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Strongly explicit constructions of list-disjunct matrices from randomness
extractors and expanders

We have seen two methods of constructing efficiently decodable list-disjunct matrices from (not nec-
essarily efficiently decodable) list-disjunct matrices. The first method is a recursive method. The sec-
ond method is based on list-recoverable codes. The idea of constructing list-disjunct matrices from list-
recoverable codes were conceived in [3] and [1] independently, though through slightly different routes.
Both of these methods assume the existence of a family of list-disjunct matrices of “few” rows. If this fam-
ily is (strongly) explicit, then the final efficiently decodable list-disjunct matrices is (strongly) explicit. In
this lecture, we describe two methods of constructing list-disjunct matrices in a strongly explicit way. The
first method is based on randomness extractors, first proposed in Cheraghchi [1]. The second method is
based on expanders, first proposed in Indyk-Ngo-Rudra [3]. The second method is slightly worse in terms
of the number of tests; however, it allows for a more precise control of the list size which is important in
some applications.

1 List-disjunct matrices from extractors

This construction is from [1]. Randomness extractors are functions which “convert” biased and correlated
random bits into almost uniform random bits. Extractors have numerous applications in (theoretical) Com-
puter Science1. In this section, we use extractors to explicitly construct good list-disjunct matrices.

1.1 Min entropy and variational distance

Let D be a distribution on a finite sample space Ω. The min entropy of D is defined to be

H∞(D) := min
ω∈Ω

min
{

log2

1
ProbD

[ω]
}
.

Here ProbD[ω] is the probability mass which the distribution D assigns to ω. From the definition, if
H∞(D) ≥ k then ProbD[ω] ≤ 1/2k for every ω ∈ Ω.

The total variational distance between two distributions P and Q on Ω is defined to be

‖P −Q‖TV = max
A⊆Ω
|P(A)−Q(A)| = 1

2

∑
ω∈Ω

|P(ω)−Q(ω)|.

The first equality is the definition of total variational distance. The second equality can be derived from the
definition. Two distributions are said to be ε-close if their variational distance is at most ε.

1http://people.seas.harvard.edu/˜salil/pseudorandomness/extractors.pdf
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1.2 Condensers and extractors

For any positive integer n, let Un denote the uniform distribution on Fn2 .
Let a, b,m be positive integers. A function C : Fa2 × Fb2 → Fm2 is called a strong k →ε k

′ condenser if
it satisfies the following:

• for every distribution A on Fa2 with min entropy H∞(A) ≥ k

• for any random variable A ∼ A

• any “seed” variable B ∼ Ub

• the distribution of (B,C(A,B)) is ε-close to some distribution (Ub,Z) on Fb+m2 with min entropy at
least b+ k′.

Here, the quantity ε is called the error, the quantity k − k′ is called the entropy loss, and m − k′ is called
the overhead of the condenser. A lossless condenser is a condenser with no entropy loss. A strong (k, ε)-
extractor is a condenser with no overhead.

The intuition behind the above definitions are as follows. Suppose we have a “weak” random source
which gives a random variable A on Fa2 (i.e. a random bits). The random bits from A are not necessarily
uniform, but the total entropy is at least k. We have access to a small number b of truly uniform random bits
represented by B. From A and B, we would like to “extract” as many uniform random bits as possible. In
the ideal case, we want to extract b+ k uniform random bits, because there is certainly enough entropy (i.e.
randomness) to do so. However, the task is not easy and we have to settle for b + k′ uniform random bits
with k′ ≤ k. Thus, k − k′ is called the entropy loss. Before extracting the uniform random bits, we may
want to “condense” the randomness down to m ≥ k′ bits, which hopefully will make uniform bit extraction
easier. The condensation is done via the function C, and thus m− k′ is called the overhead.

1.3 Codes from condensers/extractors

From a function C : Fa2 × Fb2 → Fm2 we can define the corresponding induced code I(C) as follows. This
code has alphabet Σ = Fm2 , length n = 2b, and size (i.e., number of codewords) N = 2a. For any A ∈ Fa2,
the Ath codeword of the code is defined to be the vector whose Bth component is C(A,B), where the
components of the codewords are indexed by B ∈ Fb2.

For any finite alphabet Σ and a positive integer n, a sequence S = (S1, · · · , Sn) where ∅ 6= Si ⊆ Σ is
called a mixture on Σn. For any word w = (w1, . . . , wn) ∈ Σn, the agreement of w with S is defined to be

Agr(w, S) :=
|{i ∈ [n] | wi ∈ Si}|

n
.

Define ρ(S) to be the expected agreement of a randomly chosen word in Σn with S, namely

ρ(S) :=
|S1|+ · · ·+ |Sn|

n|Σ|
.

Consider any code C ⊆ Σn and α ∈ [0, 1]. The list of codewords whose agreement with S is more than
α is denoted by LISTC(S, α). When α = 1, the list consists of codewords with 100% agreements. More
precisely,

LISTC(S, α) :=

{
{w ∈ Σn | Agr(w, S) > α} α < 1
{w ∈ Σn | Agr(w, S) = 1} α = 1.

The following important theorem was first observed in [5] (see also [2]).
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Theorem 1.1. LetC : Fa2×Fb2 → Fm2 be a k →ε k
′ condenser. For any mixture S of (Fm2 )2b

, if ρ(S)2m−k
′
+

ε < 1 then
LISTI(C)(S, ρ(S)2m−k

′
+ ε) < 2k.

Proof. Assume to the contrary that LISTI(C)(S, ρ(S)2m−k
′

+ ε) ≥ 2k. Let A = (A1, · · · , A2b) be a
random codeword uniformly chosen from LISTI(C)(S, ρ(S)2m−k

′
+ ε). Then, as a distribution on Fa2 the

distribution of the random variable A has min-entropy at least k. Let B ∼ Ub be a uniformly distributed
random variable chosen from Fb2. (Think of B as a random position of a codeword.) Then, from the fact that
C is a strong k →ε k

′ condenser, the distribution of (B,C(A,B)) = (B,AB) is supposed to be ε-close to
some distribution on Fb+m2 with min entropy at least b+ k′. We will show that such is not the case, reaching
a contradiction.

Let D be an arbitrary distribution on Fb+m2 with min-entropy at least b + k′. We shall show that D and
the distribution of (B,AB) are not ε-close by specifying an event on Fb+m2 for which the two distributions
differ by more than ε.

The event we want is defined by a function f : Fb+m2 → {0, 1}, where for i ∈ Fb2 and X ∈ Fm2 , we
define f(i,X) = 1 iffX ∈ Si. We next estimate the probabilities that the distributionD and the distribution
of (B,AB) assign to the event f .

First, consider a random point (B,AB). (Intuitively, we picked a uniformly random coordinate B of a
random codeword A chosen as above.)

Prob
A,B

[f(B,AB) = 1] = Prob
A,B

[AB ∈ SB] = AgrA,S > ρ(S)2m−k
′
+ ε.

Second, consider the distribution D which has min-entropy at least b+ k′.

Prob
D

[f(i,X) = 1] =
∑

(i,X)∈Fb
2×Fm

2
X∈Si

Prob
D

[(i,X)]

≤ 1
2b+k′

∑
i∈Fb

2

|Si|

= ρ(S)2m−k
′
.

From the above theorem, Cheraghchi [1] observed the following, which was the main result in that
paper. The language that Cheraghchi used was not code concatenation and he did not use the term list-
separable/disjunct, but we can easily see the analogy. It is also not hard to see that the basic idea is viewing
the induced code of a condenser as as list-recoverable code with list size 2k.

Corollary 1.2. Let C : Fa2 × Fb2 → Fm2 be a strong k →ε k
′ condenser. Then, the concatenation of

I(C) ◦ ID2m is a (d, 2k − d)-list-separable matrix for any d satisfying the following constraints: d ≤ 2m,
d ≤ (1− ε)2k′

. The matrix has t = 2b+m rows and N = 2a columns. Furthermore, the total decoding time
is O(2a+b+m).

3



Proof. We simply specify a decoding algorithm. We decode a set Si for each position i ∈ Fb2. Note that
|Si| ≤ d for each i because there are at most d positives. Thus, ρ(S) =

∑
i∈Fb

2
|Si|/2b+m ≤ d/2m . From

Theorem 1.1 we know

LISTC(S, (d/2m)2m−k
′
+ ε) = LISTC(S, d/2k

′
+ ε) < 2k.

Furthermore, all positive items correspond to codewords with 100% agreement with S. Because 1 ≥ d/2k′
+

ε, the codewords corresponding to positive items all belong to LISTC(S, d/2k
′
+ ε) which means we output

less than 2k codewords (including the false positives). The algorithm is simply to output all such codewords.
The running time is O(2a+b+m), and the number of codewords outputted is less than 2k.

Now that we know of a way to convert a condenser into a list-disjunct matrix, we look for known explicit
constructions of condensers with favorable parameters. One such construction was given in [2].

Theorem 1.3 (Explicit extractor from [2]). For integers a ≥ k, ε > 0, there exists an explicit strong (k, ε)-
extractor Ext : Fa2 × Fb2 → Fm2 with m = k − 2 log(1/ε) − O(1) and b = log a + O(log k · log(k/ε)).

Recall that a strong (k, ε)-extractor is a strong k →ε k
′ condenser withm = k′. From the above theorem

and Corollary 1.2, we obtain the following construction.

Theorem 1.4. Let 1 ≤ d ≤ N be integers. Then, there exists a strongly-explicit t × N matrix M that is
(d,O(d))-list-disjunct with t = O(d1+o(1) logN) rows.

Proof. Fix small ε > 0. Let k′ = m be the least positive integer suchthat d ≤ (1 − ε)2m. Let C be the
(k, ε)-extractor from Theorem 1.3, where we choose a ≈ logN and k = log d+ 2 log(1/ε) +O(1) (so that
d ≤ 2m). Then, the concatenated code I(C) ◦ ID2m is certainly strongly explicit. And, the corresponding
matrix by Corollary 1.2 is (d,O(d))-list-separable with N columns and t = 2b+m rows. Note that

t = 2b+m

= 2log a+O(log k·log(k/ε))+k−2 log(1/ε)−O(1)

= O(ε2) · (d logN) · kO(log(k/ε))

= (d logN) · (log d)O(log log d))

= O(d1+o(1) logN).

Finally, combining the above theorem with the two construction methods we have discussed, we obtain
the following results. (Note to students: whoever present the following corollaries should work out the
details. They are all mechanical, but instructive! This forces you to read and understand previous lectures.)

Corollary 1.5 (Combination with PVs-based method, Section 3 of Lecture 10). Let ε > 0 be a real number
and let 1 ≤ d ≤ N be integers. Then there exists a strongly-explicit t × N matrix that is (d, (1/ε)O(1/ε) ·
d1+ε)-list-disjunct with t = (1/ε)O(1/ε) · d1+ε · logN rows that can be decoded in time tO(1/ε).

Corollary 1.6 (Combination with recursive construction method, Section 2 of Lecture 9). Let 1 ≤ d ≤ N
be integers. For any constant α ∈ (0, 1) there exists a strongly-explicit t × N matrix that is (d,O(d))-list
disjunct with t = O(d1+o(1) logN log logN) rows and can be decoded in poly(t) time.
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2 List-disjunct matrices from expanders

A W -left regular bipartite graph [N ] × [W ] → [T ] is called an (N,W, T,D, α)-expander if every subset
S ⊂ [N ] of size at mostD has a neighborhood, denoted by ΓG(S), of size at least α · |S|. The neighborhood
of S is the set of all vertices which are adjacent to at least one vertex in S. The quantity α is called the
expansion rate of this expander. Given such a bipartite expander G, consider the T × N incidence matrix
MG of G, which is the binary matrix whose rows are indexed by [T ] and whose columns are indexed by
[N ], and there is a 1 in the (i, j) entry of the matrix if and only if (i, j) is an edge of G.

Proposition 2.1. Let G be an (N,w, t, d + `, α)-expander. If α > wd
d+` then MG is a (d, `)-list disjunct

matrix with t rows and N columns.

Proof. Recall that by definition a matrix M is (d, `)-list disjunct if the following is true: for any two disjoint
subsets S1 and S2 of columns of size d and ` respectively, there must be a row in M in which S2 has a 1 but
S1 has all 0s.

When M = MG, this property is equivalent to the following property on G. For every two subsets S1

and S2 of vertices in [N ] of size d and ` respectively, there is some vertex in [T ] which is adjacent to S2 but
not to S1. In other words, ΓG(S2) \ ΓG(S1) 6= ∅.

We now argue that the property holds if G has an expansion rate of (wd + 1)/(d + `). Because each
vertex of G on the left has degree at most w, ΓG(S1) ≤ w|S1| = wd. On the other hand, because G is an
(N,w, t, d+ `, (wd+ 1)/(d+ `))-expander, and because |S1 ∪ S2| = d+ `, we know

|Γ(S1 ∪ S2)| ≥ α(d+ `) >
(
wd

d+ `

)
· (d+ `) = wd ≥ |ΓG(S1)|.

Hence, there must be at least one neighbor in Γ(S2) which does not belong to Γ(S1).

Thus, from suitable expanders we can construct list-disjunct matrices. However known (explicit) con-
structions of expanders in the literature do not have the parameter range we prefer. This is mainly due to the
fact that we prefer to minimize the number of rows T of the constructed matrix, while existing expanders
were designed with different objectives (e.g., minimizing bothW and T ). For example, the following results
are known.

Theorem 2.2 ( [2]). Let ε > 0. There exists an explicit (N1,W1, T1, D1,W1(1 − ε)) expander with T1 ≤
(4D1)logW1 and W1 ≤ 2(logN1) · (logD1)/ε.

Theorem 2.3 ( [4]). Let ε > 0 be a constant. Then there exists an explicit (N2,W2, T2, D2,W2(1 − ε))-
expander with T2 = O(D2W2) and W2 = 2O(log logN2+(log logD2)3).

Fortunately, we can combine them to form families of expanders which have our range of parameters.
The above two expanders can be combined using the following well known technique.

Proposition 2.4. LetG1 be an (N,W1, T1, D,W1(1−ε))-expander andG2 be a (T1,W2, T2, DW1,W2(1−
ε))-expander. Then from G1 and G2 we can construct an (N,W1W2, T2, D,W1W2(1 − 2ε))-expander G.
Furthermore, if G1 and G2 are both explicit then so is G.

Proof. The graph G is constructed by “concatenating” G1 and G2. In particular, construct the following
intermediate tripartite graph G′ (on the vertex sets [N ], [T1] and [T2] respectively), where one identifies [T1]
once as the right vertex set for G1 and once as the left vertex set of G2. The final graph G is a bipartite
graph on the “left vertices” [N ] and “right vertices [T2]) where there is an edge from i ∈ [N ] to j ∈ [T2] if
and only if there is a corresponding path of length 2 in the tripartite graph G′.

We verity that G is indeed an (N,W1W2, T2, D,W1W2(1− 2ε))-expander:
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• Consider a vertex i ∈ [N ]: i can reach W1 vertices in [T1], from each of them we can reach W2

vertices in [T2]. Hence, overall from i there are W1W2 paths of length 2 to [T2]. Each of these paths
correspond to an edge from i in the G. Hence, the left-degree of G is W1W2. (Note that there can be
multi-edges in the sense that there might be more than one path in G′ of length 2 from i to the same
vertex j in [T2]. But that’s ok.)

• Now, consider a subset S ⊆ [N ] where |S| ≤ D. Then, |ΓG1(S)| ≥ W1(1 − ε)|S|. Note that
ΓG1(S) ⊆ [T1] and |ΓG1(S)| ≤W1D. Hence, ΓG1(S) will “expand” at most by a factor ofW2(1−ε)
in G2. Overall, the number of vertices in [T2] which S can reach is at least

W2(1− ε)|ΓG1(S)| ≥W2(1− ε)W1(1− ε)|S| ≥W1W2(1− 2ε)|S|.

Thus, the expansion rate of G is at least W1W2(1− 2ε) as desired.

Next, we prove the following result by combining all the ingredients above. We genearlly want to
construct (d, δd)-list-disjunct matrices for some fixed constant 1 ≥ δ > 0. From Proposition 2.1, to do so
we will need an expander where each subset of (1 + δ)d vertices on the left expands by at least a factor of
α > wd

d(1+δ) = w
1+δ . Setting α = (1− δ/3)w is sufficient because

(1− δ/3)(1 + δ) = 1 + 2δ/3− δ2/3 = 1 + δ(2/3− δ/3) ≥ 1 + δ/3 > 1.

So, if from what we know above we can construct explicitly an expander where each subset of at most
(1+δ)d vertices on the left expands by a factor of at least (1−δ/3)w then we would get a (d, δd)-list-disjunct
matrix explicitly.

Theorem 2.5. For every 1 ≤ d ≤ N and 0 < δ ≤ 1, there exists an explicit (N,W, T,D = (1 + δ)d, (1−
δ/3)W )-expander with T = O(D logN · f(D,N)), where

f(D,N) =
12
δ

logD · 2O((log logD+log log(12/δ)+log log logN)3).

Note that f(D,N) = (D logN)o(1) for a fixed δ.

We will set D = (1 + δ)d. By Theorem 2.2, there exists an explicit (N,W1, T1, D, (1 − δ/6)W1)-
expander, where

W1 ≤ 12
δ

logN logD,

T1 ≤ (4D)logW1 .

By Theorem 2.3, there exists an explicit (T1,W2, T2, D2, (1− δ/6)W2)-expander, where

D2 = DW1

W2 = 2O(log log T1+(log logD2)3)

T2 = O(D2W2).
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We bound W2 first:

W2 = 2O(log log T1+(log logD2)3)

= 2O(log logD+log logW1+(log logD+log logW1)3)

= 2O((log logD+log log(12/δ)+log log logN)3).

From that we can bound T2, which is big-O of

W2D2 ≤ 12D
δ

logN logD · 2O((log logD+log log(12/δ)+log log logN)3)

≤ D logN · f(D,N),

as desired.

Corollary 2.6. Let 1 ≤ d ≤ N be integers and δ > 0 be any given constant. Then, there is an explicit t×N
matrix that is (d, δd)-list disjunct with t = (d logN)1+o(1) rows.
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