Lower Bounds

Given $d \in [N]$, let t(d, N) denote the minimum t for which a d-disjunct matrix with t rows and N columns exists. We study the behavior of the function t(d, N).

1 Lower bounds for large d

In the previous lecture note, an exercise showed that t(N, N) = N, so we can assume $d \in [N - 1]$.

Exercise 1. Show that $t(d, N) \ge \min\{3, N\}$, for all $d \in [N]$.

The following result was attributed to Bassalygo by Dýachkov and Rykov [4].

Proposition 1.1 (Bassalygo – 1975). The following bound holds

$$t(d,N) \ge \min\left\{ \binom{d+2}{2}, N \right\}.$$
(1)

Proof. We induct on d. Exercise 1 proved the base case d = 1. Consider $d \ge 2$ and a d-disjunct matrix \mathbf{M} with t = t(d, N) rows and N columns. Let N(w) denote the number of columns of \mathbf{M} with weight w. (The weight of a column is the number of 1s in it.) A row $i \in [t]$ is said to be *private* for a column j if j is the only column in the matrix having a 1 on row i. If column \mathbf{M}^j has weight at most d, then it must have at least one private element. The total number of private elements of all columns is at most t. Hence,

$$\sum_{w=1}^{d} N(w) \le t.$$

Let w_{\max} denote the maximum column weight of M. If $w_{\max} \leq d$ then $N = \sum_{w} N(w) \leq t$. Now, suppose $w_{\max} \geq d + 1$ and consider a column \mathbf{M}^{j} with weight equal to w_{\max} . If we remove column \mathbf{M}^{j} and all rows *i* for which $m_{ij} = 1$, we are left with a (d-1)-disjunct matrix with $t - w_{\max}$ rows and N - 1 columns. Thus, $t - w_{\max} \geq t(d-1, N-1)$ which along with the induction hypothesis implies

$$t - (d+1) \ge \min\left\{ \binom{d+1}{2}, N-1 \right\}.$$

The proposition follows.

Note that $t(d, N) \leq N$ is a trivial upper bound: the $N \times N$ identity matrix is *d*-disjunct. Bassalygo's bound says that if $\binom{d+2}{2} \geq N$ then we cannot do better than the identity matrix. Next, we consider the "small *d*" cases.

2 Lower bounds for small *d*

2.1 The d = 1 case

Consider a $t \times N$ binary matrix **M**. Its columns can naturally be viewed as a family of subsets of [t]. The collection of columns of a 1-disjunct matrix satisfies the property that no set in the family is contained in another set in the family. Such a family is called an *anti-chain* in partially order set theory [2]. A classic (topology) lemma by Sperner in 1928 [5,9] states that the maximum size of such an anti-chain is $\binom{t}{\lfloor t/2 \rfloor}$. Since the proof of Sperners lemma is short and illustrates a nice (probabilistic) technique, we reproduce it here.

Lemma 2.1 (Sperner lemma). Let \mathcal{F} be a collection of subsets of [t] such that no member of F is contained in another member of \mathcal{F} . Then, $|F| \leq {t \choose |t/2|}$. Equality can be reached by picking $\mathcal{F} = {t \choose |t/2|}$.

Proof. Pick uniformly a random permutation π of [t]. For each member $F \in \mathcal{F}$, let A_F be the event that F is a prefix of π . For example, if $\pi = 3, 4, 1, 5, 2$ then $\{1, 3, 4\}$ is a prefix of π . Let k = |F|, then

$$\operatorname{Prob}[A_F] = \frac{k!(n-k)!}{n!} = \frac{1}{\binom{n}{k}} \ge \frac{1}{\binom{[t]}{|t/2|}}$$

Because no member of \mathcal{F} is contained in another, the events A_F are mutually disjoint. Thus,

$$1 \ge \sum_{F \in \mathcal{F}} \operatorname{Prob}[A_F] \ge \frac{|\mathcal{F}|}{\binom{[t]}{\lfloor t/2 \rfloor}},$$

which completes the proof.

2.2 The Erdős-Frankl-Füredi technique

A subset $F \subseteq [t]$ is called a *private subset* of column \mathbf{M}^j if $F \subseteq \mathbf{M}^j$ and $F \not\subseteq \mathbf{M}^{j'}$ for any $j' \neq j$. We first need the following lemma (Lemma 9.1 from Erdős-Frankl-Füredi [6]).

Lemma 2.2. Let \mathbf{M} be a $t \times N$ d-disjunct matrix. Fix a positive integer $w \leq t$. Let C denote the set of all columns of \mathbf{M} . Let C be any column in C which has no private w-subset. Consider any $k \geq 0$ other columns C_1, \ldots, C_k of \mathbf{M} . We have

$$\left| C \setminus \bigcup_{j=1}^{k} C_j \right| \ge (d-k)w + 1.$$
⁽²⁾

In particular, if M has at least d + 1 columns C_1, \ldots, C_{d+1} none of which have any private w-subset, then

$$\left| \bigcup_{j=1}^{d+1} C_j \right| \ge \frac{1}{2} (d+1)(dw+2).$$
(3)

Proof. If (2) does not hold, then C can be covered by the union of the C_1, \ldots, C_k and (d-w) other columns, contradicting the fact that M is d-disjunct. To prove (3), we apply (2) as follows.

$$\begin{vmatrix} d^{+1} \\ \bigcup_{j=1}^{d+1} C_j \end{vmatrix} = |C_1| + |C_2 \setminus C_1| + \dots + |C_{d+1} \setminus C_1 \cup \dots \cup C_d|$$

$$\geq (dw+1) + ((d-1)w+1) + \dots + (w+1) + 1$$

$$= \frac{d}{2}(d+1)w + (d+1)$$

$$= \frac{1}{2}(d+1)(dw+2).$$

Theorem 2.3 (Füredi [7]). For $N \ge d \ge 2$ and any d-disjunct matrix **M** with t rows and N columns, we have

$$N \le d + \left(\begin{bmatrix} t \\ \left\lceil \frac{t-d}{\binom{d+1}{2}} \right\rceil \right).$$

Proof. Fix a non-negative integer $w \le t/2$. Let C_w be the sub-collection of columns of M each of which has weight < w. Let \mathcal{D}_w be a collection of private w-subsets of the sets in \mathcal{C}_w where we just take one arbitrary private w-subset of each member of \mathcal{C}_w to put in \mathcal{D} . Then, $\mathcal{D}\cup\mathcal{C}_{<w}$ forms an anti-chain, and the same technique used in the proof of Sperners lemma above can easily be used to show that, for any $|\mathcal{C}_w \cup C_{<w}| = |\mathcal{D} \cup C_{<w}| \le {t \choose w}$. Now, if there were at least d+1 columns not in $C_w \cup C_{<w}$, then by Lemma 2.2 the union of columns **not** in $\mathcal{C}_w \cup \mathcal{C}_{<w}$ has cardinality at least $\frac{1}{2}(d+1)(dw+2)$. Suppose we are able to choose w such that $\frac{1}{2}(d+1)(dw+2) \ge t+1$ then we reach a contradiction, in which case we can conclude that $N \le d + |C_w \cup C_{<w}| \le d + {t \choose w}$. By setting $w = \left\lfloor \frac{t+1-(d+1)}{{d+1 \choose 2}} \right\rfloor$ we can be assured that $w \le t/2$, and $\frac{1}{2}(d+1)(dw+2) \ge t+1$.

Exercise 2. Show the missing piece in the above proof that, for any integer $1 \le w \le t/2$, $|\mathcal{C}_w \cup \mathcal{C}_{\le w}| \le {t \choose w}$.

Corollary 2.4 (Asymptotic lower bound for t(d, N)). When $2 \le d$ and $\binom{d+2}{2} < N$, we have

$$t(d,N) \ge \frac{(d+1)^2}{12\log d}\log N = \Omega\left(\frac{d^2}{\log d}\log N\right).$$
(4)

For $N \to \infty$ and $d \to \infty$, we have

$$t(d, N) \ge \frac{d^2}{4\log d} \log N(1 + o(1)).$$
(5)

Proof. Note that $\frac{t}{2(t-d)} \le 1$ because $t \ge {\binom{d+2}{2}}$. And, $\frac{t-d}{\binom{d+1}{2}} \le \frac{2t}{d^2}$ is easy to verify, which implies $\left\lceil \frac{t-d}{\binom{d+1}{2}} \right\rceil \le \frac{t}{d^2}$.

$\frac{2t}{d^2}$. We thus can bound

$$\log\left(\begin{bmatrix} t \\ \left\lceil \frac{t-d}{\binom{d+1}{2}} \right\rceil \right) \leq \left\lceil \frac{t-d}{\binom{d+1}{2}} \right\rceil \log\left(\frac{te}{\left\lceil \frac{t-d}{\binom{d+1}{2}} \right\rceil} \right)$$
$$\leq \frac{2t}{d^2} \log\left((d+1)de\frac{t}{2(t-d)} \right)$$
$$\leq \frac{2t}{d^2} \log((d+1)^3)$$
$$\leq \frac{6t}{d^2} \log(d+1)$$

Secondly, when $\binom{d+2}{2} < N$ we have $\log(N-d) \geq \frac{1}{2} \log N$. Consequently,

$$\frac{1}{2}\log N \le \log(N-d) \le \frac{6t}{d^2}\log(d+1),$$

and (4) follows. The relation (5) is straightforward to verify.

2.3 The Ruszinkó technique

Ruszinkó [8] devised a relatively simpler argument for proving a lowerbound for t(d, N). The argument was slightly simplified in Alon-Asodi [1] although the bound shown in Alon-Asodi is slight worse. We present the simpler argument here.

As long as there is still a column in M with weight $\geq 2t/d$, remove the column along with all rows in which the column has 1s. When the process is finished, there were at most d/2 columns removed and all the remaining columns have weight < 2t/d. Each of the remaining columns must have a private $\lceil 4t/d^2 \rceil$ -subset. Hence, the number of remaining columns is at most the number of subsets of [t] of size $\lceil 4t/d^2 \rceil$. In other words,

$$N - d/2 \le \binom{t}{\lceil 4t/d^2 \rceil}.$$

When $t \ge \binom{d+2}{2}$, we have $t \ge d^2/2$. Thus, $\lceil 4t/d^2 \rceil \le 4t/d^2 + 1 \le 4t/d^2 + 2t/d^2 = 6t/d^2$. Furthermore, $N - d/2 \ge \sqrt{N}$. Consequently,

$$\frac{1}{2}\log N \le \log(N - d/2) \le \frac{6t}{d^2}\log\left(\frac{te}{4t/d^2}\right) < \frac{12t}{d^2}\log d$$

We conclude that $t \ge \frac{d^2}{24 \log d} \log N$.

2.4 The D'yachkov-Rykov technique

This technique [3] yields the best asymptotic bound of $t \ge \frac{d^2}{2\log d} \log N(1 + o(1))$, but it is analytically complicated and the result requires $N \to \infty$ and $d \to \infty$ to work.

References

- [1] N. ALON AND V. ASODI, Learning a hidden subgraph, SIAM J. Discrete Math., 18 (2005), pp. 697–712 (electronic).
- [2] B. BOLLOBÁS, *Combinatorics*, Cambridge University Press, Cambridge, 1986. Set systems, hypergraphs, families of vectors and combinatorial probability.
- [3] A. G. D'YACHKOV AND V. V. RYKOV, *Bounds on the length of disjunctive codes*, Problemy Peredachi Informatsii, 18 (1982), pp. 7–13.
- [4] ——, A survey of superimposed code theory, Problems Control Inform. Theory/Problemy Upravlen. Teor. Inform., 12 (1983), pp. 229–242.
- [5] K. ENGEL, Sperner theory, vol. 65 of Encyclopedia of Mathematics and its Applications, Cambridge University Press, Cambridge, 1997.
- [6] P. ERDŐS, P. FRANKL, AND Z. FÜREDI, Families of finite sets in which no set is covered by the union of r others, Israel J. Math., 51 (1985), pp. 79–89.
- [7] Z. FÜREDI, On r-cover-free families, J. Combin. Theory Ser. A, 73 (1996), pp. 172–173.
- [8] M. RUSZINKÓ, On the upper bound of the size of the r-cover-free families, J. Combin. Theory Ser. A, 66 (1994), pp. 302–310.
- [9] E. SPERNER, Ein Satz über Untermengen einer endlichen Menge, Math. Z., 27 (1928), pp. 544-548.