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Lower Bounds

Given d ∈ [N ], let t(d,N) denote the minimum t for which a d-disjunct matrix with t rows and N
columns exists. We study the behavior of the function t(d,N).

1 Lower bounds for large d

In the previous lecture note, an exercise showed that t(N,N) = N , so we can assume d ∈ [N − 1].

Exercise 1. Show that t(d,N) ≥ min{3, N}, for all d ∈ [N ].

The following result was attributed to Bassalygo by Dýachkov and Rykov [4].

Proposition 1.1 (Bassalygo – 1975). The following bound holds

t(d,N) ≥ min
{(

d+ 2
2

)
, N

}
. (1)

Proof. We induct on d. Exercise 1 proved the base case d = 1. Consider d ≥ 2 and a d-disjunct matrix
M with t = t(d,N) rows and N columns. Let N(w) denote the number of columns of M with weight w.
(The weight of a column is the number of 1s in it.) A row i ∈ [t] is said to be private for a column j if j is
the only column in the matrix having a 1 on row i. If column Mj has weight at most d, then it must have at
least one private element. The total number of private elements of all columns is at most t. Hence,

d∑
w=1

N(w) ≤ t.

Let wmax denote the maximum column weight of M. If wmax ≤ d thenN =
∑

w N(w) ≤ t. Now, suppose
wmax ≥ d + 1 and consider a column Mj with weight equal to wmax. If we remove column Mj and all
rows i for whichmij = 1, we are left with a (d−1)-disjunct matrix with t−wmax rows andN−1 columns.
Thus, t− wmax ≥ t(d− 1, N − 1) which along with the induction hypothesis implies

t− (d+ 1) ≥ min
{(

d+ 1
2

)
, N − 1

}
.

The proposition follows.

Note that t(d,N) ≤ N is a trivial upper bound: the N × N identity matrix is d-disjunct. Bassalygo’s
bound says that if

(
d+2
2

)
≥ N then we cannot do better than the identity matrix. Next, we consider the

“small d” cases.
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2 Lower bounds for small d

2.1 The d = 1 case

Consider a t × N binary matrix M. Its columns can naturally be viewed as a family of subsets of [t]. The
collection of columns of a 1-disjunct matrix satisfies the property that no set in the family is contained in
another set in the family. Such a family is called an anti-chain in partially order set theory [2]. A classic
(topology) lemma by Sperner in 1928 [5, 9] states that the maximum size of such an anti-chain is

(
t
bt/2c

)
.

Since the proof of Sperners lemma is short and illustrates a nice (probabilistic) technique, we reproduce it
here.

Lemma 2.1 (Sperner lemma). Let F be a collection of subsets of [t] such that no member of F is contained
in another member of F . Then, |F | ≤

(
t
bt/2c

)
. Equality can be reached by picking F =

( [t]
bt/2c

)
.

Proof. Pick uniformly a random permutation π of [t]. For each member F ∈ F , let AF be the event that F
is a prefix of π. For example, if π = 3, 4, 1, 5, 2 then {1, 3, 4} is a prefix of π. Let k = |F |, then

Prob[AF ] =
k!(n− k)!

n!
=

1(
n
k

) ≥ 1( [t]
bt/2c

) .
Because no member of F is contained in another, the events AF are mutually disjoint. Thus,

1 ≥
∑
F∈F

Prob[AF ] ≥ |F|( [t]
bt/2c

) ,
which completes the proof.

2.2 The Erdős-Frankl-Füredi technique

A subset F ⊆ [t] is called a private subset of column Mj if F ⊆Mj and F 6⊆Mj′
for any j′ 6= j. We first

need the following lemma (Lemma 9.1 from Erdős-Frankl-Füredi [6]).

Lemma 2.2. Let M be a t ×N d-disjunct matrix. Fix a positive integer w ≤ t. Let C denote the set of all
columns of M. Let C be any column in C which has no private w-subset. Consider any k ≥ 0 other columns
C1, . . . , Ck of M. We have ∣∣∣∣∣∣C \

k⋃
j=1

Cj

∣∣∣∣∣∣ ≥ (d− k)w + 1. (2)

In particular, if M has at least d+ 1 columns C1, . . . , Cd+1 none of which have any private w-subset, then∣∣∣∣∣∣
d+1⋃
j=1

Cj

∣∣∣∣∣∣ ≥ 1
2

(d+ 1)(dw + 2). (3)
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Proof. If (2) does not hold, thenC can be covered by the union of theC1, . . . , Ck and (d−w) other columns,
contradicting the fact that M is d-disjunct. To prove (3), we apply (2) as follows.∣∣∣∣∣∣

d+1⋃
j=1

Cj

∣∣∣∣∣∣ = |C1|+ |C2 \ C1|+ · · ·+ |Cd+1 \ C1 ∪ · · · ∪ Cd|

≥ (dw + 1) + ((d− 1)w + 1) + · · ·+ (w + 1) + 1

=
d

2
(d+ 1)w + (d+ 1)

=
1
2

(d+ 1)(dw + 2).

Theorem 2.3 (Füredi [7]). For N ≥ d ≥ 2 and any d-disjunct matrix M with t rows and N columns, we
have

N ≤ d+
(

t⌈
t−d

(d+1
2 )

⌉)
.

Proof. Fix a non-negative integer w ≤ t/2. Let Cw be the sub-collection of columns of M each of which
has a private w-subset, and C<w be the sub-collection of columns of M each of which has weight < w. Let
Dw be a collection of private w-subsets of the sets in Cw where we just take one arbitrary private w-subset of
each member of Cw to put inD. Then,D∪C<w forms an anti-chain, and the same technique used in the proof
of Sperners lemma above can easily be used to show that, for any |Cw ∪C<w| = |D ∪C<w| ≤

(
t
w

)
. Now, if

there were at least d+1 columns not inCw∪C<w, then by Lemma 2.2 the union of columns not in Cw∪C<w

has cardinality at least 1
2(d+1)(dw+2). Suppose we are able to choosew such that 1

2(d+1)(dw+2) ≥ t+1
then we reach a contradiction, in which case we can conclude that N ≤ d + |Cw ∪ C<w| ≤ d +

(
t
w

)
. By

setting w =
⌈

t+1−(d+1)

(d+1
2 )

⌉
we can be assured that w ≤ t/2, and 1

2(d+ 1)(dw + 2) ≥ t+ 1.

Exercise 2. Show the missing piece in the above proof that, for any integer 1 ≤ w ≤ t/2, |Cw∪C<w| ≤
(

t
w

)
.

Corollary 2.4 (Asymptotic lower bound for t(d,N)). When 2 ≤ d and
(
d+2
2

)
< N , we have

t(d,N) ≥ (d+ 1)2

12 log d
logN = Ω

(
d2

log d
logN

)
. (4)

For N →∞ and d→∞, we have

t(d,N) ≥ d2

4 log d
logN(1 + o(1)). (5)

Proof. Note that t
2(t−d) ≤ 1 because t ≥

(
d+2
2

)
. And, t−d

(d+1
2 ) ≤

2t
d2 is easy to verify, which implies

⌈
t−d

(d+1
2 )

⌉
≤
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2t
d2 . We thus can bound

log
(

t⌈
t−d

(d+1
2 )

⌉) ≤

⌈
t− d(
d+1
2

)⌉ log

 te⌈
t−d

(d+1
2 )

⌉


≤ 2t
d2

log
(

(d+ 1)de
t

2(t− d)

)
≤ 2t

d2
log((d+ 1)3)

≤ 6t
d2

log(d+ 1)

Secondly, when
(
d+2
2

)
< N we have log(N − d) ≥ 1

2 logN . Consequently,

1
2

logN ≤ log(N − d) ≤ 6t
d2

log(d+ 1),

and (4) follows. The relation (5) is straightforward to verify.

2.3 The Ruszinkó technique

Ruszinkó [8] devised a relatively simpler argument for proving a lowerbound for t(d,N). The argument was
slightly simplified in Alon-Asodi [1] although the bound shown in Alon-Asodi is slight worse. We present
the simpler argument here.

As long as there is still a column in M with weight ≥ 2t/d, remove the column along with all rows in
which the column has 1s. When the process is finished, there were at most d/2 columns removed and all
the remaining columns have weight < 2t/d. Each of the remaining columns must have a private d4t/d2e-
subset. Hence, the number of remaining columns is at most the number of subsets of [t] of size d4t/d2e. In
other words,

N − d/2 ≤
(

t

d4t/d2e

)
.

When t ≥
(
d+2
2

)
, we have t ≥ d2/2. Thus, d4t/d2e ≤ 4t/d2 + 1 ≤ 4t/d2 + 2t/d2 = 6t/d2. Furthermore,

N − d/2 ≥
√
N . Consequently,

1
2

logN ≤ log(N − d/2) ≤ 6t
d2

log
(

te

4t/d2

)
<

12t
d2

log d.

We conclude that t ≥ d2

24 log d logN .

2.4 The D’yachkov-Rykov technique

This technique [3] yields the best asymptotic bound of t ≥ d2

2 log d logN(1 + o(1)), but it is analytically
complicated and the result requires N →∞ and d→∞ to work.
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