACK: acknowledgement of a bad packet

  New mechanisms in RDT 2.0:
  Error detection
  ARQ – automatic repeat request

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 15

Error Detection
  Problem: detect bit errors in packets (frames)
  Solution: add extra bits to each packet
  Goals:

  Reduce overhead (number of redundancy bits)
  Increase the number and the type of bit error patterns that

can be detected

  Examples:
  Two-dimensional parity
  (Internet) Checksum
  Later (when we discuss data link layer)

  Cyclic Redundancy Check (CRC)
  Hamming Codes

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 16

Parity
  Even parity

  Add a parity bit to 7 bits of data to make an even number
of 1’s

  How many bits of error can be detected by a parity
bit?

  What’s the overhead?

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 17

0110100

1011010

1

0

Two-dimensional parity

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 18

o Add one extra bit to a 7-bit code such that the
number of 1’s in the resulting 8 bits is even (for even
parity, and odd for odd parity)

o Add a parity byte for the packet
o  Example: five 7-bit character packet, even parity

0110100

1011010

0010110

1110101

1001011

1

0

1

1

0

1000110 1

Two-dimensional parity detection capability

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 19

•  All 1-bit errors
•  Example:

0110100

1011010

0000110

1110101

1001011

1

0

1

1

0

1000110 1

error bit
odd number of 1’s

Two-dimensional parity detection capability

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 20

•  All 2-bit errors
•  Example:

0110100

1011010

0000111

 1110101

1001011

1

0

1

1

0

1000110 1

error bits

odd number of 1’s on columns

Two-dimensional parity detection capability

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 21

•  All 3-bit errors
•  Example:

0110100

1011010

0000111

 1100101

1001011

1

0

1

1

0

1000110 1

error bits

odd number of 1’s on column

Two-dimensional parity detection capability

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 22

•  Most 4-bit errors
•  Example of 4-bit error that is not detected:

0110100

1011010

0000111

 1100100

1001011

1

0

1

1

0

1000110 1

error bits

How many errors can this code correct?

Internet Checksum [RFC1071]
  Used in TCP, UDP, IP
  The Internet checksum algorithm:

  Adjacent octets to be checksummed are paired to form 16-bit integers,
and the 1's complement sum of these 16-bit integers is formed.

  To generate a checksum, the checksum field itself is cleared, the 16-bit
1's complement sum is computed over the octets concerned, and the
1's complement of this sum is placed in the checksum field.

  To check a checksum, the 1's complement sum is computed over the
same set of octets, including the checksum field. If the result is all 1
bits (-0 in 1's complement arithmetic), the check succeeds.

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 23

Example of Internet Checksum

Input data:

1000 0110 0101 1110

1010 1100 0110 0000

0111 0001 0010 1010

1000 0001 1011 0101

Computing the Checksum
 1000 0110 0101 1110 First 16-bit value

 + 1010 1100 0110 0000 Second 16-bit value

 1 0011 0010 1011 1110 Carry-out “loops”

 + \----------------> 1 back into LBb

 0011 0010 1011 1111

 + 0111 0001 0010 1010 Third 16-bit value

 0 1010 0011 1110 1001 No carry to swing around

 + 1000 0001 1011 0101 Fourth 16-bit value

 1 0010 0101 1001 1110 Carry-out “loops”

 + \----------------> 1 back into LBb

 0010 0101 1001 1111 ”One's complement sum”

 1101 1010 0110 0000 Take 1’s complement

 again, that’s the

 checksum of the data

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 24

RDT2.0: the FSM Specification

Wait for
call from
above

snkpkt = make_pkt(data, checksum)
udt_send(sndpkt)

extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

rdt_rcv(rcvpkt) &&
 notcorrupt(rcvpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
 isNAK(rcvpkt)

udt_send(NAK)

rdt_rcv(rcvpkt) &&
 corrupt(rcvpkt)

Wait for
ACK or
NAK

Wait for
call from
below sender

receiver
rdt_send(data)

Λ	

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 25

RDT2.0: Operation with No Errors

Wait for
call from
above

snkpkt = make_pkt(data, checksum)
udt_send(sndpkt)

extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

rdt_rcv(rcvpkt) &&
 notcorrupt(rcvpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
 isNAK(rcvpkt)

udt_send(NAK)

rdt_rcv(rcvpkt) &&
 corrupt(rcvpkt)

Wait for
ACK or
NAK

Wait for
call from
below

rdt_send(data)

Λ	

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 26

RDT2.0: Error Scenario

Wait for
call from
above

snkpkt = make_pkt(data, checksum)
udt_send(sndpkt)

extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

rdt_rcv(rcvpkt) &&
 notcorrupt(rcvpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
 isNAK(rcvpkt)

udt_send(NAK)

rdt_rcv(rcvpkt) &&
 corrupt(rcvpkt)

Wait for
ACK or
NAK

Wait for
call from
below

rdt_send(data)

Λ	

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 27

RDT2.0: A Fatal Flaw
  What if the ACK/NACK is corrupted?
  Let’s try a few options

1.  Ask receiver to resend
  Lead to a sort of infinite loop + too much state information (“I’m

sending the ACK of the ACK of the NACK of the ACK that I sent an
hour ago”)

2.  Just retransmit the packet (i.e. assume the worst)
  Potentially create duplicate packets

  We’ll pick option # 2
  How to solve the duplication problem?

  Use sequence number (i.e. packet ID)

  New mechanism in RDT2.1:
  Sequence number

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 28

Stop-and-Wait Protocol’s Sequence Numbers

  RDT so far is a stop and wait protocol:
  Sends a packet
  Wait for ACK/NACK
  Resend if ACK/NACK corrupted or NACK received
  Only then, next packet can be sent

  We only need two sequence numbers: 0 and 1
  1-bit sequence number space

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 29

RDT2.1: Sender Side

Wait for
call 0 from
above

sndpkt = make_pkt(0, data, checksum)
udt_send(sndpkt)

rdt_send(data)

Wait for
ACK or
NAK 0 udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||
isNAK(rcvpkt))

sndpkt = make_pkt(1, data, checksum)
udt_send(sndpkt)

rdt_send(data)

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||
isNAK(rcvpkt))

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt)

Wait for
 call 1 from
above

Wait for
ACK or
NAK 1

Λ	

Λ	

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 30

RDT2.1: Receiver Side

Wait for
0 from
below

sndpkt = make_pkt(NAK, chksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
 not corrupt(rcvpkt) &&
 has_seq0(rcvpkt)

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)

 && has_seq1(rcvpkt)
extract(rcvpkt,data)
deliver_data(data)
sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

Wait for
1 from
below

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
 && has_seq0(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)
sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) && (corrupt(rcvpkt)

sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
 not corrupt(rcvpkt) &&
 has_seq1(rcvpkt)

rdt_rcv(rcvpkt) && (corrupt(rcvpkt)

sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

sndpkt = make_pkt(NAK, chksum)
udt_send(sndpkt)

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 31

RDT2.1: Observations
  Senders and receivers need twice as many states!
  Receiver must check if a packet is a duplicate

  Can make it NACK-free
  Specify in the ACK the sequence # it is acknowledging
  If a packet is corrupted, send ACK of the previous

sequence # again
  This idea seems to appear “out of no where”, will have

utility later

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 32

RDT2.2: the NACK-free Version of 2.1

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 33

Wait for
call 0 from
above

sndpkt = make_pkt(0, data, checksum)
udt_send(sndpkt)

rdt_send(data)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||
 isACK(rcvpkt,1))

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt,0)

Wait for
ACK
0

sender FSM
fragment

Wait for
0 from
below

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
 && has_seq1(rcvpkt)
extract(rcvpkt,data)
deliver_data(data)
sndpkt = make_pkt(ACK1, chksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
 (corrupt(rcvpkt) ||
 has_seq1(rcvpkt))

udt_send(sndpkt)

receiver FSM
fragment

L

RDT3.0: Dealing with Packet Losses Too
  Both data packets and ACK can be corrupted or lost

  How to detect that there’s a lost packet?
  Use a timer
  But how long?

  Too long inefficiency
  Too short duplicate packet (seq. no. took care of this!)
  We’ll get back to this issue later

  What to do when a packet is lost? Well, retransmit!

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 34

RDT3.0: Sender Side

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 35

sndpkt = make_pkt(0, data, checksum)
udt_send(sndpkt)
start_timer

rdt_send(data)

Wait
for
ACK0

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||
isACK(rcvpkt,1))

Wait for
call 1 from
above

sndpkt = make_pkt(1, data, checksum)
udt_send(sndpkt)
start_timer

rdt_send(data)

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt,0)

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||
isACK(rcvpkt,0))

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt,1)

stop_timer
stop_timer

udt_send(sndpkt)
start_timer

timeout

udt_send(sndpkt)
start_timer

timeout

rdt_rcv(rcvpkt)

Wait for
call 0 from
above

Wait
for
ACK1

Λ	

rdt_rcv(rcvpkt)

Λ	

Λ	

Λ	

RDT3.0 In Action

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 36

RDT3.0 In Action

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 37

Performance of RDT3.0

  RDT3.0 works, but performance stinks!
  Example: 1 Gbps link, 15 ms propagation delay,

8000 bit packet:

o  Channel utilization – fraction of time sender busy sending

o  1KB packet every 30 msec, i.e. 33kB/sec throughput over
1 Gbps link

o  Lesson: network protocol limits use of physical resources!
SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 38

RDT3.0: Stop-and-Wait Bad Utilization

first packet bit transmitted, t = 0

sender receiver

RTT

last packet bit transmitted, t = L / R

first packet bit arrives
last packet bit arrives, send ACK

ACK arrives, send next
packet, t = RTT + L / R

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 39

Question: how to utilize the channel better?

Pipelined Protocols

Pipelining: sender allows multiple, “in-flight”, yet-to-be-
acknowledged packets

Pipelining introduces new problems:
  1-bit seq. # no longer works enlarge seq. # space
  We have to deal with out-of-order packets now
  Larger buffers at senders and receivers

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 40

Pipelining Helps Increase Utilization

first packet bit transmitted, t = 0

sender receiver

RTT

last bit transmitted, t = L / R

first packet bit arrives
last packet bit arrives, send ACK

ACK arrives, send next
packet, t = RTT + L / R

last bit of 2nd packet arrives, send ACK
last bit of 3rd packet arrives, send ACK

Increase utilization
by a factor of 3!

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 41

Pipelining Protocols

Go-back-N: big picture
  Sender can have up to N

unack’ed packets in pipeline
  i.e. keep a window of size N

  Receiver only sends
cumulative ACKs
  Drop any out-of-order packet
  Re-ACK oldest received pkt

  Sender has a timer for
oldest unacked packet
  When timer expires,

retransmit all unack’ed
packets in the window

Selective Repeat: big picture
  Sender can have up to N

unack’ed packets in pipeline
  i.e. keep a window of size N

  Receiver acknowledges
individual packets
  Including out-of-order

packets within window

  Sender maintains a timer
for each unacked packet
  When any timer expires,

retransmit that unacked
packet

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 42

Question: why limit the number of unack’ed packets to N?

Go-Back-N
Sender:
  Uses a k-bit sequence number in packet header
  Maintains a window of up to N, consecutive unack’ed packets allowed
  Also called sliding window protocol

❒  ACK(n): ACKs all pkts up to, including seq # n - “cumulative ACK”
❍  may receive duplicate ACKs (see receiver)

❒  One timer for all in-flight packet
❒  timeout(n): retransmit pkt n and all higher seq # pkts in window

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 43

Go-Back-N: Sender Extended FSM

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 44

Wait
start_timer // and resend all unack’ed packets
udt_send(sndpkt[base])
udt_send(sndpkt[base+1])
…
udt_send(sndpkt[nextseqnum-1])

timeout

rdt_send(data)
if (nextseqnum < base+N) {
 sndpkt[nextseqnum] = make_pkt(nextseqnum,data,chksum)
 udt_send(sndpkt[nextseqnum])
 if (base == nextseqnum)
 start_timer
 nextseqnum++
 }
else
 refuse_data(data)

base = getacknum(rcvpkt)+1
If (base == nextseqnum)
 stop_timer
 else
 start_timer // restart timer for new base

rdt_rcv(rcvpkt) &&
 notcorrupt(rcvpkt)

base=1
nextseqnum=1

rdt_rcv(rcvpkt)
 && corrupt(rcvpkt)

Λ	

Go-Back-N: Receiver Extended FSM

  ACK-only: always send ACK for correctly-received packet
with highest in-order sequence number
  may generate duplicate ACKs
  need only remember expectedseqnum

  Out-of-order pkt:
  discard (don’t buffer) -> no receiver buffering!
  Re-ACK packet with highest in-order sequence number

Wait

udt_send(sndpkt)
default

rdt_rcv(rcvpkt)
 && notcurrupt(rcvpkt)
 && hasseqnum(rcvpkt,expectedseqnum)

extract(rcvpkt,data)
deliver_data(data)
sndpkt = make_pkt(expectedseqnum,ACK,chksum)
udt_send(sndpkt)
expectedseqnum++

expectedseqnum=1
sndpkt =
 make_pkt(expectedseqnum,ACK,chksum)

Λ	

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 45

Go-Back-N
in

Action

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 46

Selective Repeat: Sender, Receiver Windows

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 47

Selective Repeat

data from above :
  if next available seq # in

window, send pkt
timeout(n):
  resend pkt n, restart timer

ACK(n) in [sendbase,sendbase+N):
  mark pkt n as received
  if n smallest unACKed pkt,

advance window base to next
unACKed seq #

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 48

sender
pkt n in [rcvbase, rcvbase+N-1]
  send ACK(n)
  out-of-order: buffer
  in-order: deliver (also deliver

buffered, in-order pkts),
advance window to next not-
yet-received pkt

pkt n in [rcvbase-N,rcvbase-1]
  ACK(n)
otherwise:
  ignore

receiver

Selective Repeat In Action

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 49

Selective Repeat:
Dilemma

Example:
  seq #’s: 0, 1, 2, 3
  window size=3

  receiver sees no difference
in two scenarios!

  incorrectly passes
duplicate data as new in
(a)

Question: what relationship
between seq # size and
window size must hold?

SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 50

Summary of Ideas We Have Learned
  Channel bit errors require

  Error detecting codes
  Receiver feedback (ACK/NAK)
  Retransmissions (when NAK received or ACK/NAK corrupted)

  Retransmissions introduce duplicates
  Need sequence numbers

  Packet loss requires
  Timeout + retransmission (again introduce duplicates)
  Estimating the “right” timeout is a fundamental problem!

  Pipelining improves utilization + throughput
  Needs to enlarge sequence number space
  Needs more buffer space at both sender & receiver
  ACK + retransmission strategies: Go-Back-N & Selective Repeat
  Window size & sequence number range strongly related

  We have not discussed out-of-order, long-delayed packets
  And how long the timeout should be before retransmission
SUNY at Buffalo; CSE 489/589 – Modern Networking Concepts; Fall 2010; Instructor: Hung Q. Ngo 51

