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Combinatorial Group Testing: Motivations and the Matrix Representation

For any positive integer m and any finite set X , let [m] denote the set {1, . . . ,m},
(
X
m

)
denote the

collection of all m-subsets of X , and 2X denote the power-set of X .

1 The basic group testing problem

The basic group testing problem is to identify the set of “positives” from a large population of “items” using
as few “tests” as possible. A test is a subset of items, which returns positive if there is a positive in the
subset. The semantics of “positives,” “items,” and “tests” depend on the applicational context.

Example 1.1 (Blood testing). Group testing as a research area can be traced back to 1943 when Dorfman
studied the problem of testing for syphilis in WWII draftees blood samples [12]. In this case, items are blood
samples, which are positive if they are infected. A test is a pool (group) of blood samples. Testing a group of
samples at a time will save resources if the test outcome is negative. On the other hand, if the test outcome
is positive then all we know is that at least one sample in the pool is positive but we do not know which
one. Since 1943, group testing has found numerous applications in many areas of Mathematics, Computer
Science, and Computational Biology. The reader is referred to the standard monograph on the subject by Du
and Hwang [13], and several surveys [1, 14, 16, 22]. These expository works are nice but outdated. Results
covered in this seminar are mostly new. (We will make use of old techniques and results, however!)

We next describe an application in computational biology.

Example 1.2 (DNA library screening). The basic problem of DNA library screening is to determine which
clone (a DNA segment) from the library contains which probe from a given collection of probes in an
efficient fashion. A clone is said to be positive for a probe if it contains the probe, and negative otherwise.
In practice clones are pooled together in some manner to be tested against each probe, since checking each
clone-probe pair is expensive and usually only a few clones contain any given probe. An example is when
Sequenced-Tagged Site markers (also called STS probes) are used [23]. If the test result for a pool (of
clones) is negative, indicating that no clone in the pool contains the probe, then no further tests are needed
for the clones in the pool.

It is customary to consider two types of group testing problems: Combinatorial Group Testing (CGT)
and Probabilistic Group Testing (PGT). CGT is the worst case model, where it is assumed that the number
of positives among N items is at most d for some fixed positive integer d. In PGT, we impose some
probability distribution on the positives. For example, earlier works assumed that each item is positive with
some probability p [26, 27]. Thus, CGT is analogous to Hammings adversarial noise model in information
theory [17]; and PGT corresponds to Shannon’s probabilistic noise model [25]. We are mostly concerned
with the combinatorial group testing model in these notes. Hence, unless specically stated, “group testing”
means combinatorial group testing from now on.
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If the test pools are done in s stages (s ∈ N), where the pools of a later stage are designed depending on
the test results of the earlier stages, then the group testing algorithm is said to be an s-stage algorithm. Group
testing strategies can also be either adaptive or non-adaptive. A group testing algorithm is non-adaptive if all
tests must be specified without knowing the outcomes of other tests. Clearly, being nonadaptive is equivalent
to being 1-stage. A group testing algorithm is error tolerant if it can detect or correct errors in test outcomes.
We will have more to say about error-correcting group testing in later lectures.

Exercise 1 (A simple adaptive strategy). Consider the case when there’s at most d = 1 positive. Design an
adaptive CGT algorithm with at most dlog2 Ne tests. Show that this number of tests is also necessary.

Exercise 2 (Adaptive strategy for d = 2). Repeat the above problem with d = 2; use as few tests as you
can. You don’t need to prove the lower bound.

Example 1.3 (Non-adaptive CGT and traitor tracing). In many applications such as Pay-TV, satellite radio,
and the distribution of copyright-protected materials, a content provider needs to broadcast digital infor-
mation to a specic set of users (e.g., subscribers) who were given key(s) for decrypting the content. One
natural requirement for such broadcast system is the ability to trace traitors, in the following sense. Some
users might collude, build a pirate decoder, and distribute it widely (for a fee or not). Or, a pirate might
achieve similar effects via hacking accounts of legitimate users. Either way, such users are called traitors. It
is desirable for the system to be able to identify at least one traitor by examining the pirate decoder. This is
the traitor tracing problem [6].

A simple type of key distribution scheme can be abstracted as follows. Let N be the number of users
in the system. Let T be a set of cryptographic keys to be distributed to the users. User j receives a key set
Fj ⊆ T . User j is able to decrypt the content if the content was encrypted using one of the keys in Fj . At
one extreme, we can set |T | = 1 and all users get the same key. In this case, the system uses little resources
but it cannot trace a single traitor. At another extreme, we can set |T | = N and assign each user a separate
key. This is rather inefficient because we will have to encrypt the same content N times for broadcasting.
(Technically, we say that the “ciphertext” size is O(N).) However, this scheme can trace any number of
traitors.

When examining the decoder, we can try each key in T one by one. Suppose the decoder decodes iff it
possesses the key, then each decoder test can be viewed as a group test, where the test turns positive iff one
of the traitors possesses the testing key. (In practice, pirate decoders are smarter, but for our purposes we
assume a simple decoder.) Traitor tracing is thus a non-adaptive group testing problem. One objective is to
minimize the total number of keys |T | needed.

For simplicity lets assume that there is at most d = 1 traitor. In this case, it is not hard to see that as
long as all the Fj are non-empty and distinct, then we can uniquely identify the traitor by pin-pointing the
subset of keys the decoder possesses. Thus |T | = dlog2(N + 1)e is sufficient. It is not hard to show that
this number of tests is also necessary.

2 Non-adaptive combinatorial group testing and the matrix representation

Consider a non-adaptive group testing strategy with t tests on a population of N items. The strategy can be
represented by a t ×N binary matrix M = (mij), where mij = 1 iff item j belongs to test i. Let Mi and
Mj denote row i and column j of M, respectively. Abusing notation, we will also use Mi (respectively,
Mj) to denote the set of columns (respectively, rows) corresponding to the 1-entries of row i (respectively,
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column j). More precisely,

Mi = {j |mij = 1}
Mj = {i |mij = 1}

In other words, Mi is the ith pool, and Mj is the set of pools that item j belongs to. Henceforth, we
will also often view a t-dimensional binary vector as a subset of [t] (which is the set of the positions of the
1-entries). Thus, set operations such as unions and intersections are applied to binary vectors in the natural
way.

A key question is: “what properties must the matrix M satisfy in order for the corresponding non-
adaptive group testing strategy to be able to uniquely identify the arbitrary set of at most d positives?”

To answer this question, consider an arbitrary subset D ⊆ [N ] of positive items, where |D| ≤ d. Let
y = (yi)t

i=1 ∈ {0, 1}t denote the test outcome vector, i.e. yi = 1 iff the ith test is positive. Then, it is not
hard to see that the test outcome vector is precisely the (boolean) union of the positive columns:

y =
⋃
j∈D

Mj .

Consequently, to be able to uniquely identify an arbitrary subset D of at most d positives, the test outcome
vectors y have to be distinct. Conversely, if the test outcome vectors are distinct then we can pre-compute
a “lookup table” which associates each test outcome vector with its (positive) item set. This observation
motivates the following definition.

Definition 2.1 (Separable matrix). A t×N binary matrix M is d-separable if the unions of up to d columns
of M are all distinct.

Note that in the above definition we also need to take into account the union of no column of M. This
“union” is empty, and thus no column of M can be all-zero. This requirement makes sense because if there
was no positive item, the test outcome is the all-zero vector. If there was an item j0 which belongs to no
test, then we cannot distinguish between the case when there is no positive and the case when the item j0 is
positive. The following proposition is straightforward from the denition above.

Proposition 2.2. A non-adaptive combinatorial group testing strategy works for up to d positives iff the
matrix M representing the strategy is d-separable.

Exercise 3. Let M be a d-separable matrix with t rows and N columns. Prove that

d∑
k=0

(
N

k

)
≤ 2t.

Then, infer that t = Ω(d log(N/d)).

Identifying the positives given the test outcome vector is also called decoding. If we use a separable
matrix in a brute-force manner, then either the decoding time is Ω(Nd) or the space complexity is Ω(Nd)
(with a pre-built lookup table). Is there any way to improve either or both of the decoding time and space
complexity?

A very natural decoding algorithm is Algorithm 1, which we will refer to as the naive decoding algo-
rithm. Does naive decoding always work for an arbitrary separable matrix? Unfortunately, the answer is
no.
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Algorithm 1 Naive decoding
1: for j = 1 to N do
2: if item j belongs to at least one negative test then
3: mark j as a negative item
4: end if
5: end for
6: return R, the set of remaining items

Exercise 4. Find a d-separable matrix M such that there is some set S of at most d positives for which the
naive decoding algorithm fails to return S.

Exercise 5. Show that if there can be up to d = N negative items, then we must need at least t ≥ N tests.
Hence, when d = N we can do no better than the “test one item at a time” strategy.

Definition 2.3 (Disjunct matrix). A matrix M is called d-disjunct if it represents a NAGT strategy for which
the naive decoding algorithm always returns the correct answer as long as there ≤ d positives.

The following equivalent characterization of disjunct matrices is easier technically to understand and
handle. The proof is easy and thus omitted.

Proposition 2.4 (Another characterization of disjunct matrices). Let d ∈ [N ] be integers. A t × N binary
matrix M is said to be d-disjunct if the union of arbitrary ≤ d columns does not contain another column.

So disjunct matrices allow for linear time decoding (in the size of the matrix, O(tN)), which is defi-
nitely a vast improvement over the brute-force algorithm for separable matrices. What did we sacrifice for
this speedup? Exercise 4 has shown that a d-separable matrix is not necessarily a d-disjunct matrix. The
following exercises complete the picture.

Exercise 6. Show that any d-disjunct matrix is d-separable, and any d-separable matrix is (d− 1)-disjunct.

d-separable 6=⇒ d-disjunct

⇓ ⇓
(d− 1)-disjunct d-separable

Exercise 7. Let M be a d-separable matrix. Let M be the complement of M, where each entry is turned
from 0 to 1 and vice versa. Show that the stacking of M and M is d-disjunct. In particular, the optimal
number of rows of a d-disjunct matrix is at most twice the optimal number of rows of a d-separable matrix.

Open Problem 2.5. Is there a generic way to “turn” a d-separable matrix into a d-disjunct matrix where the
number of tests blowup is less than 2?

3 The heavy hitter problem and four main requirements

There are many recent applications of non-adaptive combinatorial group testing, ranging from drug and
DNA library screening [18,19,22,30], multiple access control protocols [3,29], live baiting of DoS attackers
[20], data forensics [15], data streams [10], codeword testing [24], pattern matching [7], among others. See
also the standard monograph on group testing for more details on some of these applications [13]. In
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this section, we discuss one application which motivates the studies of efficiently decodable group testing
procedures.

Modern Internet core routers have very high capacities, in the order of terabits per second or more [28].
There are literally hundreds of thousands of packets passing through such a router each second. Internet
service providers (ISPs) often need to collect various types of statistics about traffic passing through such
routers. For example, they want to estimate the number of distinct source IPs [2], the top-k frequent sources
[8], or some notion of flow entropies [4]. Because there is a huge amount of data passing through at an
extremely high speed, these statistics collecting algorithms are often required to run in sub-linear time
(preferably polylog time) using sub-linear space (again, preferably poly-log space). This type of problems
belong to the broad umbrella of data streaming [21].

Heavy hitter is one of the most fundamental problems in data streaming. We will not define the problem
rigorously as there are several variations with subtle differences. The reader is referred to [5,8,9,11] for the
descriptions and different formulations of the problem. We will, however, describe informally an approach
for solving the (informal version of the) heavy hitter problem using combinatorial group testing.

For concreteness, let us restrict our attention to the networking application, where a router needs to keep
track of top d frequent source IPs using low space and time complexity. Think of d as much smaller than
N . There are roughly N = 232 potential source IP addresses. Hence, keeping a counter for each source is
infeasible. Let M be a d-disjunct matrix with t rows and N columns. It is known, as we shall see later, that
t = O(d2 log N) is sufficient for such a matrix to exist. For small values of d, we have t� N . The idea (first
proposed in [10]) is to use only t + 1 counters. One counter c counts the total number of packets seen so far.
Then there is a counter ci for each row i of the matrix M. This counter keeps track of all the source IP j for
which mij = 1. Now, suppose we define a “heavy hitter” as a source IP which occurs > 1/(d + 1) fraction
of time. Then, we call a “test” i positive if the counter ci has value more than c/(d + 1). If ci keeps track
of a heavy hitter, then certainly the ith “test” is positive. Conversely, if the ith test is positive then it is not
necessarily true that ci keeps track of any heavy hitter, because the non-heavy-hitters might “contaminate”
the counter enough to make its value larger than c/(d + 1). Thus, if we know that the total frequency of all
the nonheavy-hitters is at most c/(d + 1) then our group testing scheme works. This assumption is called
the “small tail” assumption. For d � N , t = O(d2 log N) � N which means the total space required is a
lot less than the naive one-counter-per-IP scheme.

There are several requirements for group testing algorithms motivated by this data streaming application:

• Small number of tests. The number of tests t is proportional to the memory space needed by the
streaming algorithm. Minimizing the number of tests is thus an important objective, which was also a
main objective in all of the group testing applications discussed above.

• Strongly explicit construction. We do not want to store the entire matrix M because its size is too
large. We want a strongly explicit construction of M, which means a column of M can be computed
on the fly quickly. Concretely, M is explicitly constructed if, given two indices (i, j) ∈ [t]× [N ], we
can compute mij in time poly(t, logN).

• Sub-linear decoding time. When the matrix M is d-disjunct, the naive decoder runs in time O(tN)
which is way too high. It is thus desirable to have a disjunct or separable matrix which can be decoded
in time sublinear in N , preferably poly-log in N .

• Error-tolerance. Another requirement comes from the small tail assumption, which certainly does not
always hold. Every time a counter ci is “contaminated” by non-heavy-hitters, the test outcome is a
false positive. We want group testing strategies which can tolerate errors.
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These four requirements shall be our guiding force for most of this course.
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