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Abstract

Internet Protocol (IP) networks are currently undergoing transitions that mandate greater bandwidths and the need

to prepare the network infrastructures for converged tra�c (voice, video, and data). Thus, in the emerging environment

of high performance IP networks, it is expected that local and campus area backbones, enterprise networks, and In-

ternet Service Providers (ISPs) will use multigigabit and terabit networking technologies where IP routers will be used

not only to interconnect backbone segments but also to act as points of attachments to high performance wide area

links. Special attention must be given to new powerful architectures for routers in order to play that demanding role. In

this paper, we describe the evolution of IP router architectures and highlight some of the performance issues a�ecting IP

routers. We identify important trends in router design and outline some design issues facing the next generation of

routers. It is also observed that the achievement of high throughput IP routers is possible if the critical tasks are

identi®ed and special purpose modules are properly tailored to perform them. Ó 2000 Elsevier Science B.V. All rights

reserved.
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1. Introduction

The rapid growth in the popularity of the In-
ternet has caused the tra�c on the Internet to
grow drastically every year for the last several
years. It has also spurred the emergence of many
Internet Service Providers (ISPs). To sustain
growth, ISPs need to provide new di�erentiated
services, e.g., tiered service, support for multime-
dia applications, etc. The routers in the ISPsÕ net-
works play a critical role in providing these

services. Internet Protocol (IP) tra�c on private
enterprise networks has also been growing rapidly
for some time. These networks face signi®cant
bandwidth challenges as new application types,
especially desktop applications uniting voice, vid-
eo, and data tra�c need to be delivered on the
network infrastructure. This growth in IP tra�c is
beginning to stress the traditional processor-based
design of current-day routers and as a result has
created new challenges for router design.

Routers have traditionally been implemented
purely in software. Because of the software im-
plementation, the performance of a router was
limited by the performance of the processor exe-
cuting the protocol code. To achieve wire-speed
routing, high-performance processors together
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with large memories were required. This translated
into higher cost. Thus, while software-based wire-
speed routing was possible at low-speeds, for ex-
ample, with 10 megabits per second (Mbps) ports,
or with a relatively smaller number of 100 Mbps
ports, the processing costs and architectural im-
plications make it di�cult to achieve wire-speed
routing at higher speeds using software-based
processing.

Fortunately, many changes in technology (both
networking and silicon) have changed the land-
scape for implementing high-speed routers. Silicon
capability has improved to the point where highly
complex systems can be built on a single integrated
circuit (IC). The use of 0.35 lm and smaller silicon
geometries enables application speci®c integrated
circuit (ASIC) implementations of millions of gate-
equivalents. Embedded memory (SRAM, DRAM)
and microprocessors are available in addition to
high-density logic. This makes it possible to build
single-chip, low-cost routing solutions that incor-
porate both hardware and software as needed for
best overall performance.

In this paper we investigate the evolution of IP
router designs and highlight the major perfor-
mance issues a�ecting IP routers. The need to
build fast IP routers is being addressed in a variety
of ways. We discuss these in various sections of the
paper. In particular, we examine the architectural
constraints imposed by the various router design
alternatives. The scope of the discussion presented
here does not cover more recent label switching
routing techniques such as IP Switching [1], the
Cell Switching Router (CSR) architecture [2], Tag
Switching [3], and Multiprotocol Label Switching
(MPLS), which is a standardization e�ort under-
way at the Internet Engineering Task Force
(IETF). The discussion is limited to routing tech-
niques as described in RFC 1812 [4].

In Section 2, we brie¯y review the basic func-
tionalities in IP routers. The IETFÕs Requirements
for IP Version 4 Routers [4] describes in great detail
the set of protocol standards that Internet Proto-
col version 4 (IPv4) routers need to conform to.
Section 3 presents the design issues and trends that
arise in IP routers. In this section, we present an
overview of IP router designs and point out their
major innovations and limitations. The intercon-

nection unit (or switch fabric) is one of the main
components in a router. The switch fabric can be
implemented using many di�erent techniques
which are described in detail in a number of pub-
lications (e.g., [5±7]). Section 4 presents an over-
view of these switch fabric technologies. The
concluding remarks of the paper are given in
Section 5.

2. Basic functionalities in IP routers

Generally, routers consist of the following basic
components: several network interfaces to the at-
tached networks, processing module(s), bu�ering
module(s), and an internal interconnection unit (or
switch fabric). Typically, packets are received at an
inbound network interface, processed by the pro-
cessing module and, possibly, stored in the buf-
fering module. Then, they are forwarded through
the internal interconnection unit to the outbound
interface that transmits them on the next hop on
the journey to their ®nal destination. The aggre-
gate packet rate of all attached network interfaces
needs to be processed, bu�ered and relayed.
Therefore, the processing and memory modules
may be replicated either fully or partially on the
network interfaces to allow for concurrent opera-
tions.

A generic architecture of an IP router is given in
Fig. 1. Fig. 1(a) shows the basic architecture of a
typical router: the controller card (which holds the
CPU), the router backplane, and interface cards.
The CPU in the router typically performs such
functions as path computations, routing table
maintenance, and reachability propagation. It
runs which ever routing protocol is needed in the
router. The interface cards consist of adapters that
perform inbound and outbound packet forward-
ing (and may even cache routing table entries or
have extensive packet processing capabilities). The
router backplane is responsible for transferring
packets between the cards. The basic functional-
ities in an IP router can be categorized as: route
processing, packet forwarding, and router special
services. The two key functionalities for packet
routing are route processing (i.e., path computa-
tion, routing table maintenance, and reachability
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propagation) and packet forwarding (see Fig.
1(b)). We discuss the three functionalities in more
detail below.

2.1. Route processing

Routing protocols are the means by which
routers gain information about the network.
Routing protocols map network topology and
store their view of that topology in the routing
table. Thus, route processing includes routing ta-
ble construction and maintenance using routing
protocols such as the Routing Information Pro-
tocol (RIP) and Open Shortest Path First (OSPF)
[8±10]. The routing table consists of routing entries
that specify the destination and the next-hop
router through which the datagram should be
forwarded to reach the destination. Route calcu-
lation consists of determining a route to the des-
tination: network, subnet, network pre®x, or host.

In static routing, the routing table entries are
created by default when an interface is con®gured
(for directly connected interfaces), added by, for
example, the route command (normally from a
system bootstrap ®le), or created by an Internet
Control Message Protocol (ICMP) redirect (usu-
ally when the wrong default is used) [11]. Once
con®gured, the network paths will not change.

With static routing, a router may issue an alarm
when it recognizes that a link has gone down, but
will not automatically recon®gure the routing ta-
ble to reroute the tra�c around the disabled link.
Static routing, used in LANs over limited dis-
tances, requires basically the network manager to
con®gure the routing table. Thus, static routing is
®ne if the network is small, there is a single con-
nection point to other networks, and there are no
redundant routes (where a backup route can be
used if a primary route fails). Dynamic routing is
normally used if any of these three conditions do
not hold true.

Dynamic routing, used in internetworking
across wide area networks, automatically recon-
®gures the routing table and recalculates the least
expensive path. In this case, routers broadcast
advertisement packets (signifying their presence)
to all network nodes and communicate with other
routers about their network connections, the cost
of connections, and their load levels. Convergence,
or recon®guration of the routing tables, must oc-
cur quickly before routers with incorrect infor-
mation misroute data packets into dead ends.
Some dynamic routers can also rebalance the
tra�c load.

The use of dynamic routing does not change the
way an IP forwarding engine performs routing at

Fig. 1. Generic architecture of a router.
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the IP layer. What changes is the information
placed in the routing table ± instead of coming
from the route commands in bootstrap ®les, the
routes are added and deleted dynamically by a
routing protocol, as routes change over time. The
routing protocol adds a routing policy to the sys-
tem, choosing which routes to place in the routing
table. If the protocol ®nds multiple routes to a
destination, the protocol chooses which route is
the best, and which one to insert in the table. If the
protocol ®nds that a link has gone down, it can
delete the a�ected routes or add alternate routes
that bypass the problem.

A network (including several networks admin-
istered as a whole) can be de®ned as an autono-
mous system. A network owned by a corporation,
an ISP, or a university campus often de®nes an
autonomous system. There are two principal
routing protocol types [8±11]: those that operate
within an autonomous system, or the Interior
Gateway Protocols (IGPs), and those that operate
between autonomous systems, or Exterior Gate-
way Protocols (EGPs). Within an autonomous
system, any protocol may be used for route dis-
covery, propagating, and validating routes. Each
autonomous system can be independently admin-
istered and must make routing information avail-
able to other autonomous systems. The major
IGPs include RIP, OSPF, and IS±IS (Intermediate
System to Intermediate System). Some EGPs in-
clude EGP and Border Gateway Protocol (BGP).
Refs. [8±10] present detail discussions on routing
protocols.

2.2. Packet forwarding

2.2.1. Forwarding process
In this section, we brie¯y review the forwarding

process in IPv4 routers. More details of the for-
warding requirements are given in Ref. [4]. A
router receives an IP packet on one of its inter-
faces and then forwards the packet out of another
of its interfaces (or possibly more than one, if the
packet is a multicast packet), based on the con-
tents of the IP header. As the packet is forwarded
hop by hop, the packetÕs (original) network layer
header (IP header) remains relatively unchanged,
containing the complete set of instructions on how

to forward the packet (IP tunneling may call for
prepending the packet with other IP headers in the
network). However, the data-link headers and
physical-transmission schemes may change radi-
cally at each hop in order to match the changing
media types.

Suppose that the router receives a packet from
one of its attached network segments. The router
veri®es the contents of the IP header by checking
the protocol version, header length, packet length,
and header checksum ®elds. The protocol version
must be equal to 4 for IPv4 which we assume in
this paper. The header length must be greater than
or equal to the minimum IP header size (20 bytes).
The length of the IP packet, expressed in bytes,
must also be larger than the minimum header size.
In addition, the router checks that the entire
packet has been received, by checking the IP
packet length against the size of the received
Ethernet packet, for example, in the case where the
interface is attached to an Ethernet network. To
verify that none of the ®elds of the header have
been corrupted, the 16-bit ones-complement
checksum of the entire IP header is calculated and
veri®ed to be equal to 0x��. If any of these basic
checks fail, the packet is deemed to be malformed
and is discarded without sending an error indica-
tion back to the packetÕs originator.

Next, the router veri®es that the time-to-live
(TTL) ®eld is greater than 1. The purpose of the
TTL ®eld is to make sure that packets do not
circulate forever when there are routing loops. The
host sets the packetÕs TTL ®eld to be greater than
or equal to the maximum number of router hops
expected on the way to the destination. Each
router decrements the TTL ®eld by 1 when for-
warding; when the TTL ®eld is decremented to 0,
the packet is discarded, and an Internet Control
Message Protocol (ICMP) TTL Exceeded message
is sent back to the host. On decrementing the TTL,
the router must update the packetÕs header
checksum. RFC 1141 [92] contains implementa-
tion techniques for computing the IP checksum.
Since a router often changes only the TTL ®eld
(decrementing it by 1), a router can incrementally
update the checksum when it forwards a received
packet, instead of calculating the checksum over
the entire IP header again.
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The router then looks at the destination IP
address. The address indicates a single destination
host (unicast), a group of destination hosts (mul-
ticast), or all hosts on a given network segment
(broadcast). Unicast packets are discarded if they
were received as data-link broadcasts or as multi-
casts; otherwise, multiple routers may attempt to
forward the packet, possibly contributing to a
broadcast storm. In packet forwarding, the desti-
nation IP address is used as a key for the routing
table lookup. The best-matching routing table
entry is returned, indicating whether to forward
the packet and, if so, the interface to forward the
packet out of and the IP address of the next IP
router (if any) in the packetÕs path. The next-hop
IP address is used at the output interface to de-
termine the link address of the packet, in case the
link is shared by multiple parties (such as an
Ethernet, Token Ring or Fiber Distributed Data
Interface (FDDI) network), and is consequently
not needed if the output connects to a point-to-
point link.

In addition to making forwarding decisions, the
forwarding process is responsible for making
packet classi®cations for quality of service (QoS)
control and access ®ltering. Flows can be identi®ed
based on source IP address, destination IP ad-
dress, TCP/UDP port numbers as well as IP type
of service (TOS) ®eld. Classi®cation can even be
based on higher layer packet attributes.

If the packet is too large to be sent out of the
outgoing interface in one piece (that is, the packet
length is greater than the outgoing interfaceÕs
Maximum Transmission Unit (MTU)), the router
attempts to split the packet into smaller fragments.
Fragmentation, however, can a�ect performance
adversely [12]. Host may instead wish to prevent
fragmentation by setting the DonÕt Fragment (DF)
bit in the Fragmentation ®eld. In this case, the
router does not fragment but instead drops the
packet and sends an ICMP Destination Unreach-
able (subtype Fragmentation Needed and DF Set)
message back to the host. The host uses this
message to calculate the minimum MTU along the
packetÕs path [13], which is in turn used to size
future packets.

The router then prepends the appropriate data-
link header for the outgoing interface. The IP

address of the next hop is converted to a data-link
address, usually using the Address Resolution
Protocol (ARP) [14] or a variant of ARP, such as
Inverse ARP [15] for Frame Relay subnets. The
router then sends the packet to the next hop, where
the process is repeated.

An application can also modify the handling of
its packets by extending the IP headers of its
packets with one or more IP options. IP options
are used infrequently for regular data packets,
because most internet routers are heavily opti-
mized for forwarding packets having no options.
Most IP options (such as the record-route and
timestamp options) are used to aid in statistics
collection but do not a�ect a packetÕs path.
However, the strict-source route and the loose-
source route options can be used by an application
to control the path its packets take. The strict-
source route option is used to specify the exact
path that the packet will take, router by router.
The utility of strict-source route is limited by the
maximum size of the IP header (60 bytes), which
limits to 9 the number of hops speci®ed by the
strict-source route option. The loose-source route
is used to specify a set of intermediate routers
(again, up to 9) through which the packet must go
on the way to its destination. Loose-source routing
is used mainly for diagnostic purposes, such as an
aid to debugging internet routing problems.

2.2.2. Route lookup
For a long time, the major performance bot-

tleneck in IP routers has been the time it takes to
look up a route in the routing table. The problem
is de®ned as that of searching through a database
(routing table) of destination pre®xes and locating
the longest pre®x that matches the destination IP
address of a given packet. A routing table lookup
returns the best-matching routing table entry,
which tells the router which interface to forward
the packet out of and the IP address of the packetÕs
next hop. Pre®x matching was introduced in the
early 1990s, when it was foreseen that the number
of end users as well as the amount of routing in-
formation on the Internet would grow enormous-
ly. The address classes A, B, and C (allowing sites
to have 24, 16, and 8 bits respectively for ad-
dressing) proved too in¯exible and wasteful of the
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address space. To make better use of this scarce
resource, especially the class B addresses, bundles
of class C networks were given out instead of class
B addresses. This resulted in massive growth
of routing table entries. Thus, Classless Inter-
Domain Routing (CIDR) [16] introduced a
fundamental concept in route aggregation which
allows for contiguous blocks of address space to be
aggregated and advertised as singular routes in-
stead of individual entries in a routing table. This
helps keep the size of the routing tables smaller
than if each address were advertised individually.

Many routers have a default route in their
routing table. This is a routing table entry for the
zero-length pre®x 0/0 (or 0.0.0.0). The default
route matches every destination, although it is
overridden by all more speci®c pre®xes. For ex-
ample, suppose that an organizationÕs intranet has
one router attaching itself to the public Internet.
All of the organizationÕs other routers can then use
a default route pointing to the Internet connection
rather than knowing about all of the public In-
ternetÕs routes.

The ®rst approaches for longest pre®x matching
used radix trees or modi®ed Patricia trees [17,18]
combined with hash tables, (Patricia stands for
``Practical Algorithm to Retrieve Information
Coded in Alphanumeric'' [19]). These trees are
binary trees, whereby the tree traversal depends on
a sequence of single-bit comparisons in the key,
the destination IP address. These lookup algo-
rithms have complexity proportional to the num-
ber of address bits which, for IPv4 is only 32. In
the worst case it takes time proportional to the
length of the destination address to ®nd the longest
pre®x match. Worse, the commonly used Patricia
algorithm may need to backtrack to ®nd the
longest match, leading to poor worst-case perfor-
mance. The performance of Patricia is somewhat
data dependent. With a particularly unfortunate
collection of pre®xes in the routing table, the
lookup of certain addresses can take as many as 32
bit comparisons, one for each bit of the destination
IP address.

Early implementations of routers, however,
could not a�ord such expensive computations.
Thus, one way to speed up the routing table
lookup is to try to avoid it entirely. The routing

table lookup provides the next hop for a given IP
destination. Some routers cache this IP destina-
tion-to-next-hop association in a separate database
that is consulted (as the front end to the routing
table) before the routing table lookup as shown in
Fig. 2. Finding a particular destination in this
database of IP destination-to-next-hop associa-
tion is easier because an exact match is done in-
stead of the more expensive best-match operation
of the routing table. So, most routers relied on
route caches [20,21]. The route caching techniques
rely on there being enough locality in the tra�c so
that the cache hit rate is su�ciently high and the
cost of a routing lookup is amortized over several
packets.

This front-end database might be organized as a
hash table [22]. After the router has forwarded
several packets, if the router sees any of these
destinations again (a cache hit), their lookups will
be very quick. Packets to new destinations will be
slower, however, because the cost of a failed hash
lookup will have to be added to the normal routing
table lookup. Front-end caches to the routing ta-
ble can work well at the edge of the Internet or
within organizations. However, cache schemes do
not seem to work well in the InternetÕs core. The
large number of packet destinations seen by the
core routers can cause caches to over¯ow or for
their lookup to become slower than the routing
table lookup itself. Cache schemes are not really
e�ective when the hash bucket size (the number of
destinations that hash to the same value) starts
getting large. Also, the frequent routing changes
seen in the core routers can force them to invali-

Fig. 2. A route cache used as a front-end database to the

routing table.
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date their caches frequently, leading to a small
number of cache hits.

Typically, two types of packets arrive at a
router: packets to be forwarded to another net-
work or packets destined to the router itself.
Whether a packet to a router causes a routing ta-
ble reference depends on the router implementa-
tion. Some implementations may speed up routing
table lookups. One possibility is for the router to
explicitly check each incoming packet against a
table of all of the routerÕs addresses to see if there
is a match. This explicit check means that the
routing table is never consulted about packets
destined to the router. Another possibility is to use
the routing table for all packets. Before the packet
is sent, the router checks if the packet is to its own
address on the appropriate network. If the packet
is for the router, then it is never transmitted. The
explicit check after the routing table lookup re-
quires checking a smaller number of router ad-
dresses at the increased cost of a routing table
lookup. New routing table lookup algorithms are
still being developed in attempts to build even
faster routers. Recent examples are found in Refs.
[23±28].

The basic idea of one of the recent algorithms
[23] is to create a small and compressed data
structure that represents large lookup tables using
a small amount of memory. The technique exploits
the sparseness of actual entries in the space of all
possible routing table entries. This results in a
lower number of memory accesses (to a fast
memory) and hence faster lookups. The proposal
reduces the routing table to very e�cient repre-
sentation of a binary tree such that the majority of
the table can reside in the primary cache of the
processor, allowing route lookups at gigabit
speeds. In addition, the algorithm does not have to
calculate expensive perfect hash functions, al-
though updates to the routing table are still not
easy. Ref. [24] proposes another approach for
implementing the compression and minimizing the
complexity of updates.

The recent work of Waldvogel et al. [25] pre-
sents an alternative approach which reduces the
number of memory references rather than compact
the routing table. The main idea is to ®rst create a
perfect hash table of pre®xes for each pre®x length.

A binary search among all pre®x lengths, using the
hash tables for searches amongst pre®xes of a
particular length, can ®nd the longest pre®x match
for an N bit address in O(log N) steps. Although
the algorithm has very fast execution times, cal-
culating perfect hashes can be slow and can slow
down updates.

Hardware based techniques for route lookup
are also actively being investigated both in re-
search and commercial designs (e.g., [29±32]).
Other designs of forwarding engine have concen-
trated on IP packet header processing in hardware,
to remove the dependence upon caching, and to
avoid the cost of high-speed processor. Designs
based upon content-addressable memory have
been investigated [29], but such memory is too far
expensive to be applied to a large routing table.
Hardware route lookup and forwarding is also
under active investigation in both research and
commercial designs [30,31]. The argument for a
software-based implementation stresses ¯exibility.
Hardware implementations can generally achieve a
higher performance at lower cost but are less
¯exible.

2.3. Router special services

Besides dynamically ®nding the paths for
packets to take towards their destinations, routers
also implement other functions. Anything beyond
core routing functions falls into this category, for
example, authentication and access services such
as packet ®ltering for security/®rewall purposes.
Companies often put a router between their com-
pany network and the Internet and then con®gure
the router to prevent unauthorized access to the
companyÕs resources from the Internet. This con-
®guration may consist of certain patterns (for ex-
ample, source and destination address and TCP
port) whose matching packets should not be for-
warded or of more complex rules to deal with
protocols that vary their port numbers over time,
such as the File Transfer Protocol (FTP). Such
routers are called ®rewalls. Similarly, internet
service providers (ISPs) often con®gure their rou-
ters to verify the source address in all packets re-
ceived from the ISPÕs customers. This foils certain
security attacks and makes other attacks easier to
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trace back to their source. Similarly, ISPs provid-
ing dial-in access to their routers typically use
Remote Authentication Dial-In User Service
(RADIUS) [33] to verify the identity of the person
dialing in.

Often other functions, less directly related to
packet forwarding, also get incorporated into IP
routers. Examples of these non-forwarding func-
tions include network management components
such as Simple Network Management Protocol
(SNMP) and Management Information Bases
(MIBs). Routers also play an important role in
TCP/IP congestion control algorithms. When an
IP network is congested, routers cannot forward
all the packets they receive. By simply discarding
some of their received packets, routers provide
feedback to TCP congestion control algorithms,
such as the TCP slow-start algorithm [34,35]. Early
Internet routers simply discarded excess packets
instead of queueing them onto already full trans-
mit queues; these routers are termed drop-tail
gateways. However, this discard behavior was
found to be unfair, favoring applications that send
larger and more bursty data streams. Modern In-
ternet routers employ more sophisticated, and
fairer, drop algorithms, such as Random Early
Detection (RED) [36].

Algorithms also have been developed that allow
routers to organize their transmit queues so as to
give resource guarantees to certain classes of tra�c
or to speci®c applications. These queueing or link
scheduling algorithms include Weighted Fair
Queueing (WFQ) [37] and Class Based Queueing
(CBQ) [38]. A protocol called RSVP [39] has been
developed that allows hosts to dynamically signal
to routers which applications should get special
queueing treatment. However, RSVP has not yet
been deployed, with some people arguing that
queueing preference could more simply be indi-
cated by using the Type of Service (TOS) bits in
the IP header [40,41].

Some vendors allow the collection of tra�c
statistics on their routers, for example, how many
packets and bytes are forwarded per receiving and
transmitting interface on the router. These statis-
tics are used for future capacity planning. They
can also be used by ISPs to implement usage-based
charging schemes for their customers.

3. IP router architectures

In this section, we review the main architectures
proposed for IP routers. Speci®cally, we examine
important trends in IP router design and outline
some design issues facing the next generation of
routers. The aim is not to provide an exhaustive
review of existing architectures, but instead to give
the reader a perspective on the range of options
available and the associated trade-o� between
performance, functionality, and complexity.

3.1. Bus-based router architectures with single
processor

The ®rst generation of IP router was based on
software implementations on a single general-
purpose central processing unit (CPU). These
routers consist of a general-purpose processor and
multiple interface cards interconnected through a
shared bus as depicted in Fig. 3.

Packets arriving at the interfaces are forwarded
to the CPU which determines the next hop address
and sends them back to the appropriate outgoing
interface(s). Data are usually bu�ered in a cen-
tralized data memory [42,43], which leads to the
disadvantage of having the data cross the bus
twice, making it the major system bottleneck.
Packet processing and node management software
(including routing protocol operation, routing ta-
ble maintenance, routing table lookups, and other
control and management protocols such as ICMP,
SNMP) are also implemented on the central pro-

Fig. 3. Traditional bus-based router architecture.
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cessor. Unfortunately, this simple architecture
yields low performance for the following reasons:
· The central processor has to process all packets

¯owing through the router (as well as those des-
tined to it). This represents a serious processing
bottleneck.

· Some major packet processing tasks in a router
involve memory intensive operations (e.g., table
lookups) which limits the e�ectiveness of proces-
sor power upgrades in boosting the router pack-
et processing throughput. Routing table
lookups and data movements are the major con-
sumer of overall packet processing cycles. Pack-
et processing time does not decrease linearly if
faster processors are used because of the some-
times dominating e�ect of memory access rate.

· Moving data from one interface to the other (ei-
ther through main memory or not) is a time con-
suming operation that often exceeds the packet
header processing time. In many cases, the com-
puter input/output (I/O) bus quickly becomes a
severe limiting factor to overall router through-
put.

Since routing table lookup is a time-consuming
process of packet forwarding, some traditional
software-based routers cache the IP destination-to-
next-hop association in a separate database that is
consulted as the front end to the routing table be-
fore the routing table lookup. The justi®cation for
route caching is that packet arrivals are temporally
correlated, so that if a packet belonging to a new
¯ow arrives then more packets belonging to the
same ¯ow can be expected to arrive in the near fu-
ture. Route caching of IP destination/next-hop
address pairs will decrease the average processing
time per packet if locality exists for packet ad-
dresses [20,21]. Still, the performance of the tradi-
tional bus-based router depends heavily on the
throughput of the shared bus and on the forward-
ing speed of the central processor. This architecture
cannot scale to meet the increasing throughput re-
quirements of multigigabit network interface cards.

3.2. Bus-based router architectures with multiple
processors

For the second generation IP routers, im-
provement in the shared-bus router architecture

was introduced by distributing the packet for-
warding operations. In some architectures, dis-
tributing fast processors and route caches, in
addition to receive and transmit bu�ers, over the
network interface cards reduces the load on the
system bus. Other second generation routers rem-
edy this problem by employing multiple forward-
ing engines (dedicated solely for packet forwarding
operation) in parallel since a single CPU cannot
keep up with requests from high-speed input ports.
An advantage of having multiple forwarding en-
gines serving as one pool is the ease of balancing
loads from the ports when they have di�erent
speeds and utilization levels. We review, in this
section, these second generation router architec-
tures.

3.2.1. Architectures with route caching
This architecture reduces the number of bus

copies and speeds up packet forwarding by using a
route cache of frequently seen addresses in the
network interface as shown in Fig. 4. Packets are
therefore transmitted only once over the shared
bus. Thus, this architecture allows the network
interface cards to process packets locally some of
the time.

In this architecture, a router keeps a central
master routing table and the satellite processors in
the network interfaces each keep only a modest
cache of recently used routes. If a route is not in a
network interface processorÕs cache, it would re-
quest the relevant route from the central table. The
route cache entries are tra�c-driven in that the
®rst packet to a new destination is routed by the
main CPU (or route processor) via the central
routing table information and as part of that for-
warding operation, a route cache entry for that
destination is then added in the network interface.
This allows subsequent packet ¯ows to the same
destination network to be switched based on an
e�cient route cache match. These entries are pe-
riodically aged out to keep the route cache current
and can be immediately invalidated if the network
topology changes. At high-speeds, the central
routing table can easily become a bottleneck be-
cause the cost of retrieving a route from the central
table is many times more expensive than actually
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processing the packet local in the network inter-
face.

A major limitation of this architecture is that
it has a tra�c dependent throughput and also
the shared bus is still a bottleneck. The per-
formance of this architecture can be improved
by enhancing each of the distributed network
interface cards with larger memories and com-
plete forwarding tables. The decreasing cost of
high bandwidth memories makes this possible.
However, the shared bus and the general pur-
pose CPU can neither scale to high capacity
links nor provide tra�c pattern independent
throughput.

3.2.2. Architectures with multiple parallel forward-
ing engines

Another bus-based multiple processor router
architecture is described in [44]. Multiple for-
warding engines are connected in parallel to
achieve high packet processing rates as shown in
Fig. 5. The network interface modules transmit
and receive data from the links at the required
rates. As a packet comes into a network interface,
the IP header is stripped by a control circuitry,
augmented with an identifying tag, and sent to a
forwarding engine for validation and routing.
While the forwarding engine is performing the
routing function, the remainder of the packet is
deposited in an input bu�er (in the network in-

terface) in parallel. The forwarding engine deter-
mines which outgoing link the packet should be
transmitted on, and sends the updated header
®elds to the appropriate destination interface
module along with the tag information. The
packet is then moved from the bu�er in the source
interface module to a bu�er in the destination in-
terface module and eventually transmitted on the
outgoing link.

The forwarding engines can each work on dif-
ferent headers in parallel. The circuitry in the in-
terface modules peels the header o� of each packet
and assigns the headers to the forwarding engines
in a round-robin fashion. Since in some (real time)
applications packet order maintenance is an issue,
the output control circuitry also goes round-robin,
guaranteeing that packets will then be sent out in
the same order as they were received. Better load-
balancing may be achieved by having a more in-
telligent input interface which assigns each header
to the lightest loaded forwarding engine [44]. The
output control circuitry would then have to select
the next forwarding engine to obtain a processed
header from by following the demultiplexing order
followed at the input, so that order preservation of
packets is ensured. The forwarding engine returns
a new header (or multiple headers, if the packet is
to be fragmented), along with routing information
(i.e., the immediate destination of the packet). A
route processor runs the routing protocols and

Fig. 4. Reducing the number of bus copies using a route cache in the network interface.
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creates a forwarding table that is used by the for-
warding engines.

The choice of this architecture was premised on
the observation that it is highly unlikely that all
interfaces will be bottlenecked at the same time.
Hence sharing of the forwarding engines can in-
crease the port density of the router. The for-
warding engines are only responsible for resolving
next-hop addresses. Forwarding only IP headers
to the forwarding engines eliminates an unneces-
sary packet payload transfer over the bus. Packet
payloads are always directly transferred between
the interface modules and they never go to either
the forwarding engines or the route processor
unless they are speci®cally destined to them.

3.3. Switch-based router architectures with multiple
processors

To alleviate the bottlenecks of the second gen-
eration of IP routers, the third generation of rou-
ters were designed with the shared bus replaced by
a switch fabric. This provides su�cient bandwidth
for transmitting packets between interface cards

and allows throughput to be increased by several
orders of magnitude. With the interconnection
unit between interface cards not the bottleneck,
the new bottleneck is packet processing.

The multigigabit router (MGR) is an example
of this architecture [45]. The design has dedicated
IP packet forwarding engines with route caches in
them. The MGR consists of multiple line cards
(each supporting one or more network interfaces)
and forwarding engine cards, all connected to a
high-speed (crossbar) switch as shown in Fig. 6.
The design places forwarding engines on boards
distinct from line cards. When a packet arrives at a
line card, its header is removed and passed
through the switch to a forwarding engine. The
remainder of the packet remains on the inbound
line card. The forwarding engine reads the header
to determine how to forward the packet and then
updates the header and sends the updated header
and its forwarding instructions back to the in-
bound line card. The inbound line card integrates
the new header with the rest of the packet and
sends the entire packet to the outbound line card
for transmission. The MGR, like most routers,

Fig. 5. Bus-based router architecture with multiple parallel forwarding engines.
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also has a control (and route) processor that pro-
vides basic management functions such as gener-
ation of routing tables for the forwarding engines
and link (up/down) management. Each forwarding
engine has a set of the forwarding tables (which
are a summary of the routing table data).

Similar to other cache-driven architectures, the
forwarding engine checks to see if the cached route
matches the destination of the packet (a cache hit).
If not, the forwarding engine carries out an ex-
tended lookup of the forwarding table associated
with it. In this case, the engine searches the routing
table for the correct route, and generates a version
of the route for the route cache. Since the for-
warding table contains pre®x routes and the route
cache is a cache of routes for particular destina-
tion, the processor has to convert the forwarding
table entry into an appropriate destination-speci®c
cache entry.

3.4. Limitation of IP packet forwarding based on
route caching

Regardless of the type of interconnection unit
used (bus, shared memory, crossbar, etc.), a route
cache can be used in conjunction with a (central-
ized) processing unit for IP packet forwarding
[20,21,45]. In this section, we examine the limita-
tions of route caching techniques before we pro-
ceed with the discussion on other router
architectures.

The route cache model creates the potential for
cache misses which occur with ``demand-caching''
schemes as described above. That is, if a route is
not found in the forwarding cache, the ®rst
packet(s) then looks to the routing table main-
tained by the CPU to determine the outbound
interface and then a cache entry is added for that
destination. This means when addresses are not
found in the cache, the packet forwarding de-
faults to a classical software-based route lookup
(sometimes described as a ``slow-path''). Since the
cache information is derived from the routing
table, routing changes cause existing cache entries
to be invalidated and reestablished to re¯ect any
topology changes. In networking environments
which frequently experience signi®cant routing
activity (such as in the Internet) this can cause
tra�c to be forwarded via the main CPU (the
slow path), as opposed to via the route cache (the
fast path).

In enterprise backbones or public networks, the
combination of highly random tra�c patterns and
frequent topology changes tends to eliminate any
bene®ts from the route cache, and performance is
bounded by the speed of the software slow path
which can be many orders of magnitude lower
than the caching fast path.

This demand-caching scheme, maintaining a
very fast access subnet of the routing topology
information, is optimized for scenarios whereby
the majority of the tra�c ¯ows are associated
with a subnet of destinations. However, given
that tra�c pro®les at the core of the Internet
(and potentially within some large enterprise
networks) do not follow closely this model, a
new forwarding paradigm is required that would
eliminate the increasing cache maintenance re-
sulting from growing numbers of topologically
dispersed destinations and dynamic network
changes.

The performance of a product using the route
cache technique is in¯uenced by the following
factors:
· how big the cache is,
· how the cache is maintained (the three most

popular cache maintenance strategies are ran-
dom replacement, ®rst-in-®rst-out (FIFO), and
least recently used (LRU)), and

Fig. 6. Switch-based router architecture with multiple for-

warding engines.
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· what the performance of the slow path is, since
at least some percentage of the tra�c will take
the slow path in any application.

The main argument in favor of cache-based
schemes is that a cache hit is at least less expensive
than a full route lookup (so a cache is valuable
provided it achieves a modest hit rate). Even with
an increasing number of ¯ows, it appears that
packet bursts and temporal correlation in the
packet arrivals will continue to ensure that there is
a strong chance that two datagrams arriving close
together will be headed for the same destination.

In current backbone routers, the number of
¯ows that are active at a given interface can be
extremely high. Studies have shown that an OC-3
interface might have an average of 256,000 ¯ows
active concurrently [46]. It is observed in [47] that,
for this many ¯ows, use of hardware caches is
extremely di�cult, especially if we consider the
fact that a fully associative hardware cache is re-
quired. So caches of such size are most likely to be
implemented as hash tables since only hash tables
can be scaled to these sizes. However, the O(1)
lookup time of a hash table is an average case
result, and the worst-case performance of a hash
table can be poor since multiple headers might
hash into the same location. Due to the large
number of ¯ows that are simultaneously active in a
router and due to the fact that hash tables gener-
ally cannot guarantee good hashing under all ar-
rival patterns, the performance of cache-based
schemes is heavily tra�c dependent. If a large
number of new ¯ows arrive at the same time, the
slow path of the router can be overloaded, and it is
possible that packet loss can occur due to the (slow
path) processing overload and not due to output
link congestion.

Some architectures have been proposed that
avoid the potential overload of continuous cache
churn (which results in a performance bottleneck).
These designs use instead a forwarding database in
each network interface which mirrors the entire
content of the IP routing table maintained by the
CPU (route processor). That is, there is a one-to-
one correspondence between the forwarding dat-
abase entries and routing table pre®xes; therefore
no need to maintain a route cache [48±50]. By
eliminating the route cache, the architecture fully

eliminates the slow path. This o�ers signi®cant
bene®ts in terms of performance, scalability, net-
work resilience and functionality, particularly in
large complex networks with dynamic ¯ows. These
architectures can best accommodate the changing
network dynamics and tra�c characteristics re-
sulting from increasing numbers of short ¯ows
typically associated with Web-based applications
and interactive type sessions.

3.5. Switch-based router architectures with fully
distributed processors

From the discussion in the preceding sections,
we ®nd that the three main bottlenecks in a router
are processing power, memory bandwidth, and
internal bus bandwidth. These three bottlenecks
can be avoided by using a distributed switch-based
architecture with properly designed network in-
terfaces. Since routers are mostly dedicated sys-
tems not running any speci®c application tasks,
o�-loading processing to the network interfaces
re¯ects a proper approach to increase the overall
router performance. A successful step towards
building high performance routers is to add some
processing power to each network interface in or-
der to reduce the processing and memory bottle-
necks. General-purpose processors and/or
dedicated very large scale integrated (VLSI) com-
ponents can be applied. The third bottleneck (in-
ternal bus bandwidth) can be solved by using
special mechanisms where the internal bus is in
e�ect a switch (e.g., shared memory, crossbar, etc.)
thus allowing simultaneous packet transfers be-
tween di�erent pairs of network interfaces. This
arrangement must also allow for e�cient multicast
capabilities.

We review in this section, decentralized router
architectures where each network interface is
equipped with appropriate processing power and
bu�er space. Our focus is on high performance
packet processing subsystems that form an integral
part of multiport routers for high-speed networks.
The routers have to cope with extremely high ag-
gregate packet rates ¯owing through the system
and, thus, require e�cient processing and memory
components. A generic modular switch-based
router architecture is shown in Fig. 7.
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Each network interface provides the processing
power and the bu�er space needed for packet
processing tasks related to all the packets ¯owing
through it. Functional components (inbound,
outbound, and local processing elements) process
the inbound, outbound tra�c and time-critical
port processing tasks. They perform the process-
ing of all protocol functions (in addition to
quality of service (QoS) processing functions) that
lie in the critical path of data ¯ow. In order to
provide QoS guarantees, a port may need to
classify packets into prede®ned service classes.
Depending on router implementation, a port may
also need to run data-link level protocols such as
Serial Line Internet Protocol (SLIP), Point-to-
Point Protocol (PPP) and IEEE 802.1Q VLAN
(Virtual LAN), or network-level protocols such as
Point-to-Point Tunneling Protocol (PPTP). The
exact features of the processing components de-
pend on the functional partitioning and imple-
mentation details. Concurrent operation among
these components can be provided. The network
interfaces are interconnected via a high perfor-
mance switch that enables them to exchange data
and control messages. In addition, a CPU is used
to perform some centralized tasks. As a result, the
overall processing and bu�ering capacity is dis-
tributed over the available interfaces and the
CPU.

The Media-Speci®c Interface (MSI) performs
all the functions of the physical layer and the
Media Access Control (MAC) sublayer (in the
case of the IEEE 802 protocol model). The Switch
Fabric Interface (SFI) is responsible for preparing
the packet for its journey across the switch fabric.
The SFI may prepend an internal routing tag
containing port of exit, the QoS priority, and drop
priority, onto the packet.

In order to decrease latency and increase
throughput, more concurrency has to be achieved
among the various packet handling operations
(mainly header processing and data movement).
This can be achieved by using parallel or multi-
processor platforms in each high performance
network interface. Obviously, there is a price for
that (cost and space) which has to be considered in
the router design.

To analyze the processing capabilities and to
determine potential performance bottlenecks, the
functions and components of a router and, espe-
cially, of all its processing subsystems have to be
identi®ed. Therefore, all protocols related to the
task of a router need to be considered. In an IP
router, the IP protocol itself as well as additional
protocols, such as ICMP, ARP, RARP (Reverse
ARP), BGP, etc., are required.

A distinction can be made between the pro-
cessing tasks directly related to packets being for-

Fig. 7. A generic switch-based distributed router architecture.
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warded through the router and those related to
packets destined to the router, such as mainte-
nance, management or error protocol data. Best
performance can be achieved when packets are
handled by multiple heterogeneous processing el-
ements, where each element specializes in a speci®c
operation. In such a con®guration, special purpose
modules perform the time critical tasks in order to
achieve high throughput and low latency. Time
critical tasks are the ones related to the regular
data ¯ow. The non-time critical tasks are per-
formed in general purpose processors (CPU). A
number of commercial routers follow this design
approach (e.g., [47,51±62]).

3.5.1. Critical data path processing (fast path)
The processing tasks directly related to packets

being forwarded through the router can be re-
ferred to as the time critical processing tasks. They
form the critical path (sometimes called the fast
path) through a router and need to be highly op-
timized in order to achieve multigigabit rates.
These processing tasks comprise all protocols in-
volved in the critical path (e.g., Logical Link
Control, (LLC) Subnetwork Access Protocol
(SNAP) and IP) as well as ARP which can be
processed in the network interface because it needs
direct access to the network, even though it is not
time critical. The time critical tasks mainly consist
of header checking, and forwarding (and may in-
clude segmentation) functions. These protocols
directly a�ect the performance of an IP router in
terms of the number of packets that can be pro-
cessed per second.

Most high-speed routers implement the fast
path functions in hardware. Generally, the fast
path of IP routing requires the following func-
tions: IP packet validation, destination address
parsing and table lookup, packet lifetime control
(TTL update), and checksum calculation. The fast
path may also be responsible for making packet
classi®cations for QoS control and access ®ltering.
The vast majority of packets ¯owing through an
IP router need to have only these operations per-
formed on them. While they are not trivial, it is
possible to implement them in hardware, thereby
providing performance suitable for high-speed
routing.

3.5.2. Non-critical data path processing (slow path)
Packets destined to a router, such as mainte-

nance, management or error protocol data are
usually not time critical. However, they have to be
integrated in an e�cient way that does not inter-
fere with the packet processing and, thus, does not
slow down the time-critical path. Typical examples
of these non-time critical processing tasks are error
protocols (e.g., ICMP), routing protocols (e.g.,
RIP, OSPF, BGP), and network management
protocols (e.g., SNMP). These processing tasks
need to be centralized in a router node and typi-
cally reside above the network or transport pro-
tocols.

As shown in Fig. 8, only protocols in the for-
warding path of a packet through the IP router are
implemented on the network interface itself. Other
protocols such as routing and network manage-
ment protocols are implemented on the CPU. This
way, the CPU does not adversely a�ect perfor-
mance because it is located out of the data path,
where it maintains route tables and determines the
policies and resources used by the network inter-
faces. As an example, the CPU subsystem can be
attached to the switch fabric in the same way as a
regular network interface. In this case, the CPU
subsystem is viewed by the switch fabric as a reg-
ular network interface. It has, however, a com-

Fig. 8. Example IEEE 802 protocol entities in an IP router

[Adapted from 48].
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pletely di�erent internal architecture and function.
This subsystem receives all non-critical protocol
data units and requests to process certain related
protocol entities (ICMP, SNMP, RIP, OSPF,
BGP, etc.). Any protocol data unit that needs to be
sent on any network by these protocol entities is
sent to the proper network interface, as if it was
just another IP datagram relayed from another
network.

The CPU subsystem can communicate with all
other network interfaces through the exchange of
coded messages across the switch fabric (or on a
separate control bus [44,47]). IP datagrams gen-
erated by the CPU protocol entities are also coded
in the same format. They carry the IP address of
the next hop. For that, the CPU needs to access its
individual routing table. This routing table can be
the master table of the entire router. All other
routing tables in the network interfaces will be
exact replicas (or summaries in compressed table
format) of the master table. Routing table updates
in the network interfaces can then be done by
broadcasting (if the switch fabric is capable of
that) or any other suitable data push technique.
Any update information (e.g., QoS policies, access
control policies, packet drop policies, etc.) origi-
nated in the CPU has to be broadcast to all net-
work interfaces. Such special data segments are
received by the network interfaces which take care
of the actual write operation in their forwarding
tables. Updates to the routing table in the CPU are
done either by the various routing protocol entities
or by management action. This centralization is
reasonable since routing changes are assumed to
happen infrequently and not particularly time
critical. The CPU can also be con®gured to handle
any packet whose destination address cannot be
found in the forwarding table in the network in-
terface card.

3.5.3. Fast path or slow path?
It is not always obvious which router functions

are to be implemented in the fast path or slow
path. Some router designers may choose to include
the ARP processing in the fast path instead of in
the slow path of a router for performance reasons,
and because ARP needs direct access to the
physical network. Other may argue for ARP im-

plementation in the slow path instead of the fast
path. For example, in the ARP used for Ethernet
[14], if a router gets a datagram to an IP address
whose Ethernet address it does not know, it is
supposed to send an ARP message and hold the
datagram until it gets an ARP reply with the
necessary Ethernet address. When the ARP is
implemented in the slow path, datagrams for
which the destination link layer address is un-
known are passed to the CPU, which does the
ARP and, once it gets the ARP reply, forwards the
datagram and incorporates the link-layer address
into future forwarding tables in the network in-
terfaces.

There are other functions which router design-
ers may argue to be not critical and are more ap-
propriate to be implemented in the slow path. IP
packet fragmentation and reassembly, source
routing option, route recording option, timestamp
option, and ICMP message generation are exam-
ples of such functions. It can be argued that
packets requiring these functions are rare and can
be handled in the slow path: a practical product
does not need to be able to perform ``wire-speed''
routing when infrequently used options are present
in the packet. Since such packets having such op-
tions comprise a small fraction of the total tra�c,
they can be handled as exception conditions. As a
result, such packets can be handled by the CPU,
i.e., the slow path. For IP packet headers with
error, generally, the CPU can instruct the inbound
network interface to discard the errored datagram
[48]. In some cases, the CPU will generate an
ICMP message. Alternatively, in the cache-based
scheme [45], templates of some common ICMP
messages such as the TimeExceeded message are
kept in the forwarding engine and these can be
combined with the IP header to generate a valid
ICMP message.

An IP packet can be fragmented by a router,
that is, a single packet can be segmented into
multiple, smaller packets and transmitted onto the
output ports. This capability allows a router to
forward packets between ports where the output is
incapable of carrying a packet of the desired
length; that is, the MTU of the output port is less
than that of the input port. Fragmentation is good
in the sense that it allows communication between
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end systems connected through links with dis-
similar MTUs. It is bad in that it imposes a sig-
ni®cant processing burden on the router, which
must perform more work to generate the resulting
multiple output datagrams from the single input
IP datagram. It is also bad from a data through-
put point of view because, when one fragment is
lost, the entire IP datagram must be retransmitted.
The main arguments for implementing fragmen-
tation in the slow path is that IP packet frag-
mentation can be considered an ``exception
condition'', outside of the fast path. Now that IP
MTU discovery [13] is prevalent, fragmentation
should be rare.

Reassembly of fragments may be necessary for
packets destined for entities within the router it-
self. These fragments may have been generated
either by other routers in the path between the
sender and the router in question or by the original
sending end system itself. Although fragment re-
assembly can be a resource-intensive process (both
in CPU cycles and memory), the number of
packets sent to the router is normally quite low
relative to the number of packets being routed
through. The number of fragmented packets des-
tined for the router is a small percentage of the
total router tra�c. Thus, the performance of the
router for packet reassembly is not critical and can
be implemented in the slow path.

The fast path and slow path functions are
summarized in Fig. 9. Fig. 9 further categorizes the
slow path router functions into two: those per-
formed on a packet-by-packet basis (that is, op-
tional or exception conditions) and those
performed as background tasks.

3.5.4. Protocol entities and IP processing in the
distributed router architecture

The IP protocol is the most extensive entity in
the packet processing path of an IP router and,
thus, IP processing typically determines the
achievable performance of a router. Therefore, a
decomposition of IP that enables e�cient multi-
processing is needed in the distributed router ar-
chitecture. An example of a typical functional
partitioning in the distributed router architecture
is shown in Fig. 10.

This distributed multiprocessing architecture,
means that the various processing elements can
work in parallel on their own tasks with little de-
pendence on the other processors in the system.
This architecture decouples the tasks associated
with determining routes through the network from
the time-critical tasks associated with IP process-
ing. The results of this is an architecture with high
levels of aggregate system performance and the
ability to scale to increasingly higher performance
levels.

Network interface cards built with general-
purpose processors and complex communication
protocols tend to be more expensive than those
built using ASICs and simple communication
protocols. Choosing between ASICs and general-
purpose processors for an interface card is not
straightforward. General-purpose processors tend
to be more expensive, but allow extensive port
functionality. They are also available o�-the-
shelf, and their price/performance ratio improves
yearly [63]. ASICs are not only cheaper, but can
also provide operations that are speci®c to
routing, such as traversing a Patricia tree.

Fig. 9. Typical IP router fast-path and slow-path functions.
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Moreover, the lack of ¯exibility with ASICs can
be overcome by implementing functionality in the
route processor (e.g., ARP, fragmentation and
reassemby, IP options, etc.).

Some router designers often observe that the
IPv4 speci®cation is very stable and say that it
would be more cost e�ective to implement the
forwarding engine in an ASIC. It is argued that
ASIC can reduce the complexity on each system
board by combining a number of functions into
individual chips that are designed to perform at
high speeds. It may also be argued that the Inter-
net is constantly evolving in a subtle way that re-
quire programmability and as such a fast
processor is appropriate for the forwarding engine.

The forwarding database in a network interface
consists of several cross-linked tables as illustrated
in Fig. 11. This database can include IP routes
(unicast and multicast), ARP tables, and packet
®ltering information for QoS and security/access
control.

Now, let us take a generic shared memory
router architecture and then trace the path of an
IP packet as it goes through an ingress port and
out of an egress port. The IP packet processing
steps are shown in Fig. 12.

The IP packet processing steps are as follows
with the step numbers corresponding to those in
Fig. 12:

1. IP header validation. As a packet enters an in-
gress port, the forwarding logic veri®es all Lay-
er 3 information (header length, packet length,
protocol version, checksum, etc.).

2. Route lookup and header processing. The router
then performs an IP address lookup using the
packetÕs destination address to determine the
egress (or outbound) port, and performs all IP
forwarding operations (TTL decrement, header
checksum, etc.).

3. Packet classi®cation. In addition to examining the
Layer 3 information, the forwarding engine ex-
amines Layer 4 and higher layer packet attributes
relative to any QoS and access control policies.

4. With the Layer 3 and higher layer attributes in
hand, the forwarding engine performs one or
more parallel functions:
� associates the packet with the appropriate
priority and the appropriate egress port(s)
(an internal routing tag provides the switch
fabric with the appropriate egress port infor-
mation, the QoS priority queue the packet is
to be stored in, and the drop priority for con-
gestion control),
� redirects the packet to a di�erent (overrid-
den) destination (ICMP redirect),
� drops the packet according to a congestion
control policy (e.g., RED [36]), or a security
policy, and

Fig. 10. An example functional partitioning in the distributed router architecture.
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� performs the appropriate accounting func-
tions (statistics collection, etc.).

5. The forwarding engine noti®es the system con-
troller that a packet has arrived.

6. The system controller reserves a memory loca-
tion for the arriving packet.

7. Once the packet has been passed to the
shared memory, the system controller sig-
nals the appropriate egress port(s). For

multicast tra�c, multiple egress ports are sig-
nalled.

8. The egress port(s) extracts the packet from the
known shared memory location using any of a
number of algorithms: Weighted Fair Queueing
(WFQ), Weighted Round-Robin (WRR), Strict
Priority (SP), etc.

9. When the destination egress port(s) has re-
trieved the packet, it noti®es the system control-

Fig. 11. Forwarding database consisting of several cross-linked tables.

Fig. 12. IP packet processing in a shared memory router architecture.
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ler, and the memory location is made available
for new tra�c.

Section 3 does not attempt an exhaustive review of
all possible router architectures. Instead, its aim is
to identify the basic approaches that have been
proposed and classify them according to the design
trade-o�s they represent. In particular, it is im-
portant to understand how di�erent architectures
fare in terms of performance, implementation
complexity, and scalability to higher link speeds.
In Section 4, we present an overview of the most
common switch fabrics used in routers.

4. Typical switch fabrics of routers

Switch fabric design is a very well studied area,
especially in the context of Asychronous Transfer
Mode (ATM) switches [5±7], so in this section, we
examine brie¯y the most common fabrics used in
router design. The switch fabric in a router is re-
sponsible for transferring packets between the
other functional blocks. In particular, it routes
user packets from the input modules to the ap-
propriate output modules. The design of the
switch fabric is complicated by other requirements
such as multicasting, fault tolerance, and loss and
delay priorities. When these requirements are
considered, it becomes apparent that the switch
fabric should have additional functions, e.g., con-
centration, packet duplication for multicasting if
required, packet scheduling, packet discarding,
and congestion monitoring and control.

Virtually all IP router designs are based on
variations or combinations of the following basic
approaches: shared memory; shared medium; dis-
tributed output bu�ered; space division (e.g.,
crossbar). Some important considerations for the
switch fabric design are: throughput, packet loss,
packet delays, amount of bu�ering, and complex-
ity of implementation. For given input tra�c, the
switch fabric designs aim to maximize throughput
and minimize packet delays and losses. In addi-
tion, the total amount of bu�ering should be
minimal (to sustain the desired throughput with-
out incurring excessive delays) and implementa-
tion should be simple.

4.1. Shared medium switch fabric

In a router, packets may be routed by means of
a shared medium e.g., bus, ring, or dual bus. The
simplest switch fabric is the bus. Bus-based routers
implement a monolithic backplane comprising a
single medium over which all inter-module tra�c
must ¯ow. Data are transmitted across the bus
using Time Division Multiplexing (TDM), in
which each module is allocated a time slot in a
continuously repeating transmission. However, a
bus is limited in capacity and by the arbitration
overhead for sharing this critical resource. The
challenge is that it is almost impossible to build a
bus arbitration scheme fast enough to provide
non-blocking performance at multigigabit speeds.

An example of a fabric using a time-division
multiplexed (TDM) bus is shown in Fig. 13. In-
coming packets are sequentially broadcast on the
bus (in a round-robin fashion). At each output,
address ®lters examine the internal routing tag on
each packet to determine if the packet is destined
for that output. The address ®lters passes the ap-
propriate packets through to the output bu�ers.

It is apparent that the bus must be capable of
handling the total throughput. For discussion, we
assume a router with N input ports and N output
ports, with all port speeds equal to S (®xed size)
packets per second. In this case, a packet time is
de®ned as the time required to receive or transmit
an entire packet at the port speed, i.e., 1/S s. If the
bus operates at a su�ciently high speed, at least
NS packets/s, then there are no con¯icts for
bandwidth and all queueing occurs at the outputs.

Fig. 13. Shared medium switch fabric: a TDM bus.
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Naturally, if the bus speed is less than NS packets/
s, some input queueing will probably be necessary.

In this architecture, the outputs are modular
from each other, which has advantages in imple-
mentation and reliability. The address ®lters and
output bu�ers are straightforward to implement.
Also, the broadcast-and-select nature of this ap-
proach makes multicasting and broadcasting nat-
ural. For these reasons, the bus type switch fabric
has found a lot of implementation in routers.
However, the address ®lters and output bu�ers
must operate at the speed of the shared medium,
which could be up to N times faster than the port
speed. There is a physical limit to the speed of the
bus, address ®lters, and output bu�ers; these limit
the scalability of this approach to large sizes and
high speeds. Either the size N or speed S can be
large, but there is a physical limitation on the
product NS. As with the shared memory approach
(to be discussed next), this approach involves
output queueing, which is capable of the optimal
throughput (compared to simple ®rst-in ®rst-out
(FIFO) input queueing). However, the output
bu�ers are not shared, and hence this approach
requires more total amount of bu�ers than the
shared memory fabric for the same packet loss
rate.

4.2. Shared memory switch fabric

A typical architecture of a shared memory
fabric is shown in Fig. 14. Incoming packets are
typically converted from a serial to parallel form

which are then written sequentially into a (dual
port) random access memory. Their packet head-
ers with internal routing tags are typically deliv-
ered to a memory controller, which decides the
order in which packets are read out of the mem-
ory. The outgoing packets are demultiplexed to the
outputs, where they are converted from parallel to
serial form. Functionally, this is an output
queueing approach, where the output bu�ers all
physically belong to a common bu�er pool. The
output bu�ered approach is attractive because it
can achieve a normalized throughput of one under
a full load [64,65]. Sharing a common bu�er pool
has the advantage of minimizing the amounts of
bu�ers required to achieve a speci®ed packet loss
rate. The main idea is that a central bu�er is most
capable of taking advantage of statistical sharing.
If the rate of tra�c to one output port is high, it
can draw upon more bu�er space until the com-
mon bu�er pool is (partially or) completely ®lled.
For these reasons it is a popular approach for
router design (e.g., [51±53,56,58±60]).

Unfortunately, the approach has its disadvan-
tages. As the packets must be written into and read
out from the memory one at a time, the shared
memory must operate at the total throughput rate.
It must be capable of reading and writing a packet
(assuming ®xed size packets) in every 1/NS s, that
is, N times faster than the port speed. As the access
time of random access memories is physically
limited, this speed-up factor N limits the ability of
this approach to scale up to large sizes and fast
speeds. Either the size N or speed S can be large,
but the memory access time imposes a limit on the
product NS, which is the total throughput.
Moreover, the (centralized) memory controller
must process (the routing tags of) packets at the
same rate as the memory. This might be di�cult if,
for instance, the controller must handle multiple
priority classes and complicated packet schedul-
ing. Multicasting and broadcasting in this ap-
proach will also increase the complexity of the
controller. Multicasting is not natural to the
shared memory approach but can be implemented
with additional control circuitry. A multicast
packet may be duplicated before the memory or
read multiple times from the memory. The ®rst
approach obviously requires more memory be-Fig. 14. A shared memory switch fabric.
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cause multiple copies of the same packet are
maintained in the memory. In the second ap-
proach, a packet is read multiple times from the
same memory location [78±80]. The control cir-
cuitry must keep the packet in memory until it has
been read to all the output ports in the multicast
group.

A single point of failure is invariably introduced
in the shared memory-based design because add-
ing a redundant switch fabric to this design is so
complex and expensive. As a result, shared mem-
ory switch fabrics are best suited for small capacity
systems.

4.3. Distributed output bu�ered switch fabric

The distributed output bu�ered approach is
shown in Fig. 15. Independent paths exist between
all N 2 possible pairs of inputs and outputs. In this
design, arriving packets are broadcast on separate
buses to all outputs. Address ®lters at each output
determine if the packets are destined for that
output. Appropriate packets are passed through
the address ®lters to the output queues.

This approach o�ers many attractive features.
Naturally there is no con¯ict among the N 2 inde-
pendent paths between inputs and outputs, and
hence all queueing occurs at the outputs. As stated
earlier, output queueing achieves the optimal
normalized throughput compared to simple FIFO
input queueing [64,65]. Like the shared medium
approach, it is also broadcast-and-select in nature

and, therefore, multicasting is natural. For multi-
casting, an address ®lter can recognize a set of
multicast addresses as well as output port ad-
dresses. The address ®lters and output bu�ers are
simple to implement. Unlike the shared medium
approach, the address ®lters and bu�ers need to
operate only at the port speed. All of the hardware
can operate at the same speed. There is no speed-
up factor to limit scalability in this approach. For
these reasons, this approach has been taken in
some commercial router designs (e.g., [57]).

Unfortunately, the quadratic N 2 growth of
bu�ers means that the size N must be limited for
practical reasons. However, in principle, there is
no severe limitation on S. The port speed S can be
increased to the physical limits of the address ®l-
ters and output bu�ers. Hence, this approach
might realize a high total throughput NS packets
per second by scaling up the port speed S. The
Knockout switch was an early prototype that
suggested a trade-o� to reduce the amount of
bu�ers at the cost of higher packet loss [66]. In-
stead of N bu�ers at each output, it was proposed
to use only a ®xed number L bu�ers at each output
(for a total of NL bu�ers which is linear in N),
based on the observation that the simultaneous
arrival of more than L packets (cells) to any out-
put was improbable. It was argued that L� 8 is
su�cient under uniform random tra�c conditions
to achieve a cell loss rate of 10ÿ6 for large N.

4.4. Space division switch fabric: the crossbar switch

Optimal throughput and delay performance is
obtained using output bu�ered switches. More-
over, since upon arrival, the packets are immedi-
ately placed in the output bu�ers, it is possible to
better control the latency of the packet. This helps
in providing QoS guarantees. While this architec-
ture appears to be especially convenient for pro-
viding QoS guarantees, it has serious limitations:
the output bu�ered switch memory speed must be
equal to at least the aggregate input speed across
the switch. To achieve this, the switch fabric must
operate at a rate at least equal to the aggregate of
all the input links connected to the switch. How-
ever, increasing line rate (S) and increasing switch
size (N) make it extremely di�cult to signi®cantlyFig. 15. A distributed output bu�ered switch fabric.
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speedup the switch fabric, and also build memories
with a bandwidth of order O(NS).

At multigigabit and terabit speeds it becomes
di�cult to build output bu�ered switches. As a
result some high-speed implementations are based
on the input bu�ered switch architecture. One of
the most popular interconnection networks used
for building input bu�ered switches is the crossbar
because of its (i) low cost, (ii) good scalability and
(iii) non-blocking properties. Crossbar switches
have an architecture that, depending on the im-
plementation, can scale to very high bandwidths.
Considerations of cost and complexity are the
primary constraints on the capacity of switches of
this type. The crossbar switch (see Fig. 16) is a
simple example of a space division fabric which
can physically connect any of the N inputs to any
of the N outputs. An input bu�ered crossbar
switch has the crossbar fabric running at the link
rate. In this architecture bu�ering occurs at the
inputs, and the speed of the memory does not need
to exceed the speed of a single port. Given the
current state of technology, this architecture is
widely considered to be substantially more scalable
than output bu�ered or shared memory switches.
However, the crossbar architecture presents many
technical challenges that need to be overcome in
order to provide bandwidth and delay guarantees.
Examples of commercial routers that use crossbar
switch fabrics are [54,55,61].

We start with the issue of providing bandwidth
guarantees in the crossbar architecture. For the
case where there is a single FIFO queue at each

input, it has long been known that a serious
problem referred to as head-of-line (HOL) block-
ing [64] can substantially reduce achievable
throughput. In particular, the well-known results
of [64] is that for uniform random distribution of
input tra�c, the achievable throughput is only
58.6%. Moreover, Li [67] has shown that the
maximum throughput of the switch decreases
monotonically with increasing burst size. Consid-
erable amount of work has been done in recent
years to build input bu�ered switches that match
the performance of an output bu�ered switch. One
way of reducing the e�ect of HOL blocking is to
increase the speed of the input/output channel (i.e.,
the speedup of the switch fabric). Speedup is de-
®ned as the ratio of the switch fabric bandwidth
and the bandwidth of the input links. There have
been a number of studies such as [68,69] which
showed that an input bu�ered crossbar switch with
a single FIFO at the input can achieve about 99%
throughput under certain assumptions on the in-
put tra�c statistics for speedup in the range of 4±
5. A more recent simulation study [70] suggested
that speedup as low as 2 may be su�cient to ob-
tain performance comparable to that of output
bu�ered switches.

Another way of eliminating the HOL blocking
is by changing the queueing structure at the in-
put. Instead of maintaining a single FIFO at the
input, a separate queue per each output can be
maintained at each input (virtual output queues
(VOQs)). However, since there could be conten-
tion at the inputs and outputs, there is a necessity
for an arbitration algorithm to schedule packets
between various inputs and outputs (equivalent
to the matching problem for bipartite graphs). It
has been shown that an input bu�ered switch
with VOQs can provide asymptotic 100%
throughput using a maximum matching algo-
rithm [71]. However, the complexity of the best
known maximum match algorithm is too high for
high-speed implementation. Moreover, under
certain tra�c conditions, maximum matching can
lead to starvation. Over the years, a number of
maximal matching algorithms have been pro-
posed [72±75].

As stated above, increasing the speedup of
the switch fabric can improve the performanceFig. 16. A crossbar switch.
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of an input bu�ered switch. However, when the
switch fabric has a higher bandwidth than the
links, bu�ering is required at the outputs too.
Thus a combination of input bu�ered and out-
put bu�ered switch is required, i.e., Combined
Input and Output Bu�ered (CIOB). The goal of
most designs then is to ®nd the minimum
speedup required to match the performance of
an output bu�ered switch using a CIOB and
VOQs. McKeown et al. [76] shown that a CIOB
switch with VOQs is always work conserving if
speedup is greater than N/2. In a recent work,
Prabhakar et al. [77] showed that a speed of 4
is su�cient to emulate an output bu�ered switch
(with an output FIFO) using a CIOB switch
with VOQs.

Multicast in the space division fabrics is simple
to implement but has some consequences. For
example, a crossbar switch (with input bu�ering) is
naturally capable of broadcasting one incoming
packet to multiple outputs. However, this would
aggravate the HOL blocking at the input bu�ers.
Approaches to alleviate the HOL blocking e�ect
would increase the complexity of bu�er control.
Other ine�cient approaches in crossbar switches
require an input port to write out multiple copies
of the packet to di�erent output ports one at a
time. This does not support the one-to-many
transfers required for multicasting as in the shared
bus architecture and the fully distributed output
bu�ered architectures. The usual concern about
making multiple copies is that it reduces e�ective
switch throughput. Several approaches for han-
dling multicasting in crossbar switches have been
proposed, e.g., [81]. Generally, multicasting in-
creases the complexity of space division fabrics.

4.5. Other issues in router switch fabric design

We have described above four typical design
approaches for router switch fabrics. Needless to
say, endless variations of these designs can be
imagined but the above are the most common
fabrics found in routers. There are other issues
applicable to understanding the trade-o�s involved
in any new design. We discuss some of these issues
next.

4.5.1. Construction of large router switch fabrics
With regard to the construction of large switch

fabrics, most of the four basic switch fabric design
approaches are capable of realizing routers of
limited throughput. The shared memory and
shared medium approaches can achieve a
throughput limited by memory access time. The
space division approach has no special constraints
on throughput or size, only physical factors do
limit the maximum size in practice [82]. There are
physical limits to the circuit density and number of
input/output (I/O) pins. Interconnection com-
plexity and power dissipation become more di�-
cult issues with fabric size [83]. In addition,
reliability and repairability become di�cult with
size. Modi®cations to maximize the throughput of
space division fabrics to address HOL blocking
increases the implementation complexity.

It is generally accepted that large router switch
fabrics of 1 terabits per second (Tbps) throughput
or more cannot be realized simply by scaling up a
fabric design in size and speed. Instead, large
fabrics must be constructed by interconnection of
switch modules of limited throughput. The small
modules may be designed following any approach,
and there are various ways to interconnect them
[84±86].

4.5.2. Fault tolerance and reliability
With the rapid growth of the Internet and the

emergence of growing competition between Inter-
net Service Providers (ISPs), reliability has become
an important issue for IP routers. In addition,
multigigabit routers will be deployed in the core of
enterprise networks and the Internet. Tra�c from
thousands of individual ¯ows pass through the
switch fabric at any given time [46]. Thus, the ro-
bustness and overall availability of the switch
fabric becomes a critically important design pa-
rameter. As in any communication system, fault
tolerance is achieved by adding redundancy to the
crucial components. In a router, one of the most
crucial components is the packet routing and
bu�ering fabric. Redundancy may be added in two
ways: by duplicating copies of the switch fabric or
by adding redundancy within the fabric [87±90].
In addition to redundancy, other considerations
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include detection of faults and isolation and re-
covery.

4.5.3. Bu�er management and quality of service
The prioritization of mission critical applica-

tions and the support of IP telephony and video
conferencing create the requirement for supporting
QoS enforcement with the switch fabric. These
applications are sensitive to both absolute latency
and latency variations.

Beyond best-e�ort service, routers are begin-
ning to o�er a number of QoS or priority classes.
Priorities are used to indicate the preferential
treatment of one tra�c class over another. The
switch fabrics must handle these classes of tra�c
di�erently according to their QoS requirements. In
the output bu�ered switch fabric, for example,
typically the fabric will have multiple bu�ers at
each output port and one bu�er for each QoS
tra�c class. The bu�ers may be physically separate
or a physical bu�er may be divided logically into
separate bu�ers.

Bu�er management here refers to the discarding
policy for the input of packets into the bu�ers
(e.g., Random Early Detection (RED)), and the
scheduling policy for the output of packets from
the bu�ers (e.g., strict priority, weighted round-
robin (WRR), weighted fair queueing (WFQ),
etc.). Bu�er management in the IP router involves
both dimensions of time (packet scheduling) and
bu�er space (packet discarding). The IP tra�c
classes are distinguished in the time and space di-
mensions by their packet delay and packet loss
priorities. We therefore see that bu�er manage-
ment and QoS support is an integral part of the
switch fabric design.

5. Conclusions and open problems

IP provides a high degree of ¯exibility in
building large and arbitrary complex networks.
Interworking routers capable of forwarding ag-
gregate data rates in the multigigabit and terabit
per second range are required in emerging high
performance networking environments. This paper
has presented an evaluation of typical approaches
proposed for designing high-speed routers. We

have focused primarily on the architectural over-
view and the design of the components that have
the highest e�ect on performance.

First, we have observed that high-speed routers
need to have enough internal bandwidth to move
packets between its interfaces at multigigabit and
terabit rates. The router design should use a
switched backplane. Until very recently, the stan-
dard router used a shared bus rather than a swit-
ched backplane. While bus-based routers may
have satis®ed the early needs of IP networks,
emerging demands for high bandwidth, QoS de-
livery, multicast, and high availability place the
bus architecture at a signi®cant disadvantage. For
high speeds, one really needs the parallelism of a
switch with superior QoS, multicast, scalability,
and robustness properties. Second, routers need
enough packet processing power to forward sev-
eral million packets per second (Mpps). Routing
table lookups and data movements are the major
consumers of processing cycles. The processing
time of these tasks does not decrease linearly if
faster processors are used. This is because of the
sometimes dominating e�ect of memory access
rate.

It is observed that while an IP router must, in
general, perform a myriad of functions, in prac-
tice the vast majority of packets need only a few
operations performed in real-time. Thus, the
performance critical functions can be implement-
ed in hardware (the fast path) and the remaining
(necessary, but less time-critical) functions in
software (the slow path). IP contains many fea-
tures and functions that are either rarely used or
that can be performed in the background of high-
speed data forwarding (for example, routing
protocol operation and network management).
The router architecture should be optimized for
those functions that must be performed in real-
time, on a packet-by-packet basis, for the ma-
jority of the packets. This creates an optimized
routing solution that route packets at high speed
at a reasonable cost.

It has been observed in [63] that the cost of a
router port depends on, (1) the amount and kind
of memory it uses, (2) its processing power, and (3)
the complexity of the protocol used for commu-
nication between the port and the route processor.
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This means the design of a router involve trade-
o�s between performance, complexity, and cost.

Router ports built with general-purpose pro-
cessors and complex communication protocols
tend to be more expensive than those built using
ASICs and simple communication protocols.
Choosing between ASICs and general-purpose
processors for an interface card is not straight-
forward. General-purpose processors are costlier,
but allow extensive port functionality, are avail-
able o�-the-shelf, and their price/performance ra-
tio improves rapidly with time [63]. ASICs are not
only cheaper, but can also provide operations that
are speci®c to routing, such as traversing a Patricia
tree. Moreover, the lack of ¯exibility with ASICs
can be overcome by implementing functionality in
the route processor.

The cost of a router port is also proportional to
the type and size of memory on the port. SRAMs
o�er faster access times, but are more expensive
than DRAMs. Bu�er memory is another param-
eter that is di�cult to size. In general, the rule of
thumb is that a port should have enough bu�ers to
support at least one bandwidth-delay product
worth of packets, where the delay is the mean end-
to-end delay and the bandwidth is the largest
bandwidth available to TCP connections travers-
ing that router. This sizing allows TCP to increase
their transmission windows without excessive
losses.

The cost of a router port is also determined by
the complexity of the internal connections between
the control paths and the data paths in the port
card. In some designs, a centralized controller
sends commands to each port through the switch
fabric and the portÕs internal bu�ers. Careful en-
gineering of the control protocol is necessary to
reduce the cost of the port control circuitry and
also the loss of command packets which will cer-
tainly need retransmission.

The design principles of router fabrics are well
known, at least for some common switch fabrics.
In many cases it is possible to leverage many of the
design principles from ATM switches into next
generation multigigabit routers. Although the de-
sign principles for most fabrics are well established
by now, the design is complicated by consider-
ations for fault tolerance, multicasting, and

queueing priorities. Fault tolerance implies the
necessity of redundant resources in the fabric. The
straightforward approach of duplicating parallel
planes may also improve throughput. Alterna-
tively, various ways exist to add redundancy
within a single fabric plane. Multicasting depends
on the fabric design because some design ap-
proaches inherently broadcast every packet. For
space division fabrics, including large fabrics
constructed by interconnection of small modules,
multicasting can be complex.

It will also be necessary to manage multiple
bu�ers to satisfy the QoS requirements of the
di�erent tra�c classes. Bu�er management consist
of packet scheduling and discarding policies,
which determine the manner in which packets are
input into and output from the bu�ers. The packet
scheduling policy attempts to satisfy the delay re-
quirements as indicated by delay priorities. The
packet discarding policy attempts to satisfy the
loss requirements as indicated by packet loss pri-
orities.

Signi®cant advances have been made in router
designs to address the most demanding customer
issues regarding high-speed packet forwarding
(e.g., route lookup algorithms, high-speed switch-
ing cores and forwarding engines), low per-port
cost, ¯exibility and programmability, reliability,
and ease of con®guration. While these advances
have been made in the design of IP routers, some
important open issues still remain to be resolved.
These include packet classi®cation and resource
provisioning, improved price/performance router
designs, ``active networking'' [91] and ease of
con®guration, reliability and fault tolerance de-
signs, and Internet billing/pricing. Extensive work
is being carried out both in the research commu-
nity and industry to address these problems.

References

[1] P. Newman, T. Lyon, G. Minshall, Flow labelled IP: a

connectionless approach to ATM, in: Proceedings of the

IEEE Infocom Õ96, San Francisco, CA, March 1996, pp.

1251±1260.

[2] Y. Katsube, K. Nagami, H. Esaki, ToshibaÕs router

architecture extensions for ATM: overview, in: IETF

RFC 2098, April 1997.

508 J. Aweya / Journal of Systems Architecture 46 (2000) 483±511



[3] Y. Rekhter, B. Davie, D. Katz, E. Rosen, G. Swallow,

Cisco systems tag switching architecture overview, in:

IETF RFC 2105, February 1997.

[4] F. Baker, Requirements for IP Version 4 routers, in: IETF

RFC 1812, June 1995.

[5] H. Ahmadi, W. Denzel, A survey of modern high perfor-

mance switching techniques, IEEE J. Selected Areas

Commun. 7 (1989) 1091±1103.

[6] F. Tobagi, Fast packet switch architectures for broadband

integrated services digital networks, Proc. IEEE 78 (1990)

133±178.

[7] R.Y. Awdeh, H.T. Mouftah, Survey of ATM switch

architectures, Computer Net. and ISDN Syst. 27 (1995)

1567±1613.

[8] R. Perlman, Interconnections: Bridges and Routers, Add-

ison-Wesley, Reading, MA, 1992.

[9] C. Huitema, Routing in the Internet, Prentice Hall,

Englewood Cli�s, NJ, 1996.

[10] J. Moy, OSPF: Anatomy of an Internet Routing Protocol,

1998.

[11] W.R. Stevens, TCP/IP Illustrated, vol. 1, The Protocols,

Addison-Wesley, Reading, MA, 1994.

[12] C.A. Kent, J.C. Mogul, Fragmentation considered harm-

ful, Computer Commun. Rev. 17 (5) (1987) 390±401.

[13] J. Mogul, S. Deering, Path MTU Discovery IETF RFC

1191, April 1990.

[14] D. Plummer, Ethernet address resolution protocol: or

converting network protocol addresses to 48-bit ethernet

addresses for transmission on ethernet hardware, in: IETF

RFC 826, November 1982.

[15] T. Bradley, C. Brown, Inverse address resolution protocol,

in: IETF RFC 1293, January 1992.

[16] V. Fuller et al., Classless inter-domain routing, in: IETF

RFC 1519, June 1993.

[17] K. Sklower, A tree-based packet routing table for Berkeley

Unix, in: USENIX, Winter Õ91, Dallas, TX, 1991.

[18] W. Doeringer, G. Karjoth, M. Nassehi, Routing on

longest-matching pre®xes, IEEE/ACM Trans. Networking

4 (1) (1996) 86±97.

[19] D.R. Morrison, Patricia ± practical algorithm to retrieve

information coded in alphanumeric, J. ACM 15 (4) (1968)

515±534.

[20] D.C. Feldmeier, Improving gateway performance with a

routing-table cache, in: Proceedings of the IEEE Infocom

Õ88, New Orleans, LI, March 1988.

[21] C. Partridge, Locality and route caches, in: NSF Work-

shop on Internet Statistics Measurement and Analysis, San

Diego, CA, February 1996.

[22] D. Knuth, The Art of Computer Programming, vol. 3,

Sorting and Searching, Addison-Wesley, Reading, MA,

1973.

[23] M. Degermark, Small forwarding tables for fast routing

lookups, in: Proceedings of the ACM SIGCOMM Õ97,

Cannes, France, September 1997.

[24] H.Y. Tzeng, Longest pre®x search using compressed trees,

in: Proceedings of the Globecom Õ98, Sydney, Australia,

November 1998.

[25] M. Waldvogel, G. Varghese, J. Turner, B. Plattner,

Scalable high speed IP routing lookup, in: Proceedings of

the ACM SIGCOMM Õ97, Cannes, France, September

1997.

[26] V. Srinivasan, G. Varghese, Faster IP lookups using

controlled pre®x expansion, in: Proceedings of the ACM

SIGMETRICS, May 1998.

[27] S. Nilsson, G. Karlsson, Fast address look-up for internet

routers, in: Proceedings of the IEEE Broadband Commu-

nications Õ98, April 1998.

[28] E. Filippi, V. Innocenti, V. Vercellone, Address lookup

solutions for gigabit switch/router, in: Proceedings of the

Globecom Õ98, Sydney, Australia, November 1998.

[29] A.J. McAuley, P. Francis, Fast routing table lookup using

CAMs, in: Proceedings of the IEEE Infocom Õ93, San

Francisco, CA, March 1993, pp. 1382±1391.

[30] T.B. Pei, C. Zukowski, Putting routing tables in silicon,

IEEE Network 6 (1992) 42±50.

[31] M. Zitterbart et al., HeaRT: high performance routing

table lookup, in: Fourth IEEE Workshop on Architecture

and Implementation of High Performance Communica-

tions Subsystems, Thessaloniki, Greece, June 1997.

[32] P. Gupta, S. Lin, N. McKeown, Routing lookups in

hardware at memory access speeds, in: Proceedings of the

IEEE Infocom Õ98, March 1998.

[33] C. Rigney, A. Rubens, W. Simpson, S. Willens, Remote

Authentication Dial-In User Service (RADIUS), in: IETF

RFC 2138, April 1997.

[34] V. Jacobson, Congestion avoidance and control, Comput.

Commun. Rev. 18 (4) (1988).

[35] W. Stevens, TCP slow start, congestion avoidance, fast

retransmit and fast recovery algorithms, in: IETF RFC

2001, January 1997.

[36] S. Floyd, V. Jacobson, Random early detection gateways

for congestion avoidance, IEEE/ACM Trans. Networking

1 (4) (1993).

[37] A. Demers, S. Keshav, S. Shenker, Analysis and simulation

of a fair queueing algorithm, Journal of Internetworking:

Research and Experience 1 (1990).

[38] S. Floyd, V. Jacobson, Link sharing and resource man-

agement models for packet networks, IEEE/ACM Trans.

Networking 3 (4) (1995).

[39] L. Zhang, S. Deering, D. Estrin, S. Shenker, D. Zappala,

RSVP: A new resource reservation protocol, in: IEEE

Network, September 1993.

[40] K. Nichols, S. Blake, Di�erentiated services operational

model and de®nitions, in: IETF Work in progress.

[41] S. Blake, An architecture for di�erentiated services, in:

IETF Work in progress.

[42] S.F. Bryant, D.L.A. Brash, The DECNIS 500/600 multi-

protocol bridge router and gateway, Digital Technical

Journal 5 (1) (1993).

[43] P. Marimuthu, I. Viniotis, T.L. Sheu, A parallel router

architecture for high speed LAN internetworking, in:

Proceedings of the 17th IEEE Conference on Local

Computer Networks, Minneapolis, Minnesota, September

1992.

J. Aweya / Journal of Systems Architecture 46 (2000) 483±511 509



[44] S. Asthana, C. Delph, H.V. Jagadish, P. Krzyzanowski,

Towards a gigabit IP router, Journal of High Speed

Networks 1 (4) (1992).

[45] C. Partridge, A 50Gb/s IP router, IEEE/ACM Trans.

Networking 6 (3) (1998) 237±248.

[46] K. Thomson, G.J. Miller, R. Wilder, Wide-area tra�c

patterns and characteristics, in: IEEE Network, December

1997.

[47] V.P. Kumar, T.V. Lakshman, D. Stiliadis, Beyond best

e�ort: router architectures for the di�erentiated services of

tomorrowÕs internet, in: IEEE Commun. Mag., May 1998,

pp. 152±164.

[48] A. Tantawy, O. Koufopavlou, M. Zitterbart, J. Abler, On

the design of a multigigabit IP router, Journal of High

Speed Networks 3 (1994) 209±232.

[49] O. Koufopavlou, A. Tantawy, M. Zitterbart, IP-Routing

among gigabit networks, in: S. Rao (Ed.), Interoperability

in Broadband Networks, IOS Press, 1994, pp. 282±289.

[50] O. Koufopavlou, A. Tantawy, M. Zitterbart, A compar-

ison of gigabit router architectures, in: E. Fdida (Ed.),

High Performance Networking, North-Holland, Amster-

dam, 1994.

[51] Implementing the Routing Switch: How to Route at Switch

Speeds and Switch Costs, White Paper, Bay Networks,

1997.

[52] Catalyst 8510 Architecture, White Paper, Cisco Systems,

1998.

[53] Catalyst 8500 Campus Switch Router Series, White Paper,

Cisco Systems, 1998 .

[54] Cisco 12000 Gigabit Switch Router, White Paper, Cisco

Systems, 1997.

[55] Performance Optimized Ethernet Switching, Cajun White

Paper #1, Lucent Technologies.

[56] Internet Backbone Routers and Evolving Internet Design,

White Paper, Juniper Networks, September 1998.

[57] The Integrated Network Services Switch Architecture and

Technology, White Paper, Berkeley Networks, 1997.

[58] Torrent IP9000 Gigabit Router, White Paper, Torrent

Networking Technologies, 1997.

[59] Wire-Speed IP Routing, White Paper, Extreme Networks,

1997.

[60] PE-4884 Gigabit Routing Switch, White Paper, Packet

Engines, 1997.

[61] GRF 400 White Paper: A Practical IP Switch for Next-

Generation Networks, White Paper, Ascend Communica-

tions, 1998.

[62] Rule Your Networks: An Overview of StreamProcessor

Applications, White Paper, NEO Networks, 1997.

[63] S. Keshav, R. Sharma, Issues and Trends in Router

Design, IEEE Commun. Mag., May 1998, pp. 144±151.

[64] M. Karol, M. Hluchyj, S. Morgan, Input versus output

queueing on a space-division packet switch, IEEE Trans.

Commun. 35 (1987) 1337±1356.

[65] M. Hluchyj, M. Karol, Qeueuing in high-performance

packet switching, IEEE J. Selected Areas Commun. 6

(1988) 1587±1597.

[66] Y.S. Yeh, M. Hluchyj, A.S. Acampora, The knockout

switch: a simple modular architecture for high-perfor-

mance packet switching, IEEE J. Selected Areas Commun.

5 (8) (1987) 1274±1282.

[67] S.Q. Li, Performance of a non-blocking space-division

packet switch with correlated input tra�c, in: Proceedings

of the IEEE Globecom Õ89, 1989, pp. 1754±1763.

[68] C.Y. Chang, A.J. Paulraj, T. Kailath, A broadband packet

switch architecture with input and output queueing, in:

Proceedings of the Globecom Õ94, 1994.

[69] I. Iliadis, W. Denzel, Performance of packet switches with

input and output queueing, in: Proc. ICC Õ90, 1990.

[70] R. Guerin, K.N. Sivarajan, Delay and throughput perfor-

mance of speed-up input-queueing packet switches, in:

IBM Research Report RC 20892, June 1997.

[71] N. McKeown, V. Anantharam, J. Walrand, Achieving

100% Throughput in an input-queued switch, in: Proceed-

ings of the IEEE Infocom Õ96, 1996, pp. 296±302.

[72] T.E. Anderson, S.S. Owicki, J.B. Saxe, C.P. Thacker, High

speed switch scheduling for local area networks, ACM

Trans. Computer Sys. 11 (4) (1993) 319±352.

[73] D. Stiliadis, A. Verma, Providing bandwidth guarantees in

an input-bu�ered crossbar switch, Proc. IEEE Infocom '95

(1995) 960±968.

[74] C. Lund, S. Phillips, N. Reingold, Fair prioritized sched-

uling in an input-bu�ered switch, in: Proceedings of the

Broadband Communications, 1996.

[75] A. Mekkittikul, N. McKeown, A practical scheduling

algorithm to achieve 100% throughput in input-queued

switches, in: Proceedings of the IEEE Infocom Õ98, March

1998.

[76] N. McKeown, B. Prabhakar, M. Zhu, Matching output

queueing with combined input and output queueing, in:

Proceedings of the 35th Annual Allerton Conference on

Communications, Control and Computing, October 1997.

[77] B. Prabhakar, N. McKeown, On the speedup required for

combined input and output queueing switching, Computer

Systems Lab, Technical Report CSL-TR-97-738, Stanford

University.

[78] N. Endo et al., Shared bu�er memory switch for an ATM

exchange, IEEE Trans. Commun. 41 (1993) 237±245.

[79] H. Kuwahara, A shared bu�er memory switch for an ATM

exchange, in: Proceedings of the ICC Õ89, Boston, 1989, pp.

118±122.

[80] Y. Sakurai, ATM switching systems for B-ISDN, Hitachi

Rev. 40 (1990) 193±198.

[81] N. McKeown, Fast Switched Backplane for a Gigabit

Switched Router, Technical Report, Department of Elec-

trical Engineering, Stanford University.

[82] T. Lee, A modular architecture for very large packet

switches, IEEE Trans. Commun. 38 (1990) 1097±1106.

[83] T. Bandwell, Physical design issues for very large scale atm

switching systems, IEEE J. Selected Areas Commun. 9

(1991) 1227±1238.

[84] K. Murano, Technologies towards broadband ISDN,

IEEE Commun. Mag. 28 (1990) 66±70.

510 J. Aweya / Journal of Systems Architecture 46 (2000) 483±511



[85] A. Itoh et al., Practical implementation and packaging

technologies for a large-scale ATM switching system, IEEE

J. Selected Areas Commun 9 (1991) 1280±1288.

[86] T. Kozaki et al., 32 ´ 32 Shared bu�er type ATM switch

VLSIÕs for B-ISDNÕs, IEEE J. Selected Areas Commun. 9

(1991) 1239±1247.

[87] V. Kumar, S. Wang, Reliability enhancement by time and

space redundancy in multistage interconnection networks,

IEEE Trans. Reliability 40 (1991) 461±473.

[88] G. Adams et al., A survey and comparison of fault-tolerant

multistage interconnection networks, IEEE Comput. 20

(1987) 14±27.

[89] D. Agrawal, Testing and fault-tolerance of multistage

interconnection networks, IEEE Comput. 15 (1982) 41±53.

[90] A. Itoh, A fault-tolerant switching network for BISDN,

IEEE J. Selected Areas Commun. 9 (1991) 1218±1226.

[91] D. Tennenhouse et al., A Survey of Active Network

Research, in: IEEE Commun. Mag., January 1997.

[92] A. Rijsinghani, Computation of the Internet Checksum via

Incremental Update, in: IETF RFC 1624, May 1994.

James Aweya received his B.Sc. (Hon)
degree from the University of Science
and Technology, Kumasi, Ghana, and
his M.Sc. degree from the University
of Saskatchewan, Saskatoon, Canada,
all in electrical engineering. He re-
cently completed his Ph.D. studies in
electrical engineering at the University
of Ottawa. In 1986 he joined the
Electricity Corporation of Ghana,
where he worked on the design and
operation of electric distribution sys-
tems. From 1987 to 1990, he was with

the Volta River Authority where he was engaged in the in-
strumentation and control of electric power systems. Since 1996
he has been with Nortel Networks where he is a Systems Design
Engineer. He is currently involved in the design of resource
management functions for IP and ATM networks, architectural
issues and design of IP routers, and network architectures and
protocols. He has published more than 25 journal and confer-
ence papers and has 5 patents pending. In addition to computer
networks and protocols, he has other interest in fuzzy logic
control, neural networks, and application of arti®cial intelli-
gence to computer networking.

J. Aweya / Journal of Systems Architecture 46 (2000) 483±511 511


