
Input Versus Output Queueing on a Space-Division 
Pack& Switch 

Abstract-Two simple models of queueing on an N X N space-division 
packet  switch  are examined. The switch operates synchronously with 
fixed-length packets; during each time slot, packets may  arrive on any 
inputs addressed to any outputs. Because packet arrivals to the switch are 
unscheduled, more than one packet may  arrive for the same output 
during  the same time slot, making queueing unavoidable. Mean queue 
lengths are always greater for queueing on inputs than for queueing on 
outputs, and the output queues saturate only as the utilization approaches 
unity. Input queues, on the other hand, saturate at a utilization that 
depends on N, but is approximately (2 - &) = 0.586 when N i s  large. If 
output trunk utilization is the primary consideration, it  is possible to 
slightly increase utilization of the output trunks-up to (1 - e - ’ )  = 0.632 
as N --t --by dropping interfering packets at the end of each time slot, 
rather  than storing them in the input queues. This improvement is 
possible, however, only when the utilization of the input trunks exceeds a 
second critical threshold-approximately In (1 + A) = 0.881 for large 
N. 

I. INTRODUCTION 

S PACE-DIVISION  packet  switching  is  emerging as a key 
component in the  trend  toward  high-performance 

integrated communication  networks for data,  voice,  image, 
and video [l], 121 and  multiprocessor  interconnects for 
building highly parallel  computer  systems [3], [4]. Unlike 
present-day packet  switch  architectures with throughputs 
measured in 1’s or  at most 10’s of Mbits/s, a space-division 
packet switch can have  throughputs  measured in l’s, lo’s, or 
even 100’s of Gbitsls.  These capacities are attained  through 
the use of  a highly parallel  switch  fabric  coupled with simple 
per packet processing  distributed  among many high-speed 
VLSI  circuits. 

Conceptually,  a  space-division  packet  switch  is  a box with 
N inputs and N outputs that routes  the  packets  arriving on its 
inputs to  the appropriate  outputs. At any  given  time,  internal 
switch points can be  set to establish  certain  paths from inputs 
to outputs;  the  routing  information  used to establish input- 
output paths  is  often  contained in the header  of  each  arriving 
packet.  Packets may have  to be  buffered within the  switch 
until appropriate  connections are available; the location of the 
buffers  and the amount  of  buffering  required  depend on  the 
switch architecture  and the statistics  of the offered  traffic. 

Clearly, congestion  can occur if the switch is  a  blocking 
network, that is, if there are not enough  switch  points to 
provide  simultaneous,  independent  paths between arbitrary 
pairs  of  inputs and outputs.  A Banyan switch [3]-[5], for 
example, is a  blocking  network. In a Banyan switch,  even 
when every input i s  assigned to a  different  output, as many as 
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f i  connections may be  contending for use of the same  center 
link. The use of a  blocking  network as a  packet switch is 
feasible only under light  loads or, alternatively, if it  is  possible 
to run the switch substantially faster than the input and output 
trunks. 

In  this  .paper, we consider only nonblocking networks.  A 
simple  example of a  nonblocking  switch  fabric  is the crossbar 
interconnect with switch  points (Fig.  1).  Here it  is  always 
possible to establish a connection  between any idle input- 
output pair. Examples  of other nonblocking switch fabrics are 
given in [3]. Even with a  nonblocking  interconnect,  some 
queueing in a  packet  switch is unavoidable, simply because the 
switch acts as a statistical multiplexor; that is, packet arrivals 
to  the switch are unscheduled. If more than one packet arrives 
for the same output at a given time,  queueing  is  required. 
Depending on  the speed of the switch fabric and its particular 
architecture,  there may be  a choice  as  to where  the  queueing  is 
done: for  example,  on the  input  trunk, on  the output trunk,  or 
at an internal  node. 

We assume  that  the  switch  operates  synchronously with 
fixed-length packets, and that  during  each  time s1ot;packets 
may arrive  on any inputs  addressed to any outputs (Fig. 2 ) .  If 
the  switch  fabric  runs N times as fast as the  input and output 
trunks, all the packets  that arrive during  a  particular  input  time 
slot can traverse the switch  before the next input slot, but there 
will still be  queueing at the  outputs  [Fig. l(a)]. This queueing 
really has nothing to  do with the switch architecture, but is due 
to the  simultaneous arrival of more than one input packet for 
the same output. If,  on  the other  hand,  the  switch  fabric  runs at 
the  same speed as the  inputs and outputs, only one packet can 
be  accepted by any  given  output  line  during  a  time  slot, and 
other packets addressed to  the same output must queue on the 
input lines  [Fig. l(b)].  For simplicity, we do not consider  the 
intermediate case where  some packets can  be  queued at 
internal nodes, as in the Banyan topology. 

It seems intuitively reasonable  that the mean queue  lengths, 
and hence the mean waiting times, will be  greater for queueing 
on inputs than for queueing on outputs.  When  queueing  is  done 
on inputs,  a  packet that could  traverse  the .switch to  an idle 
output during  the current time  slot may have to wait in queue 
behind a packet whose  output  is  currently  busy. The intuition 
that, if possible, it is  better to queue on the  outputs than the 
inputs of a space-division packet switch also  pertains to  the 
following situation.  Consider  a  single road leading to both a 
spot-@ arena and  a store [Fig. 3(a)]. Even if there are no 
customers  waiting for service in the  store, some  shoppers 
might be stuck in  stadium  traffic.  A  simple  bypass road around 
the stadium is  the  obvious solution [Fig. 3(b)]. 

This  paper  quantifies the performance  improvements pro- 
vided by output  queueing for the  following  simple  model. 
Independent, statistically identical traffic arrives  on each input 
trunk. In any  given  time slot, the probability that  a packet will 
arrive  on a  particular  input  is p .  Thus, p represents the average 
utilization of  each  input.  Each  packet  has  equal probability 1/ 
N of being  addressed to- any  given  output, and successive 
packets are independent. 

With  output  queueing,  all arriving packets  in  a  time  slot are 
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queueing [Fig. l(b)]. Each arriving packet goes, at least ---$ momentarily,  into  a FIFO  on its  input trunk. At the beginning 
I I  I of every  time slot,  the switch controller  looks at the first 

: I  I ' I  packet in each FIFO. If every  packet  is  addressed to a  different, 
- 1  I I . output,  the  controller  closes the  proper crosspoints  and all the 

2 - r n  packets go through. If k packets are addressed to a  particular 
output,  the  controller pkks  one  to  send; the others wait until 
the next time  slot,  when  a new selection  is made among the 
packets that are then waiting. Three selection policies are 
discussed in Section 111: one of the k packets  is  chosen at 
random, each selected with equal  probability l/k, longest 

the longest input queue, and fixed  priority selection where 
the N inputs  have  fixed  priority  levels, and of the k packets, 
the controller  sends  the one with highest priority. 

Solutions of  these two queueing  problems are given  in 

1 2  N queue selection, in which the controller  sends the packet from 

QUEUEING ON INPUTS 

(b) 
Fig. 1 .  (a) An N x N crossbar  switch with output queueing. (b) An N X N 

crossbar switch with input queueing. 
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Fig. 2. Fixed-length packets arrive synchronously to a time-slotted packet 
switch. 
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(b) 
Fig. 3. "Output queueing" (b) is superior  to "input queueing" (a). In  (a), 

even if there  are no customers waiting for  service in the store,  some 
shoppers might be stuck in stadium traffic. In (b), a bypass road around the 
stadium serves  cars traveling to the store. 

cleared before the  beginning  of the next  time  slot. For 
example,  a crossbar switch  fabric  that runs N times as fast as 
the inputs and outputs can  queue all  packet  arrivals  according 
to their  output addresses, even if all N inputs  have  packets 
destined for  the  same output  [Fig. 1 (a)]. If k packets arrive  for 
one output during  the  current time slot,  however, only one can 
be transmitted over  the output trunk.  The remaining k - 1 
packets go into an output FIFO (first-in,  first-out  queue) for 
transmission during subsequent  time  slots.  Since the  average 
utilization of each  output  trunk  is the  same  as  the utilization of 
each  input trunk, namely p ,  the  system  is  stable  and  the mean 
queue  lengths will be finite for p < 1, but they will be greater 
than zero if p > 0. 

A crossbar interconnect with the switch  fabric  running at the 
same speed as  the inputs  and  outputs  exemplifies  input 

Sections I1 and 111. Curves  showing mean waiting time  as a 
function o f p  are plotted for various  values of N. As  expected, 
the mean waiting  times are  greater  for queueing on inputs than 
for queueing on outputs. Furthermore,  the output  queues 
saturate only as p -+ 1 .  Input  queues, on the other hand, 
saturate at a  value  of p less  than  unity,  depending weakly on 
N. for large N, the critical  value  of p is  approximately (2 - 
$2) = 0.586 with the  random  selection  policy.  When the 
utilization p of the input  trunks  exceeds the critical  value, the 
steady-state queue sizes are infinite,  packets  experience 
infinite waiting  times,  and  the  output  trunk utilization is 
limited to approximately 0.586 (for large N). In  the  saturation 
region, however, it  is  possible to  increase utilization of the 
output trunks-up to  (1 - e- l )  = 0.632 as N + w-by 
dropping  packets,  rather than storing  them  in  the  input queues. 
This  improvement  is  possible,  however,  only  when the 
.utilization of the input  trunks  exceeds  a  second  critical 
threshold-approximately In (1 + &) = 0.881 for large N. 
Consequently, if the objective  is  maximum  output  utilization, 
rather than 100 percent  packet delivery, then  below the second 
threshold, it is better to  queue packets until they are 
successful,  whereas above  the second  threshold,  it  is  better to 
reduce  input queue blocking by dropping  packets  whenever 
there are conf l ic t s .  With high probabi l i ty ,  new packets (with 
new destinations) will quickly arrive  to replace the dropped 
packets. 

Comparing  the  random  and  longest queue selection policies 
of input  queueing, the mean waiting  times are  greater with 
random  selection. This is  expected  because  the  longest queue 
selection policy reduces  the  expected  number  of  packets 
blocked (behind other packets) from traversing the switch to 
idle outputs. For  fairness,  the  fixed priority  discipline  should 
be  avoided  because  the  lowest  priority  input queue suffers 
large delays and is  sometimes  unstable,  even when the  other 
two selection policies  guarantee  stability. 

11. QUEUES ON OUTPUTS 

Much of the  following  analysis of the output  queueing 
scheme  involves  well-known  results for discrete-time  queue- 
ing systems [6]. Communication  systems have been modeled 
by discrete-time  queues  in the past (e.g., [7]); we sketch our 
analysis  and  present  results for later  comparison to  the input 
queueing  analysis. 

We assume  that  packet arrivals  on  the N input  trunks are 
governed, by independent  and  identical  Bernoulli  processes. 
Specifically,  in  any  given  time  slot, the probability  that  a 
packet will arrive  on a  particular  input is p .  Each  packet  has 
equal  probability 1 /N of  being  addressed to any  given output, 
and successive  packets are independent. 

Fixing our attention on a  particular  output  queue (the 

' A random selection is made  if, of the k input queues with packets 
addressed to a particular output,  several queues have the same maximum 
length. 
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“tagged”  queue),  we  define  the  random  variable A as  the 
number of packet  arrivals at the  tagged  queue  during  a  given 
time  slot. * It  follows  that A has  the  binomial  probabilities 

i = O ,  1 ,  e . . ,  N (1) 

with probability  generating  function (PGF) 

As N + 00, the  number  of packet  arrivals  at  the  tagged  queue 
during  each  time  slot  has  the  Poisson  probabilities 

pie-p 

i! 
ai 4 Pr [ A = i ] = -  i = O ,  1 ,  2,  (3) 

with probability  generating  function (PGF) 

N 

A ( z )  A x z i  Pr [ A  = i ]  = e - P ( l - 2 ) .  (4) 

Letting Q,,, denote  the  number of packets  in  the  tagged 
queue  at  the  end of the  rnth  time  slot, and A,,, denote  the 
number  of  packet  arrivals  during  the mth time  slot,  we  have 

i = O  

Q,=max (0, Q m - l + A m - l ) .  ( 5 )  

When Q m - l  = 0 and A, > 0, one of the  new  packets  is 
immediately  transmitted  during  the mth time  slot;  that  is,  a 
packet  flows  through  the  switch  without  suffering  any  delay. 
The  queue  size Q,,, is  modeled by a  discrete-time  Markov 
chain;  Fig. 4 illustrates  the  state  transition  diagram.  Using (5 )  
and  following  a  standard  approach in queueing  analysis  (see, 
for  example, [8, sect. 5.6]),  we  obtain  the PGF for  the  steady- 
state  queue  size: 

Finally,  substituting  the  right-hand  side of (2) into (6), we 
obtain 

(1-$+z$) N - 2  

‘Now, differentiating (7) with  respect to z and  taking  the 
limit as z + 1 ,  we  obtain the mean  steady-state  queue  size Q 
given by 

STATE TRANSITION PROBABILITIES 

a, Pr(A=i) i = 0, 1, 2, 

Fig. 4. The discrete-time Markov  chain  state transition diagram for the 
output queue  size. 

which corresponds  to  the PGF for  the  steady-state  queue  size 
of an M/D/l queue.  Expanding (9) in  a  Maclaurin  series [9] 
yields  the  asymptotic (as N + 00) queue  size  probabilities3 

Pr ( Q =  0 )  = (1 -p)eP (1 0) 

Pr ( Q  = 1 )  = ( 1  -p)ep(ep - 1 - p )  ( 1 1 )  

Pr ( Q = n ) = ( l - p )   ( - l ) n + l - ’ e ’ p  
n+ I 

j =  1 

. [  (n+ 1 - j ) !  +7] ( n - J ) .  for n 2 2  (12) 

( j p ) n + l - j  ( jP)“-J 

where  the  second  factor in (12) is  ignored for j = (n + 1) .  
Although  it  is  mathematically  pleasing to  have  closed-form 

expressions,  directly  using (12) to  compute  the  steady-state 
probabilities  leads to  inaccurate  results  for  large n. When n i s  
large, the  alternating  -series (12) expresses  small  steady-state 
probabilities as the  difference  between  very  large  positive 
numbers.  Accurate  values are  required if one  is interested  in 
the tail of  the  distribution; for  example,  to  compute  the 
probability  that  the  queue  size  exceeds  some  value M. 
Numerically,  a  more  accurate  algorithm  is  obtained  directly 
from  the  Markov  chain  (Fig. 4) balance  equations.  Equations 
(13)-(15) numerically  provide  the  steady-state  queue  size 
probabilities. 

( 1  - P )  
qo A Pr ( Q = O ) = -  

0 0  

where Q M / ~ / l  denotes  the  mean  queue  size  for  an M/D/1 
queue.  Hence,  as N --t 00, Q + Q M I D , , .  

We  can  make  the  even  stronger statement  that  the  steady- 
state  probabilities  for  the  queue  size  converge to those of an 4n 4 pr ( Q =  n) - (1 - 4 )  . 
M / D /  1 queue.  Taking  the  limit  as N + m on both  sides of (7) 4 n -  1 

yields 
a0 

* We use the phrase  “arrivals  at the tagged queue during a given time  slot” The steady-state probabilities in [9, sect. 5.1.51 are for the total number 
to indicate that packets do not arrive instantaneously, in their  entirety,  at  the of packets in an M/D/1 system.  We  are interested in queue size; hence,  the 
output. Packets have a nonzero transmission time. modification to (10)-(12). 
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where  the ai are given by (1) and (3) for N < 03 and N = 03, 
.respectively. 

We  are now interested in the  waiting  time for an arbitrary 
(tagged) packet  that arrives  at  the tagged  output  FIFO  during 
the mth time  slot. We assume  that  packet  arrivals to the output 
queue  in  the mth time  slot are transmitted  over  the  output 
trunk in random order. All packets arriving in earlier time 
slots, however, must be  transmitted  first. 

.The tagged packet's  waiting  time W has two components. 
First,  the packet  must  wait W1 time  slots while packets that 
arrived in earlier time  slots are transmitted.  Second,  it must 
wait an additional WZ time  slots until it is randomly selected 
out  of the packet arrivals in the  mth time  slot. 

Since  packets  require one time slot for transmission over the 
output trunk, Wl equals Qm- Consequently, from (6), the 
PGF  for  the steady-state  value  of Wl is 

We must  be careful when we compute W2, the delay due  to 
the  transmission  of other packet  arrivals  in  the mth time  slot. 
Burke  points  out  in [ 101 that many  standard  works on queueing 
theory are in error when they compute the delay  of single- 
server queues  with batch input.  Instead  of  working with the 
side of the batch to which the tagged  packet  belongs,  it  is 
tempting to work with the  size of an arbitrary  batch. Errors 
result ,when the batches are not of  constant  size. The 
probability  that our tagged  packet arrives in a batch of size i is 
given by iai/A; hence,  the random  variable W2 has the 
probabilities 

- 1  
Pr [Wz=k]= - i a i / A  k=O, 1 ,  2 ,  I.. 

i = k + l  

1 m  

where A ( = p )  is the expected  number of packet  arrivals at the 
tagged output during each  time slot, and the ai are given by (1)  
and (3) for N < 03 and N = 03, respectively. The  PGF  for  the 
steady-state  value of Wz follows  directly from (17). 

Finally,  since W is the sum  of the independent  random 
variables Wl and W2, the  PGF  for the  steady-state  waiting 
time  is 

A ( z )  is  giveh by (2) and (4) for N < m and N = 03, 
respectively. 

Differentiating (19) with respect to z and taking the limit as 
z + 1 ,  we obtain the mean steady-state waiting  time given by 

W = Q + -  [A  2 4 1 .  
2P 

1 -  

Since A = p and 2 = pz + p(1 - P I N ) ,  substituting the 
right-hand side of (8) into (20) yields 

where ?,,,I denotes the  mean waiting  time for  an  M/D/1 
queue. The mean waiting  time W ,  as a  function o f p ,  is  shown 

0 0.2 0.4 06 0.8 1 

INPUT TRUNK UTILIZATION (p) 

Fig. 5 .  The mean waiting time for several switch sizes N with output 
queueing. 

in Fig. 5 for several  values of N. Notice  that  Little's  result  and 
(8) generate  the same formula for W .  

Rather than take the inverse  transform  of W(z),  it  is easier 
to compute the steady-state  waiting  time  probabilities from 

Pr [ W = k ] = P r  [ W l +  W 2 = k ]  
m 

where the qn are given by (1  3)-( 15) and the ai are given by (1) 
and (3) for N < 00 and N = 00, respectively. 

111. QUEUES ON INPUTS 

The interesting  analysis occurs when the switch  fabric runs 
at the same speed as  the input  and  output trunks, and  packets 
are queued at  the inputs. How much traffic  can the switch 
accommodate before it  saturates,  and  how much does the mean 
waiting time  increase  when we  queue packets at +e inputs 
rather than at  the outputs? As in the previous  section, we 
assume  that  packet arrivals  on  the N input  trunks are governed 
by independent  and  identical  Bernoulli  processes. In any  given 
time  slot, the probability  that  a  packet will arrive  on a 
particular  input is p; each  packet  has  equal  probability 1 /N of 
being  addressed to any  given  output. Each.  arriving packet 
goes,  at least  momentarily,  into  a FIFO  on its  input trunk. At 
the  beginning of every time slot,  the switch  controller looks at 
the  first  packet  in  each FIFO. If every packet is addressed to a 
different  output, the  controller closes the  proper crosspoints 
and all the  packets go through. If k packets ,are addressed to a 
particular  output, one of  the k packets  is  chosen at random, 
each  selected  with  equal  probability 1 / k .  The  others wait until 
the next time  slot  when  a new selection is made  among the 
packets  that are then waiting. 
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A. Saturation Analvsis-Random Selection Policy if more than one simultaneous  request  is  made to a  particular 
Suppose the input  queues are saturated so that packets are 

always  waiting in every input  queue.  Whenever  a packet is 
transmitted  through  the switch, a new packet immediately 
replaces  it at  the head of  the  input  queue. We define BL as the 
number of packets at  the heads of input  queues that are 
“blocked” for output i at  the end of the rnth time  slot.  In  other 
words, BL is  the  number of packets  destined for output i ,  but 
not selected by the controller  during the  mth time  slot. We 
also  define A i, as  the number of packets moving to the head of 
“free” input  queues during  the  mth time  slot and destined for 
output i .  An input  queue  is “free” during  the rnth time slot; 
if, and only if, a packet from it was transmitted during  the (m 
- 1)st time  slot. The new packet “arrival” at the head of the 
queue has equal  probability 1/N of being addressed to any 
given output. It follows  that 

BL=max (0, BL-,+AL-  1). 
Although BL does not represent  the  occupancy  of any physical 
queue, notice that (23) has the  same mathematical form  as (5). 

A 6, the number of packet arrivals  during  the rnth time  slot 
to free input queues  and  destined for output i ,  has  the binomial 
.probabilities 

where 

F,-, is the  number of free input  queues at the end of the (m - 
1)st time  slot,  representing the total number  of packets 
transmitted through the switching  during the (m - 1)st time 
slot. Therefore, F,,- I is also  the total number  of input queues 
with new packets at their  heads  during  the rnth time  slot. That 
is, 

Notice that FIN = po where E is the mean steady-state 
number of free input  queues  and po is  the utilization of  the 
output trunks (i.e.,  the switch  throughput).  As N -+ 03, the 
steady-state number  of  packets moving to the head of free 
input queues each time slot, and destined for output i ,  (A j )  

becomes  Poisson at rate po (see  Appendix  A).  These  observa- 
tions and (23) together imply that we can use the  results of 
Section I1 to obtain an expression for  the mean steady-state 
value of B’ as N + 00. Modifying (8), we have 

However, using (25) and PIN = po, we also  have 
- 
B’= 1 - po.  

It follows  from (27) and (28) that po = (2  - &) = 0.586 
when the  switch  is  saturated and N = 00. 

It is  interesting to note  that  this  same  asymptotic  saturation 
throughput has also  been  obtained in an entirely  different 
context.  Consider  the  problem of memory  interference  in 
synchronous  multiprocessor  systems [l 13, [12] in which M 
memories are shared by N processors.  Memory  requests are 
presented at the  beginning of memory  cycles;  a  conflict occurs 

memory. In  the event of a  conflict, one request is accepted, 
and the  other  requests are held for  future memory  cycles. If M 
= N and processors  always  make  a new memory  request  in 
the cycle immediately following  their  own satisfied request, 
then our saturation model for input  queueing  is identical to  the 
multiprocessor model. As N + 03, the expected  number of 
busy memories  (per  cycle)  is (2 - 4 2 ) -  N [I 13. 

When the input queues are saturated and N < CQ, the switch 
throughput is found by analyzing  a  Markov  chain  model. 
Under  saturation, the model is identical to the  Markov  chain 
analysis of  memory  interference in [ 121. Unfortunately,  the 
number of  states grows exponentially with N,  making the 
model useful only for small N. The results  presented  in  Table 
I,4 however,  illustrate  the  rapid  convergence to the  asymptotic 
throughput of 0.586. In  addition,  saturation  throughputs 
obtained by simulation5 (Fig. 6) agree with the  analysis. 

B. Increasing  the Switch Throughput by Dropping Packets 
Whenever k packets are addressed for a  particular output in 

a  time slot, only one can  be transmitted over the output trunk. 
We have been assuming  that the remaining k - 1 packets wait 
in their input queues until the next time  slot when a new 
selection is  made  among the packets that are then waiting. 
Unfortunately,  a  packet  that  could  traverse the switch to an 
idle  output  during the  current time ,slot may have to wait in 
queue behind a packet whose  output is currently  busy. As 
shown in Section III-A, input  queue blocking limits  the switch 
throughput to approximately 0.586 for large N. 

Instead of  storing  the  remaining k - 1 packets in input 
queues,  suppose we just  drop them from the switch (i.e., we 
eliminate  the  input  queues).  Dropping  packets obviously 
reduces  the switch throughput when the  input  trunk utilization 
p is small;  more  time  slots on the output trunks are empty 
because new packets do not arrive fast enough to replace 
dropped  packets. Although dropping  a significant number of 
packets (say,  more than 1 out of 1000) may not be  realistic for 
a packet switch, it is interesting to note that as  the input 
utilization p increases,  the  reduction in input queue blocking 
when packets are dropped eventually outweighs  the  loss 
associated with dropping the packets. 

We define A i  as  the number  of  packet  arrivals  during the 
mth time  slot  that are addressed for output i .   A ;  has  the 
binomial probabilities 

Pr [ A i = k ] =  ( y )  (p/N)k(l - P / N ) ~ - ~  

We also define the  indicator  function I 1  as follows: 

k=O, 1, e * . ,  N. (29) 

[ 
1 if output  trunk i transmits  a packet 

0 otherwise. 
I:, = during the rnth  time  slot (30) 

When we drop packets, only those that arrive during  the 
mth time  slot have a  chance to be  transmitted over output 
trunks  during the  rnth time  slot. If they are not selected in the 
slot in which they arrive, they are  dropped. Consequently, for 
each  output  trunk i ,  the  random  variables 1; and I:(. # s) are 
independent  and identically distributed, with probabilities 

Pr [ I ; =  1]=Pr [AL>O] 

The  entries in Table I were obtained by normalizing (dividing by N )  the 
values from [12, Table 1111. 

Rather than plot the simulation results as  discrete points, the saturation 
throughputs obtained for N between 2 and 100 are simply connected by 
straight line segments. No smoothing is done on the data. 
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T A B L E  I 
THE  MAXIMUM  THROUGHPUT  ACHIEVABLE  WITH  INPUT  QUEUEING 
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0.6184 
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SWITCH SIZE, N 
Fig. 6. The maximum throughput achievable with input queueing. 

By symmetry, 1 - (1 - P / N ) ~  is the utilization of  each 
output trunk;  the switch  throughput po is given by 

p o = l - ( l  - p / N ) N .  (32) 

As N + 03, 

po = 1 - e-p.  (33) 

The probability  that an arbitrary  packet will be dropped from 
the switch is simply 1 - po/p. 

The switch  throughput po, as a  function  of p ,  is  shown  in 
Fig. 7 for several  values  of N. When  the utilization p of the 
input  trunks  exceeds  a  critical  threshold, the switch  throughput 
po is larger when we  drop packets [(32) and (33)] than when 
we  queue them on  the input  trunks  (Table I).  For  example, 
when N = 03 and p > In (1 + &), the switch  throughput 
when we  drop packets is  greater than (2 - &)-the 
throughput with input queues.  Table I1 lists, as a function o fp ,  
which of the  two strategies  yields the  larger switch  throughput. 

C. Waiting Time-Random Selection Policy 
Below saturation,  packet waiting time is a  function  of the 

service  discipline the switch  uses  when two  or  more input 
queues are waiting to transmit  packets to  the  same output. In 
this  section, we  derive  an exact  formula for  the mean  waiting 
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Fig. 7. The switch throughput when packets are  dropped,  rather than queued 
. at  the inputs. 

T A B L E  I1 
THE STRATEGY (AS A  FUNCTION OF p) ,  INPUT  QUEUEING,  OR  PACKET 

DROPPING  THAT  YIELDS  THE LARGER SWITCH  THROUGHPUT 

N Drop Packets  Queues  On  Inputs - Queues  On  Inputs - 
Finite  Queue Sizes Saturated  Queues 

2 0 5 p <0.750 

0.683 5 p 5 0.953 0 5 p 5 0.682 3 

0.750 5 p 5 I 

0.954 5 p 5 1 

~ 

__._._____ 

I 4 I 0 5 p 5 0.655 I 0.656 5 p 5 0.935 I 0.936 5 p 5 1 I 
1 5 I 0 5 p 5 0.639 I 0.640 5 p 5 0.923 I 0.924 5 p 5 1 1 

I I I 

6 I 0 5 p 5 0.630 I 0.631 5 p 5 0.916 I 0.917 5 p 5 1 
I I I 

7 I 0 5 p 5 0.623 I 0.624 5 p 5 0.911 I 0.912 5 p 5 1 

I 8 I 0 5 p 5 0.618 I 0.619 5 p 5 0.907 I 0.908 5 p 5 1 I 

time  under the random  selection policy for  the limiting case of 
N = 00. The waiting  time  is obtained by simulation for finite 
values  of N. In Section 111-D, numerical  results are compared 
to the mean waiting  time  under  the  longest queue and fixed 
priority  selection  policies. 

When  the  input  queues are not saturated,  there is a 
significant difference between our analysis of a  packet  switch 
with input  queues  and the analysis  of  memory  interference  in 
synchronous  multiprocessor  systems. The multiprocessor ap- 
plication assumes that new memory  requests are generated 
only after  a  previous  request  has  been  satisfied. A processor 
never  has more than one memory  request waiting at any  time. 
In  our  problem, however,  packet  queueing on  the input  trunks 
impacts the switch  perforinance, 

A discrete-time Geom/G/l queueing  model (Fig. 8) is used 
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INPUT I 
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. ARRIVAL . PROCESS 

( N  = O1) 
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E 5  

t 
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a 

Fig. 8. The discrete-time Geom/G/l input queueing model used to  derive 
an exact formula for the mean waiting time for  the limiting case of N = 01. 

to determine  the  expected  packet  waiting  time for the limiting 
case of N = 00. The arrival  process  is  Bernoulli: in any given 
time  slot,  the probability that  a  packet will arrive on a 
particular input i s p  where 0 < p < 2 - &. Each packet has 
equal probability 1 / N  of being  addressed to any given  output, 
and successive  packets are independent. To obtain the  service 
distribution,  suppose the packet at the head of input queue i is 
addressed for output j .  The  “service time” for the packet 
consists of the wait until it  is  randomly selected by the  switch 
controller, plus one time  slot for its transmission  through  the 
switch and onto  output  trunk j .  As N --t 03, successive packets 
in input queue i experience  the same service  distribution 
because their  destination  addresses are independent and 
distributed uniformly over all N outputs. Furthermore, the 
steady-state number of packet “arrivals”  to the heads of  input 
queues and addressed for output j becomes Poisson at rate p .  
Consequently, the service  distribution for the  discrete-time 
Geom/G/l model is itself the packet delay  distribution  of 
another  queueing system: a  discrete-time M/D/1 queue with 
customers  served in random order. Analysis  of  the  discrete- 
time M/D/1 queue, with packets served  in random order, is 
given in Appendix  B. 

Using [6, eq. (39)], the mean  packet  delay fgr a  discrete- 
time Geom/G/l queue is 

(34) 

where S is a  random  variable with the  service  time  distribution 
g i v z  in Appendix  B and mean  value s. The mean waiting time 
i s W = D - 1  

fj7= +s- 1 .  
pS(S-1)  - 

2(1 - p S )  
S ( S  - 1) and s are determined numerically using the method 
in Appendix B. 

The mean waiting time w ,  as a function of p ,  is  shown  in 
Fig. 9 for both input  queueing  and  output queueing-in the 
limit as N + m. As  expected, waiting times are always 
greater for queueing on inputs than for queueing on outputs. 
Packet waiting times for input  queueing  and  finite  values of N, 
obtained by simulation,’ agree with the asymptotic  analytic 
results (Fig. 10). 

w 
3 

I QUEUEING 
OUTPUT 

0 0.2 0.4 0.6 0.8 1 
OFFERED LOAD (p) 

Fig. 9. A comparison of the mean waiting time for input queueing and 
output queueing for the limiting case of N = 00. 

.____ N = 4  

0 0.2 0.4 0 6  0.8 1 

INPUT T R U N K  UTILIZATION (p) 

Fig. 10. The mean waiting time for  several switch sizes N with input 
queueing. 

D. Longest Queue and Fixed Priority Selection Policies 
Until now, we have  assumed that if k packets are addressed 

to a  particular  output, one of the k packets  is  chosen at 
random,  each  selected with equal probability l l k .  In  this 
section, we consider two other selection policies: longest 
queue  selection,  and fixed priority  selection.  Under the longest 
queue  selection  policy, the controller  sends the packet from 
the longest input  queue.  A  random selection is made if, of the 
k input queues  with  packets ‘addressed to a  particular  output, 
several aueues  have  the  same maximum  length. Under the 

This follows from  the proof in Appendix A. 
’ Rather than plot the simulation results as  discrete points, the simulation 

results are  simdv connected by straight  line segments: no smoothing is  done 
on the data. Thesame comment a p s e s  to Fig;. 11, 12, and  13. - ” 
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Fig. 11. The mean waiting time for input queueing with the random and 
longest queue selection policies. 

fixed priority  selection  policy, the N inputs have fixed  priority 
levels, and of the k packets, the controller  sends  the one with 
highest priority. 

Simulation  results for  the longest queue policy indicate 
' smaller  packet waiting times  than  those  expected with random 

service (Fig. 11). This is  anticipated  because  the longest queue 
selection policy reduces  the  expected  number of packets 
blocked (behind other packets) from traversing  the  switch to 
idle  outputs. 

For the  fixed  priority  service  discipline, our simulation 
results show  that the lowest  priority  input  queue  suffers  large 
delays and is  sometimes  saturated, even when the  other  two 
. service  disciplines  guarantee  stability. Although the  saturation 

' throughput  is 0.6553 under the  random selection policy when 
N = 4 (see Table I), it is .shown in Fig. 12 that the lowest 
priority  input queue saturates at approximately 0.55 under the 
fixed priority  discipline. Fig. 13 illustrates the family of 
waiting time curves  for N = 8.  

These  results are interesting  because  imposing  a  priority 
scheme on a  single server queueing  system usually does not 
affect  its  stability;  the  system  remains  work  conserving. For 
the N X Npacket switch, however, packet  blocking at  the low 
priority  input  queues  does  impact  stability. More work 
remains to characterize the stability region. 

IV . CONCLUSION 
Using  Markov  chain  models,  queueing theory, and  simula- 

tion,  we have  presented  a  thorough  comparison of input  versus 
output  queueing on  an N X N nonblocking space-division 
packet switch.  What the present  exercise  has done,  for a 
particular  solvable  example,  is to quantify the intuition that 
better performance results with output  queueing  than with 
input queueing. Besides performance,  of  course, there are 
other  issues,  such as switch  implementation, that must be 
considered in designing  a  space-division  packet  switch. The 
Knockout Switch [13] is an example of a  space-division  packet 
switch that  places all buffers for queueing packets at  the 
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Fig. 12. The mean waiting time for input queueing with the fixed priority 

service discipline and N = 4. 

8 

PRIORITY 8 (LOWEST)--4 

iu PRIORITY 6 --- . 

0 0.2 0 4  

l- 

0.6 08 1 

INPUT TRUNK UTILIZATION (p) 

Fig. 13. The mean waiting time for input queueing with the fixed priority 
service discipline and N = 8. 
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outputs  of the switch,  thus  enjoying the performance  advan- 
tages of output queueing. Furthermore,  the switch  fabric  runs 
at  the  same speed as  the input and output  trunks. 

APPENDIX A 

POISSON LIMIT OF PACKETS MOVING TO THE HEAD OF FREE 
INPUT QUEUES 

For the input queueing  saturation  analysis  presented  in 
Section 111-A, as N -+ 00, we show  that the steady?qst.ate 
number of packets moving to the  head  of free input queues 
each time  slot, and destined for output i, (A ') becomes Poisson ..;,l 
at rate po = F/N. To make clear the dependency of F and po 
on the  number  of  inputs N, we define E ( N )  as the  steady-state 
number of free input  queues  and p o ( N )  as the  output  trunk 
utilization for a  given N where poN = F ( N ) / N .  

We can  write 

+ 1 - - Pr [input queue r is free, ( it.> 
input queue s ( s # r )  is  free] 

- (Pr [input queue r is free])*. (Al) 
As N + 00, the events {input queue r is free} and {input 
queue s is free} become  independent for s # r.  Therefore, 
from (Al), 

Given E > 0, we define the set S,  by 

SN { L , L + 1 ,  ' ' ' 3  u-1, u }  (A3) 
where 

L A max { 1, LF(N) - E N ] } ,  (A4) 

U A min { N, rF(N)  + EW},  (A?) 
and Lx] ([x]) denotes the greatest (smallest) integer  less than 
(greater than) or equal to x. By the Chebyshev  inequality, 

Therefore, 

N 

Pr [Ai=a ]=  Pr [ F ( N ) = f ]  
f =  rnax ((I, I )  

. ("f) (l/N)U(l- l / N ) f - Q  

I Pr [ F ( N ) = f ]  
f E S N  

("f) (l/N)U(l- 1/N)f-" 

Case I (a = 0): Iff E S N ,  then 

(1 - l /N)cJ5 (;) (l/N)O(l- l/N)f-OI(l- l / N ) L .  
4 

('48) 
Therefore, from  (A6),  (A7), and  (A8), we obtain 

1 

L J 

A s N -  00, 

e-(po+~)spr [A~=()]<~-(Po- ' ) .  

Since  this  holds for arbitrarily  small E > 0, 

lim Pr [ A i  = 0] = e-00. (A1 1) 

Case II (a > 0): Since ({)(l/N)(I(l - l/N)f-(I is  a 
nondecreasing function off  for 1 5 f 5 Nand  a > 0, for f E 
S N  we have 

N -  m 

(l/N)U(l- 1/N)L-Q5 (;) (l/N)U(l- l/N)f-U a 

Therefore, from  (A6),  (A7), and (A12), we obtain 

I '  

+ 
€ 2  

A s N +  T, 

Since  this  holds for arbitrarily  small E > 0, 

4 
lim  Pr [A'= a] = e-00 - . ('415) 
N- m a! 

APPENDIX B 

DISCRETE-TIME &f/D/1 QUEUE-PACKETS SERVED IN RANDOM 
ORDER 

In  this  Appendix, we present  a  simple  numerical method for 
computing  the  delay  distribution  of  a  discrete-time M/D/1 
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queue, with packets  served in random  order.  The  number of 
packet arrivals  at  the  beginning of each  time slot is Poisson 
distributed with rate X, and  each  packet  requires  one time slot 
for  service.  We fix our attention on a particular  “tagged” 
packet in the  system,  during  a  given  time  slot. Let Pm,k denote 
the  probability,  conditioned  on  there  being a total of k packets 
in the  system  during  the  given  time  slot, that the remaining 
delay is m time  slots until the tagged packet  completes  service. 
It is easy to  obtain P m , k  by recursion  on m. 

P1.1 = 1 (B 1) 

034) 
Averaging  over k ,  the  packet  delay D has the  probabilities 

Pr [k packets in system  immediately 
after the  tagged  packet  arrives] 

where  the qn are  the steady-state  queue  size  probabilities  given 

The  variance  and  mean of the  packet  delay  distribution  are 
determined  numerically  from  the  delay  probabilities  in (B5). 

by (13)-(15). 
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