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Error-correcting group testing matrices

1 Error-correcting separable and disjunct matrices

In many practical applications such as drug and DNA library screening [10–12, 15], the group tests are not
perfect. Positive outomes may not turn out positive and vice versa. To model the situation, we introduce
two new parameters: e0 is the maximum number of 0-to-1 errors (false positives) in test outcomes, and e1

is the maximum number of 1-to-0 errors (false negatives).

1.1 Error-correcting separable matrices

A binary matrix M is said to be (d, e0, e1)-separable iff from the test outcome vector y which can contain
up to e0 false positives and e1 false negatives we are still able to unambiguously identify the (true) positive
items. Note that we always assume there are at most d unknown positive items/columns. Since such matrices
can correct errors we also call them error-correcting separable matrices.

The above definition is not very useful because it does not give us an obvious way to characterize an
error-correcting separable matrix. When there was no error, the definition was: the unions of ≤ d columns
are all distinct. What is the analog in this case? For any set S ⊂ [N ] of at most d columns, let M[S] denote
the error-free outcome vector if the positives were S, i.e. M[S] =

⋃
j∈S M

j . Recall that Mj denotes the jth
column of the matrix M. When S is the set of positives, the outcome vector y might be different from M[S].
However if there were at most e0 false positives and e1 false negatives then y can only be (e0, e1)-close to
M[S] which means we should be able to obtain y from M[S] by flipping at most e0 bits of M[S] from 0 to
1 and at most e1 bits from 1 to 0. In an error-correcting separable matrix, we want to be able to recover S
from y no matter how such errors appeared. This observation leads to the following “official” definintion of
error-correcting separable matrices.

Definition 1.1 (Error-correcting separable matrix). A binary t×N matrix M is (d, e0, e1)-separable if for
every vector y ∈ {0, 1}t there corresponds a subset Ry ⊆ [N ] satisfying the following property. Let S be
any subset of at most d columns. If y is (e0, e1)-close to M[S] then Ry = S.

Three remarks are in order. First, if y is not (e0, e1)-close to any M[S] then Ry can be arbitrary. In
that case we can simply set Ry = ∅. If y is indeed (e0, e1)-close to any M[S] then Ry is unique because
Ry = S. Second, the definition does not tell us how to obtain Ry from y, as long as the Ry exist we have
an error-correcting separable matrix. Third, the definition also does not give us a method for verifying if a
given matrix is error-correcting separable. It is possible to give another equivalent definition, summarized
in the following proposition.

Proposition 1.2. For any vector z ∈ {0, 1}t, let B(z, e0, e1) denote the set of all vectors y ∈ {0, 1}t
such that y is (e0, e1)-close to z. A binary t × N matrix M is (d, e0, e1)-separable if and only if the sets
B(M[S], e0, e1) are disjoint for all sets S ⊂ [N ] with |S| ≤ d.
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Proof. Suppose B(M[S1], e0, e1) ∩B(M[S2], e0, e1) 6= ∅ for some S1 6= S2. Consider any vector y in the
intersection. If M was (d, e0, e1)-separable, then Ry = S1 and Ry = S2, a contradiction.

The above proposition does give us a method for verifying if a given matrix is error-correcting separable.
However, the straightforward way of verification will take time O

((
N
d

)2( t
e0+e1

))
.

Open Problem 1.3. We should be able to prove that verifying if a matrix is ECLS is co-NP hard.

1.2 Error-correcting disjunct matrices

Next, we want to formalize the idea of a naive-decoding algorithm, from which we can define error-tolerant
disjunct matrices. When there is no error, we eliminate any column (i.e. item) contained in a negative test
and return the remaining columns. When there is one false negative, the fact that a column belongs to one
negative test does not guarantee that it is a negative column because the test might have been in error. But,
if there was only at most one false negative and a column belongs to at least two negative tests, then we
can be sure that the column is indeed a negative. Generalizing the above idea, we define the naive decoding
algorithm to be the algorithm which eliminates all columns which participated in at least e1 + 1 negative
tests.

Definition 1.4 (Error-correcting disjunct matrix). A binary t × N matrix M is (d, e0, e1)-disjunct if the
naive decoding algorithm always returns correctly the positives, as long as there are at most d positives, at
most e0 false positive tests, and at most e1 false negative tests.

Just like in the error-free case, the definition does not give us any hint as to how to tell if a matrix is
error-correcting disjunct. Is there a better characterization? We have to look a little closer at the algorithm.
First, the algorithm certainly never eliminates a positive column. It was designed that way. But, a negative
column Mj might still remain uneliminated. This happens if Mj does not participate in enough negative
tests. What makes things worse is when Mj participated in enough negative tests but the e0-errors turned
some of the negative tests Mj participated into positives and in the end Mj does not have enough negative
“certificates.” Thus, if S was the set of positives, it must be the case that |Mj \M[S]| ≥ e0 + e1 + 1 for Mj

to be surely eliminated by the naive decoding algortihm. The analysis leads to the following proposition.

Proposition 1.5. A binary t×N matrix M is (d, e0, e1)-disjunct if and only if for any column Mj and any
subset S ⊂ [N ] for size |S| ≤ d, j /∈ S, we have

|Mj \M[S]| ≥ e0 + e1 + 1.

Proof. The above analysis shows that if M satisfies the stated property then M is (d, e0, e1)-disjunct. Con-
versely, suppose M is (d, e0, e1)-disjunct but M does not satisfy the stated property. Let j and S be such
that j /∈ S, |S| ≤ d, and

|Mj \M[S]| ≤ e0 + e1.

Then, we claim that the naive decoding algorithm does not always return S when S is the set of positives.
Suppose the tests come out positives whenever a member of S belongs to the tests. Also, e0 of the tests that
j belongs but S do not belong were false positives. Then, item j only belongs to at most e1 negative tests
and thus j is not eliminated.
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What is really nice about the above proposition is the following observation. Suppose M is (d, e0, e1)-
disjunct. Let e = e0 + e1. Then, for any e′0, e

′
1 such that e′0 + e′1 = e we know that M is also (d, e′0, e

′
1)-

disjunct because we can check

|Mj \M[S]| ≥ e0 + e1 + 1 = e′0 + e′1 + 1.

Thus, the matrix can correct up to e errors overall, whether or not the errors were false positives or false
negatives.

But then what is the naive decoding algorithm if the e1 is shifting between 0 and e? Well, we need to
know the specific value of e1 to be able to run the naive decoding algorithm (which has e1 as a parameter).
But, it is still true that a (d, e0, e1)-disjunct matrix is (d, e′0, e

′
1)-disjunct. Their naive decoding algorithms

are different though.

Open Problem 1.6. We should be able to prove that verifying if a matrix is ECLD is co-NP hard.

1.3 (Almost) Equivalence between error-correcting disjunct and separable matrices

A (d, e0, e1)-disjunct matrix is certainly (d, e0, e1)-separable because the naive decoding algorithm gives us
Ry for a given test outcome y.

Conversely, we will show that a (d, e0, e1)-separable matrix M is (d − 1, e0, e1)-disjunct. Assume the
contrary that M is not (d − 1, e0, e1)-disjunct. Then, there exists a column j and a set S ⊂ [N ] of size
|S| ≤ d− 1 such that

|Mj \M[S]| ≤ e0 + e1.

Let S′ = S ∪ {j}. We claim that B(M[S], e0, e1) ∩ B(M[S′], e0, e1) 6= ∅, which then by Proposition 1.2
leads to a contradiction. Consider vector z ∈M[S]. Then, M[S′] has at most e0 + e1 ones not in common
with z. Hence, if we turn e1 bits 1 of M[S′] not in common with z from 1 to 0, we obtain a vector y which
has at most e0 ones not in common with z. From z, we can turn at most e0 zeros from 0 to 1 to get to y.
Consequently, y ∈ B(M[S], e0, e1) ∩B(M[S′], e0, e1).

1.4 Lower bounds

Since (d, e0, e1)-disjunct matrices are (d, e′0, e
′
1)-disjunct matrices as long as e0 + e1 = e′0 + e′1, we define

a matrix M to be dr-disjunct if for any column j and any set S ⊂ [N ] of at most d columns we have

|Mj \M[S]| ≥ r.

Think of r = e0 + e1 + 1. Let t(d, r,N) denote the minimum number of rows of a dr-disjunct matrix with
N columns. Note that a d-disjunct matrix is exactly a d1-disjunct matrix.

1.4.1 Known bounds

Dyachkov-Rykov-Rashad [7] gave the first known results on dr-list-disjunct matrices, which were called
super-imposed distance codes in their paper. Their results are summarized below.

We first define the rate of a dr-list-disjunct matrix. Let ρ be the relative distance of the corresponding
superimposed code, namely ρ = r/t. Let N̄(d, t, r) denote the maximum number of columns of a dr-
disjunct matrix with t rows. Also, let H(ρ) denote the binary entropy function

H(ρ) := −ρ log2 ρ− (1− ρ) log2(1− ρ). (1)
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And, define

ρd :=
dd

(d+ 1)d+1
. (2)

Rd(ρ) = lim
t→∞

log2 N̄(d, t, ρt)

t
. (3)

Theorem 1.7 (Dyachkov-Rykov-Rashad, 1989). The rate of a dr-disjunct matrix is bounded by

Rd(ρ) ≤ Ud(ρ), (4)

where, Ud(ρ) = 0 for ρ ≥ ρd, and Ud(ρ) is defined recursively for 0 < ρ < ρd as follows.

(i) If d = 1, then

U1(ρ) :=

{
H
(

1
2

[
1−

√
8ρ(1− 2ρ)

])
if 0 < ρ < 1/4

0, if ρ ≥ 1/4.

(ii) If d ≥ 2, then
Ud(ρ) = min

{
1− ρ/ρd, U1(ρ)/d, Ûd(ρ)

}
where Ûd(ρ) is the unique solution to the equation

Ûd(ρ) = max
(5)

{
H
(x
d

)
− (x+ ρ)H

(
x

(x+ ρ)d

)}

0 ≤ x ≤ 1− Ûd(ρ)

Ud−1(ρ)
− ρ. (5)

Remark 1.8. The above theorem is not very useful if we need the case when d,N and r are given as
parameters to our problem. It can be used in the d = 1 case as the bound is explicit. When d ≥ 2, Dyachkov-
Rykov-Rashad derived the asymptotic behaviors of the function Ud(ρ) for fixed d in the following corollary.

Corollary 1.9. (a) For any fixed d ≥ 1, if ρ→ ρd − 0, then

Rd(ρ) ≤ U1(ρ) = 1− ρ/ρd,

(b) If d→∞ and ρd→ 0, then

Rd(ρ) ≤ Ud(ρ) = Ûd(ρ) =
(2− ρd) log2 d

d2
(1 + o(1)).

Dyachkov-Rykov-Rashad also gave a lower bound for the rate, summarized in the following theorem.
Define the Kullback distance for any 0 < α, β < 1:

K(α, β) = α log2

(
α

β

)
+ (1− α) log2

(
1− α
1− β

)
. (6)
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Theorem 1.10 (Dyachkov-Rykov-Rashad, 1989). We have the following lower bound for Rd(ρ):

Rd(ρ) ≥ Ld(ρ) :=
max

{
Ad(ρ, x) | ρ ≤ (1− x)xd, 0 < x < 1

}
d

, (7)

where
Ad(ρ, x) := max

0<y<1

{
(1− x)K(ρ/(1− x), yd)− dK(x, y)

}
.

Note that (1 − x)xd ≤ ρd, and equality is reached when x = d
d+1 . Furthermore, at ρ = (1 − x)xd we

have Ad(ρ, x) = 0. When 0 < ρ < (1− x)xd the function Ad(ρ, x) > 0 decreases as ρ increases and

Ad(ρ, x) > K(ρ, (1− x)xd).

In particular, we have the following corollary.

Corollary 1.11. We have Ld(ρd) = 0, and Ld(ρ) > 0 for 0 < ρ < ρd. Moreover, Ld(ρ) is a decreasing
function satisfying

Ld(ρ) >
K(ρ, ρd)

d
. (8)

In the d = 1 case, a more precise bound is known.

Theorem 1.12 (Theorem 1 of Balding-Torney [1]). If M is a t×N 1r-disjunct matrix, then

N ≤ 1

Kr−1

(
t

bt/2c

)
,

where K0 = 1 (this is precisely Sperner’s lemma for maximum antichain!) and, for r even,

Kr =

r/2∑
s=0

(
bt/2c
s

)(
dt/2e
s

)
,

while for r odd,

Kr = Kr−1 +
1

T

(
bt/2c

(r + 1)/2

)(
dt/2e

(r + 1)/2

)
,

where T = b2bt/2c/(r + 1)c.

1.4.2 Our bounds

The following 1975 result was attributed to Bassalygo by Dyachkov and Rykov [6]. We proved it in one of
the earlier lectures.

Proposition 1.13 (Bassalygo – 1975). For the d-disjunct matrices, we have the following bound

t(d, 1, N) ≥ min

{(
d+ 2

2

)
, n

}
.
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We will attempt to derive an error-correcting analog of Bassalygo’s bound. It is tempting to try to show
that

t(d, r,N) ≥ min

{(
d+ r + 1

2

)
, rN

}
,

which would require the following base case

t(1, r,N) ≥ min

{(
r + 2

2

)
, rN

}
,

However, both of the above are too strong. We shall show later that t(d, r,N) = O(d2 logN + dr). For
d = 1 and r ≈

√
N , for instance, the upper bound O(

√
N) would contradict the conjectured lower bound

of Ω(N). Thus, we shall show a different analog of Bassalygo’s bound.
Let us first define some more terminologies which will be used throughout. For any t×N binary matrix

M, recall that we can think of any column Mj as the subset of rows {i | mij = 1}. A subset W ⊆ [t] is
called a private subset of column Mj if no other column of M contains W . An element i ∈ [t] is a private
element of column Mj if no other column contains i. Define the weight w(Mj) of a column Mj to be the
number of 1’s in it. Let N(w) be the number of columns with weight w. And, let wmax be the maximum
column weight.

The following bound implies Bassalygo’s.

Proposition 1.14 (Error-correction analog of Bassalygo’s bound). We have

t(d, r,N) ≥ min

{
(d+ 1)(

d

2
+ r) + r − 1, rN

}
. (9)

Proof. We first prove the base case of (9) that

t(1, r,N) ≥ min {3r, rN} (10)

Consider a 1r-disjunct matrix M with t rows and N columns. Let R be the set of ordered triples (i, j1, j2)
for which i ∈ [t], j1 6= j2 ∈ [N ], and i ∈ Mj1 \Mj2 . For a fixed pair (j1, j2), there must be at least r
different i for which (i, j1, j2) ∈ R. Hence,

|R| ≥ rN(N − 1).

For a fixed i ∈ [t], let Ni be the number of columns j for which i ∈ Mj . Then, there are precisely
Ni(N −Ni) pairs (j1, j2) for which (i, j1, j2) ∈ R. From Ni(N −Ni) ≤ bN/2cdN/2e, we conclude that

|R| ≤ tbN/2cdN/2e.

Consequently,

t ≥ rN(N − 1)

bN/2cdN/2e
. (11)

When N = 2, 3, (11) implies t ≥ rN . When N ≥ 4, we have

t ≥ 4r(N − 1)

N
≥ 3r.
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Thus, (10) follows and (9) holds for d = 1.
When d > 1, consider a dr-disjunct matrix M with t rows and N columns. If column Mj has weight

at most d+ r − 1, then it must have at least r private elements. The total number of private elements of all
columns is at most t; hence, ∑

1≤w≤d+r−1

N(w) ≤ t/r.

Consequently, if wmax ≤ d+ r − 1 then N =
∑

wN(w) ≤ t/r, or t ≥ rN . Now, suppose wmax ≥ d+ r
and consider a column Mj with weight equal to wmax. If we remove column Mj and all rows i for which
mij = 1, we are left with a (d− 1)r-disjunct matrix with t− wmax rows and N − 1 columns. Thus,

t ≥ d+ r + t(d− 1, r,N − 1).

The induction hypothesis concludes the proof.

Remark 1.15. In any inductive proof, the base case deals with the d = 1, r ≥ 1 case, for which there was a
nice known bound from [1] (Theorem 1.12 below). The question is, can we use this result to show a better
base case than that in (10)?

A 1r-disjunct matrix with N columns and rN rows is trivial to construct (by stacking up r copies of the
identity matrix of order N ). If d ≥

√
2rN then

(d+ 1)(
d

2
+ r) + r − 1 > rN

in which case t(d, r,N) = rN . Hence, we only need to consider d <
√

2rN .
In order to prepare for a more general bound, we need to slightly extend Lemma 9.1 from Erdős-Frankl-

Füredi [8].

Proposition 1.16. Let M be a t × N dr-disjunct matrix. Fix a positive integer w ≤ t. Let C denote the
set of all columns of M. Let Cw denote the set of columns Mj of M each of which has a private w-subset.
Then, for any column C ∈ C − Cw and any k ≥ 0 other columns C1, · · · , Ck ∈ C, we have∣∣∣∣∣∣C \

k⋃
j=1

Cj

∣∣∣∣∣∣ ≥ (d− k)w + r. (12)

In particular, if M has at least d+ 1 columns C1, . . . , Cd+1 none of which have any private w-subset, then∣∣∣∣∣∣
d+1⋃
j=1

Cj

∣∣∣∣∣∣ ≥ 1

2
(d+ 1)(dw + 2r). (13)

Proof. Inequality (12) is straightforward. To see (13), we apply (12) as follows.∣∣∣∣∣∣
d+1⋃
j=1

Cj

∣∣∣∣∣∣ = |C1|+ |C2 \ C1|+ · · ·+ |Cd+1 \ C1 ∪ · · · ∪ Cd|

≥ (dw + r) + ((d− 1)w + r) + · · ·+ (w + r) + r

=
1

2
(d+ 1)(dw + 2r).
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Now, let Cw be the sub-collection of columns of M each of which has a private w-subset, and C<w be
the sub-collection of columns of M each of which has weight < w. Then, it is not hard (see [9]) to show
that, for any w ≤ t/2, |Cw| + |C<w| ≤

(
t
w

)
. Now, if there were at least d + 1 columns not in Cw ∪ C<w,

then by Proposition 1.16 the union of columns not in Cw ∪ C<w is at least 1
2(d+ 1)(dw + 2r). Suppose we

choose w such that
1

2
(d+ 1)(dw + 2r) ≥ t+ 1, (14)

then we reach a contradiction and thus we can conclude that N ≤ d+
(
t
w

)
. The minimum w for which (14)

holds is w =

⌈
t+1−r(d+1)

(d+1
2 )

⌉
, which is at most t/2 when d ≥ 2. Hence, we just proved the following theorem

Theorem 1.17. For N ≥ d ≥ 2, and a positive integer r. For any dr-disjunct matrix with t rows and N
columns we have

N ≤ d+

(
t⌈

t+1−r(d+1)

(d+1
2 )

⌉)
.

From the error-tolerant version of Bassalygo’s bound, we only need to consider the case when t ≥
(d+ 1)(d/2 + r) + r =

(
d+1

2

)
+ (d+ 2)r, which means

t

t+ 1− r(d+ 1)
≤

(
d+1

2

)
+ (d+ 2)r(

d+1
2

)
+ (d+ 2)r + 1− r(d+ 1)

=

(
d+1

2

)
+ (d+ 2)r(

d+1
2

)
+ 1 + r

<

(
d+1

2

)
+ r + 1 + (d+ 1)r(
d+1

2

)
+ 1 + r

= 1 +
(d+ 1)r(

d+1
2

)
+ 1 + r

< 1 +
(d+ 1)r

r
= d+ 2.

Now, from the above theorem we get

log(N − d) ≤

⌈
t+ 1− r(d+ 1)(

d+1
2

) ⌉
log

 te⌈
t+1−r(d+1)

(d+1
2 )

⌉


≤

⌈
t+ 1− r(d+ 1)(

d+1
2

) ⌉
log

(
te
(
d+2

2

)
t+ 1− r(d+ 1)

)

≤

⌈
t+ 1− r(d+ 1)(

d+1
2

) ⌉
log
(
(d+ 2)3

)
.

Thus, for large N we get a lower bound of about

t = Ω

(
d2

log d
log(N − d) + rd

)
.
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1.5 Probabilistic upper bounds

We use the concatenation of a random outer code and the identity inner code to show the existence of
a good dr-disjunct matrix. Recall that a dr-disjunct matrix is (d, e0, e1)-disjunct for any e0, e1 such that
e0 + e1 = r − 1.

Theorem 1.18. For the dr-disjunct matrices, we have t(d, r,N) = O
(
d2 log N

d + rd
)
.

Proof. Let Cout be a code of length n over an alphabet Σ of size q constructed randomly be selecting each
codeword from Σn uniformly at random. This is equivalent to setting each position of a random codeword
to be one of q symbols from Σ. Let Cin = IDq. We will choose q > d.

Let M = Cout ◦ Cin. Fix d + 1 columns (i.e. codewords) of M: Mj0 ,Mj1 , . . . ,Mjd . For a fixed
position i ∈ [n], and a column j, let Mj [i] ∈ Σ denote the symbol in position i of the jth codeword. Then,

Prob[Mj0 [i] ∈ {Mjk [i] | k ∈ [d]}] ≤ (d/q).

Let Xi be the binary random variable indicating the event that Mj0 [i] ∈ {Mjk [i] | k ∈ [d]}. And, let
X =

∑n
i=1Xi. Then, by linearity of expectation

E[X] =

n∑
i=1

E[Xi] ≤ nd/q.

Thus, by Hoeffding’s inequality

Prob

[
|Mj0 \

d⋃
k=1

Mjk | < r

]
= Prob[X > n− r]

= Prob[X − E[X] > n− r − E[X]]

≤ Prob[X − E[X] > n(1− d/q)− r]
< e−2(n(1−d/q)−r)2/n.

By the union bound,

Prob[M is not dr-disjunct] ≤ (d+ 1)

(
N

d+ 1

)
Prob

[
|Mj0 \

d⋃
k=1

Mjk | < r

]

≤ (d+ 1)

(
Ne

d+ 1

)d+1

e−2(n(1−d/q)−r)2/n.

Thus, we need to pick parameters q and n such that the right-hand-side above is smaller than 1. To simplify
things a little, recall by (the analog of) Bassalygo’s bound that we can assume d + 1 ≤

√
rN (otherwise

t ≥ rN and the problem is trivial). Also, assume e ≤ N/(d+ 1). Thus,

(d+ 1)

(
Ne

d+ 1

)d+1

≤ r(N/(d+ 1))2d+3.

Thus, we want to set q and n such that

2(n(1− d/q)− r)2

n
≥ (2d+ 3) ln(N/(d+ 1)) + ln r.

9



Now, pick

q = 2d

n = 6(2d+ 3) ln(N/(d+ 1)) + 6r

we have

2(n(1− d/q)− r)2

n
=

[3(2d+ 3) ln(N/(d+ 1)) + 2r]2

3(2d+ 3) ln(N/(d+ 1)) + 3r

>
[3(2d+ 3) ln(N/(d+ 1)) + 3r] · [(2d+ 3) ln(N/(d+ 1)) + r]

3(2d+ 3) ln(N/(d+ 1)) + 3r

= (2d+ 3) ln(N/(d+ 1)) + r

> (2d+ 3) ln(N/(d+ 1)) + ln r.

Overall, the matrix has t = nq = 12d(2d+ 3) ln(N/(d+ 1)) + 12dr rows.

2 Error-correcting list-separable and list-disjunct matrices

We next develop the notions of error-correcting list-separable and list-disjunct matrices using the same line
of reasoning.

2.1 Error-correcting list-separable matrices

Definition 2.1 (Error-correcting list-separable matrix). A binary t×N matrix M is said to be (d, `, e0, e1)-
list-separable if for every y ∈ {0, 1}t there exists a setRy ⊆ [N ] such that the following holds. Let S ⊆ [N ]
be any subset of columns where |S| ≤ d. If y is (e0, e1)-close to M[S] then S ⊆ Ry and |Ry| < |S|+ `.

We remark that if y is not (e0, e1)-close to any M[S], then we can simply set Ry = ∅. Also, when the
matrix M is equipped with a decoding algorithm which returns Ry given y, then it is automatically error-
correcting list-separable. We next derive a combinatorial condition to verify if a matrix is error-correcting
list-separable.

Proposition 2.2. A t×N binary matrix M is (d, `, e0, e1)-list-separable if and only if, for any y ∈ {0, 1}t
the following condition holds. Define S(y, e0, e1) to be the collection of all S of size at most d such that y
can be an (erroneous) outcome vector when S is the set of positives; specifically,

S(y, e0, e1) = {S ⊆ [N ] | |S| ≤ d,y is (e0, e1)-close to M[S].}

Then, ∣∣∣∣∣∣
⋃

S∈S(y,e0,e1)

S

∣∣∣∣∣∣ < `+ min
S∈S(y,e0,e1)

|S|.

Proof. For necessity, note that S ⊆ Ry for every S ∈ S(y, e0, e1); and thus
⋃
S∈S(y,e0,e1) S ⊆ Ry. Hence,∣∣∣∣∣∣

⋃
S∈S(y,e0,e1)

S| ≤ |Ry

∣∣∣∣∣∣ < `+ min
S∈S(y,e0,e1)

|S|.

For sufficiency, we can simply set Ry =
⋃
S∈S(y,e0,e1) S.

10



2.2 Error-correcting list-disjunct matrices

The definition of error-correcting list-separable matrix does not tell us how to obtain Ry given y. We next
develop the notion of error-correcting list-disjuct matrix for which the naive decoding algorithm returns a set
Ry which contains all the positive columns plus less than ` spurious columns. Since we can not eliminate
a positive column, the only natural choice is to eliminate all columns which participated in at least e1 + 1
negative tests because those are the columns we know for sure are negative. We call this strategy the naive
decoding algorithm (Algorithm 2.2).

Algorithm 1 Naive decoding for (d, `, e0, e1)-list-disjunct matrices
Input: The test outcome vector y ∈ {0, 1}t

1: for j = 1 to N do
2: if |{i ∈ [t] | i ∈Mj , yi = 0}| ≥ e1 + 1 then // item j belongs to at least e1 + 1 negative tests
3: mark j as a negative item
4: end if
5: end for
6: return Ry, the set of unmarked items

Definition 2.3 (Error-correcting list-disjunct matrix). A matrix M is called (d, `, e0, e1)-list-disjunct if the
following property holds for all S ⊆ [N ], |S| ≤ d. Let y ∈ {0, 1}t be any vector which is (e0, e1)-close to
M[S]. The naive decoding algorithm on y returns a set Ry ⊆ [N ] such that S ⊆ Ry and |Ry| < |S|+ `. In
other words, the naive decoding algorithm always works (in the list sense), even if there are up to e0 false
positives and e1 false negatives in test outcomes.

Which properties must M satisfy so that the naive decoder returns the desired Ry? Suppose S ⊆ [N ],
|S| ≤ d, is some set of positives. Let y be a vector which is (e0, e1)-close to M[S], which means y can
potentially be the outcome vector when S is the set of positives. Let T be an arbitrary set of ` columns not in
S. We want at least one column of T to be eliminated, which means there must be at least one column j of T
which is contained in e1 + 1 negative tests even when all the e0 and e1 errors went “against” it. Specifically,
let X ⊆ M[T ] \M[S] be any set of up to e0 tests. The tests in X should contribute to certifying the
“innocence” of members of T . But, due to the false positive test errors, all of X might return positive. We
want to say that, no matter where X lies, there still exists a column in T which is contained in e1 + 1 tests
which are neither in X nor in M[S]. This intuition turns out to be necessary and sufficient.

Proposition 2.4. Given positive integers d, ` > 0 such that d + ` ≤ N ; and, given non-negative integers
e0, e1. A binary t×N matrix M is (d, `, e0, e1)-list-disjunct if and only if, for any disjoint sets S, T ⊆ [N ]
with |S| = d and |T | = ` the following holds. Let X be an arbitrary subset of M[T ] \M[S] of size at most
e0. Then, there exists a column j̄ ∈ T such that |Mj̄ \ (X ∪M[S])| ≥ e1 + 1.

Proof. The fact that the condition is sufficient follows from the analysis above. We show that it is also
necessary. Suppose for the contrary that there exists S, T,X satisfying the stated criteria but for every
j ∈ T we have |Mj \ (X ∪M[S])| ≤ e1. Then, suppose the tests in X are all false positives. Then, no
element in T will be eliminated, which means the returned set of items contains |S| + ` elements; thus, M
is not (d, `, d0, d1)-list-disjunct.

From the proposition, the following result follows straightforwardly.
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Proposition 2.5. If e0 > 0, then a (d, `, e0 − 1, e1 + 1)-list-disjunct matrix is a a (d, `, e0, e1)-list-disjunct
matrix. In particular, for every non-negative e0, e1, a (d, `, 0, e0+e1)-list-disjunct matrix is a a (d, `, e0, e1)-
list-disjunct matrix.

2.3 (Almost) Equivalence between error-correcting list-disjunct and list-separable matrices

Our development so far has been relatively natural, following the reasoning line from the none-error, none-
list classic results of group testing. We know that a matrix is d-separable if it is d-disjunct, and it is (d− 1)-
disjunct if it is d-separable. It turns out that the exact same result holds for the list- and error-case.

Proposition 2.6. A (d, `, e0, e1)-list-disjunct matrix is (d, `, e0, e1)-list-separable, and a (d, `, e0, e1)-list-
separable matrix is (d− 1, `, e0, e1)-list-disjunct.

Proof. The first statement is trivial. To show the second statement, consider a (d, `, e0, e1)-list-separable
matrix M with t rows and N columns. Suppose it is not (d − 1, `, e0, e1)-list-disjunct which means there
is a column set T of size `, a disjoint column set S of size at most d − 1, and X ⊆ M[T ] \M[S] of
size |X| ≤ e0 such that, for any j ∈ T we have |Mj \ (X ∪M[S])| ≤ e1. We will show that M is not
(d, `, e0, e1)-list-separable to reach a contradiction.

For each j ∈ T , let Sj = S ∪ {j}. Let y = M[S] ∪X . Then, y is (e0, e1)-close to M[Sj ] because we
can turn M[Sj ] into y by turning at most e1 bits in positions Mj \ (X ∪M[S]) from 1 to 0, and at most e0

bits in positions X \Mj from 0 to 1. Also, trivially y is (e0, e1)-close to M[S]. Consequently, S and the
Sj , j ∈ T , are all in S(y, e0, e1). Hence,∣∣∣∣∣∣

⋃
S′∈S(y,e0,e1)

S′

∣∣∣∣∣∣ ≥ |S|+ |T | = |S|+ ` ≥ `+ min
S′∈S(y,e0,e1)

|S′|

contradicting Proposition 2.2.

Remark 2.7. It is not hard to find an example of a matrix which is (d, `, e0, e1)-list-separable but not
(d, `, e0, e1)-list-disjunct.

2.4 Lower bounds

2.4.1 Known bounds

Cheraghchi [3] has defined a slightly more general notion of list-separable matrix, where Ry does not
necessarily have to contain the positive set. In particular, he studied the following notion. A t × N binary
matrix M is called (e0, e1, e

′
0, e
′
1)-correcting for d-sparse vectors if, for every vector y ∈ {0, 1}t, there

exists a (valid decoding) vector z ∈ {0, 1}N such that for every x ∈ {0, 1}N for which (x, z) is (e′0, e
′
1)-far

from, we have y is (e0, e1)-far from M[x]. Here, x can be understood as a subset of [N ] in the usual sense.
If we use M to do group testing, then given at most e0 false positive test outcomes and at most e1 false

negative test outcomes, we can recover an “approximation” z of the original positive set x such that we iden-
tified at most e′0 false positive items and at most e′1 false negative items. In particular, every (e0, e1, e

′
0, 0)-

correcting matrix for d-sparse vectors is (d, e′0 + 1, e0, e1)-list-separable, and vice versa.

Lemma 2.8 (Lemma 2 from [3]). For any t × N matrix M that is (e0, e1, e
′
0, e
′
1)-correcting for d-sparse

vectors,
max{e0, e1}+ 1

e′0 + e′1 + 1
≤ t

d
.

12



Lemma 2.9 (Lemma 3 from [3]). For any t × N matrix M that is (e0, e1, e
′
0, e
′
1)-correcting for d-sparse

vectors, and every ε > 0, either e1 <
(e′1+1)t
εd or e′0 ≥

(1−ε)(N−d+1)
(e′1+1)2

.

Lemma 2.10 (Lemma 4 from [3]). For any t × N matrix M that is (0, 0, e′0, e
′
1)-correcting for d-sparse

vectors,
t ≥ d log(N/d)− d− e′0 −O(e′1 log((N − d− e′0)/e′1)),

where the last term is defined to be 0 when e′1 = 0.

Since a (d, `, e0, e1)-list-disjunct matrix is a (e0, e1, `− 1, 0)-correcting matrix for d-sparse vectors, all
bounds in the above three lemmas apply to (d, `, e0, e1)-list-disjunct matrices. We summarize the known
bounds in the following corollary.

Corollary 2.11. For any t×N matrix M that is (d, `, e0, e1)-list-disjunct, all the following hold:

d(max{e0, e1}+ 1) ≤ t`, (15)

for any ε > 0, either e1 <
t

εd
or `− 1 ≥ (1− ε)(N − d+ 1), (16)

and
t > d log(N/d)− d− ` when e0 = e1 = 0. (17)

Let t(d, `, e0, e1, N) denote the minimum number of rows of a (d, `, e0, e1)-list-disjunct matrix with
N columns. Dýachkov-Rykov [5, 6], Rashad [14], and De Bonis-Ga̧sieniec-Vaccaro [4] studied upper and
lower bounds for the rates of (d, `)-list-disjunct matrices. We quote their relevant results here. The upper
bounds in [14] are (slightly) better than those in [5, 6]. Dýachkov-Rykov [5, 6] and De Bonis-Ga̧sieniec-
Vaccaro [4] proved different types of lower bounds: the former is better when certain parameters tend to
infinity, while the latter is more specific and holds for given finite parameters.

The first lower bound from Dýachkov-Rykov is a simple information theoretic bound.

Proposition 2.12 (Proposition 2 in [6]). Given positive integers N ≥ d+ `, we have

t(d, `, 0, 0, N) ≥ log

(
N

d

)
− log

(
d+ `− 1

d

)
.

Dýachkov-Rykov [5] used a recursive inequality to prove another lowerbound on t(d, `, 0, 0, N), which
can be summarized as follows. H(·) denotes the binary entropy function.

Theorem 2.13 (Corollary 1 and Theorem 4 in [6]). When N →∞ and d, ` stay constant, we have

t(d, `, 0, 0, N) ≥ max{d, F (bd/`c)} · logN(1 + o(1)),

where the sequence F (1) = 1, F (2), F (3), . . . , is defined recursively: F (x), x ≥ 2 is the unique solution
to the equation

F (x) =
1

max
{
H(v/x)− vH(1/x) | 0 < v ≤ F (x)−F (x−1)

F (x)

}
13



It is hard if not impossible to guess the asymptotic behavior of F (x) directly from its definition. Fortunately,
they can be shown to satisfy the following properties

F (x) ≥ x2

2 log[e(x+ 1)/2]
, x ≥ 2.

F (x) ≥ x2

2 log x(1 + o(1))
, x→∞.

De Bonis-Ga̧sieniec-Vaccaro [4] proved a more accessible lowerbound, though probably not as good
asymptotically as that of Dýachkov-Rykov. They also proved an upper bound via upperbounding their
(k,m,N)-selectors. The following theorem summarize their results.

Theorem 2.14 (De Bonis-Ga̧sieniec-Vaccaro [4], 2005). For any positive integersN, d, `withN > d2/(4`),
we have

t(d, `, 0, 0, N) > d log
(

N
e(d+`−1)

)
if d < 2` (18)

t(d, `, 0, 0, N) > `(bd/(2`)c2)

log
(

ed2

4`

) log
(

4(N−2(`−1)−d/2)
ed2

)
if d ≥ 2` (19)

For any positive integers N, d, ` with N ≥ d+ `, we have

t(d, `, 0, 0, N) <
(d+ `)2

`
ln

N

d+ `
+

2e(d+ `)2

`
(20)

In terms of upper bounds, Rashad [14] gave a random coding bound for t(d, `, 0, 0, N) which uses the
code (or matrix) generation method of [13]. The results are stated in the same manner as that of Theorem
1.7, which makes it difficult if not impossible to interpret the asymptotic behavior of the function. Then,
two corollaries were derived in the same sense as Corollaries 1.9 and 1.11 were derived from Theorem 1.7.
We summarize these corollaries by Rashad as follows.

Theorem 2.15 (Rashad, 1990). When ` is a constant and N, d→∞, we have

t(d, `, 0, 0, N) ≤ d2 log e

`
logN(1 + o(1)).

On the other hand, when d is a constant and N, `→∞, we have

t(d, `, 0, 0, N) ≤ ed

log e
logN(1 + o(1)) ≈ d

0.5307
logN(1 + o(1)).

2.4.2 Our bounds

We first prove a lower bound for the error free case. Our bounds are asymptotically the same as those in
Theorem 2.14, with slight better constants and a better pre-condition (Theorem 2.14 requires N > d2/(4`)
while ours does not).
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Lemma 2.16. For any positive integers N, d, ` with N ≥ d+ `− 1, we have

t(d, `, 0, 0, N) ≥ d log

(
N

d+ `− 1

)
. (21)

When d ≥ min{2`, `+ 2}, the following bound holds

t(d, `, 0, 0, N) ≥ bd/`c(d+ 2− `)
2 log (ebd/`c(d+ 2− `)/2)

log

(
N − d− 2`+ 2

`

)
(22)

Proof. Proposition 2.12 easily yields (21)

t(d, `, e0, e1, N) ≥ t(d, `, 0, 0, N)

≥ log

( (
N
d

)(
d+`−1
d

))

= log
N · · · (N − d+ 1)

(d+ `− 1) · · · `

≥ log

(
N

d+ `− 1

)d
= d log

N

d+ `− 1
.

Next, consider the case when d ≥ min{2`, `+2}. Let M be a t×N (d, `)-list-disjunct matrix. The columns
of M, again, will simultaneously be treated as a set family on [t] and as a collection of N binary vectors of
length t. Then, M as a set family satisfies the property that the union of any ` columns of M is not covered
by the union of any other d columns. In particular, let S and T be two disjoint sets of columns of M with
|S| ≤ d and |T | ≥ `, then M[T ] 6⊆M[S].

For any j ∈ [N ], a subset X ⊆ Mj is called a private subset of Mj if X is not a subset of any other
Mj′ for j′ 6= j. Fix a positive integer w ≤ t to be determined later. Partition the colummns [N ] into three
sub-sets

[N ] = C
p
≥w ∪ C

np
≥w ∪ C<w

defined as follows.

C
p
≥w :=

{
j ∈ [N ] : |Mj | ≥ w and Mj has a private w-subset

}
C

np
≥w :=

{
j ∈ [N ] : |Mj | ≥ w and Mj has no private w-subset

}
C<w :=

{
j ∈ [N ] : |Mj | < w

}
.

We make two claims regarding these subsets. (Note that t ≥ d+ 1, which is not hard to see.)

Claim 1. If w ≤ t/2 then |Cp
≥w|+

⌊
|C<w|
`

⌋
≤
(
t
w

)
.
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Claim 2. If w ≥ 2(t−bd/`c)
bd/`c(d+2−`) , then |Cnp

≥w| ≤ d+ `− 1.
Let us complete the proof of the lemma before proving the claims. Define

w =

⌈
2(t− bd/`c)
bd/`c(d+ 2− `)

⌉
w̄ =

2t

bd/`c(d+ 2− `)
.

Because d ≥ min{` + 2, 2`}, we have w < w̄ ≤ t
2 . Noting that the function (te/w)w is increasing in w

when w ∈ [0, w̄], from Claims 1 and 2 we obtain

N =
(
|Cp
≥w|+ |C<w|

)
+ |Cnp

≥w|

≤
(
`

(
|Cp
≥w|+

⌊
|C<w|
`

⌋)
+ (`− 1)

)
+ d+ `− 1

≤ `

(
t

w

)
+ d+ 2`− 2

≤ `(te/w)w + d+ 2`− 2

≤ `(te/w̄)w̄ + d+ 2`− 2.

Inequality (22) follows.
We now prove Claim 1. For each set Mj , j ∈ Cp

≥w, collect exactly one private w-subset of Mj and put
it in the collection P1; hence, |P1| = |Cp

≥w|. Let T be an arbitrary `-subset of C<w. Then, there must exist
j ∈ T such that Mj is not a subset of any set in P1 ∪

{
Mj | j ∈ C<w \ T

}
. Otherwise, because ` < d,

M[T ] will be covered by M[S] for some S ⊆ [N ] with |S| ≤ d. We refer to such j as a representative
of T . For each T , pick an arbitrary representative of T and call it the representative of T . Partition C<w
into

⌊
|C<w|
`

⌋
`-subsets plus possibly one extra sub-set whose size is less than `. Let P2 be the collection

of all Mj where j are the representatives of the first
⌊
|C<w|
`

⌋
subsets. Then, P1 ∪ P2 is a Sperner family,

each of whose members is of cardinality at most w. For w ≤ t/2, it is well-known (see, e.g., [2]) that
|P1 ∪ P2| ≤

(
t
w

)
. Because |P2| =

⌊
|C<w|
`

⌋
and |P1| = |Cp

≥w|, Claim 1 follows.
To prove Claim 2, we need a technical result stated in Claim 3 below.

Claim 3. Let T = {j1, · · · , j`} be an arbitrary set of ` different members of Cnp
≥w. For any non-negative

integer k ≤ d/`− 1 and any column set D ⊆ [N ]− T such that |D| = k`, we have

|M[T ] \M[D]| ≥ (d− (k + 1)`+ 1)w + 1.

To prove the claim, assume to the contrary that

|M[T ] \M[D]| ≤ (d− (k + 1)`+ 1)w

for some set D and integer k satisfying the conditions in the claim. For every i ∈ [`], define

Ci := Mji \ (M[D] ∪M[{j1, . . . , ji−1}]).

xi :=

⌊
|Ci|
w

⌋
yi := |Ci| mod w.
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Then,

(d− (k + 1)`+ 1)w ≥ |M[T ] \M[D]|

=
∑̀
i=1

|Ci|

=
∑̀
i=1

(xiw + yi)

= w

(∑̀
i=1

xi

)
+
∑̀
i=1

yi.

Partition Ci into xi parts of size w each and one part of size yi ≤ w − 1. First, consider the case when∑`
i=1 yi > 0; then,

∑`
i=1 xi ≤ d − (k + 1)`. Because Mji has no private w-subset (and thus no private

yi-subset), the set Ci can be covered by at most xi + 1 columns of M; the union
⋃
i∈[`]Ci can thus be

covered by at most
∑`

i=1 xi + ` ≤ d− k` columns of M. Those d− k` columns covering the Ci along with
k` columns Mj , j ∈ D cover M[T ] completely, which is a contradiction. Second, when

∑`
i=1 yi = 0 we

only need at most
∑`

i=1 xi ≤ d− (k + 1)`+ 1 ≤ d− k` columns to cover the Ci. The same contradiciton
is reached.

Finally we are now ready to prove Claim 2. Suppose |Cnp
≥w| ≥ d+`. Consider d+` columns j1, . . . , jd+`

inCnp
≥w. For k = 0, 1, · · · , bd/`c−1, defineDk = {j1, · · · , jk`} and Tk = {jk`+1, · · · , j(k+1)`}. (D0 = ∅.)

Then, noting Claim 3, we have

t ≥ M[{j1, . . . , jd+`}]

≥
bd/`c−1∑
k=0

|M[Tk] \M[Dk]|+ |M[{jd+1, · · · , jd+`}] \M[{j1, . . . , jd}]|

≥
bd/`c−1∑
k=0

[(
d− (k + 1)`+ 1

)
w + 1

]
+ 1

= wbd/`c [d+ 1− `(bd/`c+ 1)/2] + bd/`c+ 1

≥ 1

2
wbd/`c(d+ 2− `) + bd/`c+ 1,

which contradicts the assumption that w ≥ 2(t−bd/`c)
bd/`c(d+2−`) .

Theorem 2.17. For any non-negative integers d, `, e0, e1, N where N ≥ d+ `, we have

t(d, `, e0, e1, N) = Ω

(
d log

N

d+ `− 1
+ e0 + de1

)
. (23)

In particular, when ` = Θ(d) we have

t(d,Θ(d), e0, e1, N) = Ω (d log(N/d) + e0 + de1) . (24)

Furthermore, when d ≥ min{`+ 2, 2`} the following holds

t(d, `, e0, e1, N) = Ω

(
d2/`

log(d/`)
log

N − d
`

+ e0 + de1

)
. (25)
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Proof. In light of inequalities (21) and (22) from Lemma 2.16, to prove (23) and (25) we only need to show
that t(d, `, e0, e1, N) = Ω(e0 + de1). Consider a (d, `, e0, e1)-list-disjunct matrix M with t rows and N
columns. Consider two disjoint subsets of columns S, T ⊆ [N ] with |S| = d and |T | = `. There must be a
column Mj in T with at least e1 + 1 ones in rows where all columns in S contain zeros. Now, swap j with
some column in S which has not been swapped before, and repeat the reasoning. In the end, we get at least
d+ 1 columns, each of which has at least e1 + 1 ones in some rows for which all the other d columns have
zeros. Further more, after d columns have been swapped into S, the d+1st column we found in T has e1 +1
ones none of S has after removing up to e0 rows with all zeros in S. Thus, t ≥ (d+ 1)(e1 + 1) + e0.

2.5 Probabilistic upper bounds

We apply the usual trick: concatenate a random code of length n over an alphabet of size q with the identity
code IDq, where each of the N codewords is chosen randomly by selecting a uniformly random symbol at
each position. Let M be the resulting binary matrix. We bound the probability that M is not (d, `, e0, e1)-
list-disjunct.

Fix S, T ⊆ [N ] with |S| = d, |T | = `, and S ∩ T = ∅. We call the pair (S, T ) “bad” if there exists a
set X ⊆M[T ] \M[S] of size |X| ≤ e0 such that for all j ∈ T , |Mj \ (X ∪M[S])| ≤ e1. We will choose
parameters so that

n(q − d)− e0 ≥ 2qe1. (26)

This way, if (S, T ) is bad then there exists a set X of e0 members of [t] such that |Mj \ (X ∪M[S])| ≤ e1

for all j ∈ T . Fix a set X of e0 members of [t]. Let xi be the number of members of X coming from
position i of the outter code. Then, e0 = x1 + · · ·+ xn. For any j ∈ T , conditioned on the codewords in S,
we have

E[|Mj \ (X ∪M[S])|] ≥
n∑
i=1

(q − d)− xi
q

=
n(q − d)− e0

q
.

By Chernoff inequality,

Prob
[
|Mj \ (X ∪M[S])| ≤ e1

]
≤ exp

(
−1

2

(
1− e1q

n(q − d)− e0

)2 n(q − d)− e0

q

)

≤ exp

(
−n(q − d)− e0

8q

)
.

Since the codewords in T were chosen indepenently, by the union bound we have

Prob[(S, T ) is bad] ≤
(
nq

e0

)
exp

(
−n(q − d)− e0)`

8q

)
,

and hence

Prob[M is not (d, `, e0, e1)-list-disjunct] ≤
(

N

d+ `

)(
d+ `

d

)(
nq

e0

)
exp

(
−n(q − d)− e0)`

8q

)
.

To simplify the above expression, we pick
q = 2d (27)

and choose n such that n(q − d)− e0 = nd− e0 ≥ nd/2, which is the same as

nd ≥ 2e0. (28)
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With these choices, exp
(
−n(q−d)−e0)`

8q

)
≤ exp (−n`/32) and thus

Prob[M is not (d, `, e0, e1)-list-disjunct] ≤
(

N

d+ `

)(
d+ `

d

)(
2nd

e0

)
exp (−n`/32) .

We bound the binomial product as follows.(
N

d+ `

)(
d+ `

d

)(
2nd

e0

)
< exp

(
(d+ `) log

Ne

d+ `
+ d log

(d+ `)e

d
+ e0 log

2nde

e0

)
= exp

(
d log

Ne2

d
+ ` log

Ne

d+ `
+ e0 log

2end

e0

)
.

In summary, we just proved the following lemma

Lemma 2.18. Let e0, e1, d, `,N be given. If n is a positive integer such that

nd ≥ 2e0 + 4de1

and that

d log
Ne2

d
+ ` log

Ne

d+ `
+ e0 log

2end

e0
≤ n`/32

then there exists a 2dn×N matrix which is (d, `, e0, e1)-list-disjunct.

The following theorem follows easily.

Theorem 2.19. Let d, `, e0, e1, N be given parameters.

(a) If ` = Ω(d), then there exists a t×N matrix M which is (d, `, e0, e1)-list-disjunct where

t = O (d log(N/d) + e0 + de1) .

(b) If ` ≤ d, then there exists a t×N matrix M which is (d, `, e0, e1)-list-disjunct where

t = O
(
(d2/`) log(N/d) + min{d, (d/`) · log(d/`) · log log(d/`)} · e0 + de1

)
Proof. The plan is to pick n such that the following three inequalities hold

n ≥ 2e0/d+ 4e1 (29)

n`/64 ≥ d log
Ne2

d
+ ` log

Ne

d+ `
(30)

n`/64 ≥ e0 log
2end

e0
(31)

(a) Suppose ` ≥ Cd for some fixed constant C. Inequality (30) holds if

n ≥ 64

C
log

Ne2

d
+ 64 log

Ne

d+ Cd
= 64

C + 1

C
log

N

d
+ 64(2/C + 1− log(1 + C)).

Inequality (31) holds when 2end/e0
log 2end

e0

≥ 128e/C. Since the function x/ log x is increasing for x > 1,

the inequality holds when nd/e0 is sufficiently large. Overall, it is clear that

n = Ω

(
log

N

d
+ e0/d+ e1

)
is sufficient, which proves part (a) of the theorem.
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(b) To satisfy inequality 30, we set
n = Ω ((d/`) log(N/d)) .

The tedious part comes from satisfying inequality (31).

On the one hand, because every (d, `, 0, e0 + e1)-list-disjunct matrix is a (d, `, e0, e1)-list-disjunct
matrix (Proposition 2.5), we could have set e1 = e0 + e1 and e0 = 0 so that inequality (31) does not
have to be satisfied. If we set the parameters this way then

n = Ω ((d/`) log(N/d) + e0 + e1)

is sufficient, which implies t = O
(
(d2/`) log(N/d) + d(e0 + e1)

)
.

On the other hand, if e0 is large then the above bound is not good. In this case we need to pick n to
satisfy (31), which is equivalent to

2end/e0

log(2end/e0)
≥ 128ed/`.

Let D = 128ed/`, we want the minimum x for which x/ log x ≥ D. Setting x = Ω(D · log(D) ·
log log(D)) is sufficient. Hence, in this case

n = Ω ((d/`) log(N/d) + (1/`) · log(d/`) · log log(d/`)} · e0 + e1)

and the conclusion follows.

Corollary 2.20. For the dr-list-disjunct matrices, we have t(d, r,N) = O(d2 log(N/d) + rd).
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