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Codes

1 Preliminaries

Let 3 be a finite set, || > 2. We will refer to elements of ¥ as symbols or letters, and ¥ as an alphabet. A
code C over alphabet ¥ is a subset of X", where the positive integer n is called the length (or block length)
and |C| is the size of the code. Each member of C is called a codeword. In orther words, a codeword is a
vector of dimension 7, each of whose coordinates is also called a position.

The Hamming distance between two codewords ¢ and ¢/, denoted by A(c, ¢) is the number of positions
where ¢ and ¢’ are different. The minimum distance of a code C, denoted by A(C), is the minimum
Hamming distance between two different codewords of C. The dimension of a code C' on alphabet ¥ is
defined to be dim(C) := logy, |C|. A code with length n and dimension & on an alphabet of size g is called
an (n, k)g-code. An (n, k),-code with minimum distance A is called an (n, k, A),-code. Sometimes, to
emphasize a specific alphabet in use, we use the notations (n, k)y, and (n, k, A)yx.

Proposition 1.1 (Singleton Bound [3]). For any (n,k,A)s-code, k < n — A+ 1.

A code achieving equality in the Singleton bound is called a Maximum distance separable code, or MDS
code. A very widely used MDS code is the celebrated Reed-Solomon code, named after its two inventors
Irving Reed and Gustave Solomon' [2].

Exercise 1. Prove the Singleton bound. (Hint: consider any code C' of minimum distance A and length n.
Let C’ be the projection of C on to the first n — (A — 1) coordinates. Show that |C’| = |C| and bound |C"|.)

It is often the case” that the alphabet X is a finite field IF4, because then we are able to take advantage of
the underlying (linear) algebraic structures for designing the codes, analyzing its parameters, and discovering
good encoding and decoding algorithms. In this case, when C'is a linear subspace of _¢", we call C' a linear
code. To emphasize the fact that C' is linear, we replace (n,k), and (n, k, A), by [n, k], and [n, k, A],.
Note that the dimension £ of the code is now precisely the dimension of the subspace C.

2 Reed-Solomon Codes

Definition 2.1 (Reed-Solomon code). Let & < n < ¢ be positive integers where ¢ is a prime power.
The Reed-Solomon code is an [n,k,n — k + 1],-code (i.e. a linear MDS code) defined as follows. Let

'This paper and the likes of Shannons’ and Hamming’s papers are perfect examples illustrating that we dont have to write
humongously long papers to be influential.

2See, http://www.cs.cmu.edu/~venkatg/teaching/codingtheory/notes/algebra-brief-notes.
pdf for a brief introduction to finite fields



{a1,..., oy} be any n disdinct members of IF,. These are called the evaluation points of the code. For each

vectorm = (mg,...,mk_1) € ]F’;, define a polynomial
k—1
fm(z) = Z m;x’
=0

which is of degree at most k — 1. Then, for each m € IE"; there is a corresponding codeword RS(m) defined
by
RS(m) = (fm(1), ..., fm(an)).

Exercise 2. Prove the following.
1. If m # m/, then RS(m) # RS(m’). Thus, the RS code defined above has precisely ¢* codewords.
2. Forany m,m’ € IF’; and any scalar a € [y,
RS(m +m’) = RS(m) + RS(m’)
RS(am) = a-RS(m).
Thus, the RS code is a linear code. Along with part 1) this means the linear code is of dimension &.

3. Use the fact that any polynomial of degree at most £ — 1 over I, has at most £ — 1 roots to show that,
for any m # m’ the Hamming distance between RS(m) and RS(m’) is at least n — k + 1.

4. Lastly, consider the distance between the all-zero codeword and the codeword corresponding to the
polynomial Hf:_ll (x — «y), prove that the above RS code is an [n, k,n — k + 1]4-code.

Note also that,
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oy Qi a,,

This means the symbol at position ¢ of the mth codeword RS(m) can be computed in time poly(q). The
above matrix is called the k x n Vandermonde matrix which occurs in many contexts in Mathematics and
Computer Science.

3 Code concatenation

Let g, n, m, N be integers such that N < ¢" and 2" > ¢. Let C,,t be a code of length n and size IV over
an alphabet X of size q. Without loss of generality (up to isomorphism) we might as well set ¥ = [g]. Let
Cin be a binary code (i.e. alphabet ¥ = {0, 1}) of length m and size q. A concatenation C' of Coyy and Ciy,
denoted by C' = Cyy4 o Chy, is a code C' of length mn and size N constructed by replacing each symbol
a of a codeword in Cyyt by the ath codeword in C},. Here, we order the codewords in Cj, in an arbitrary
manner. For example, consider the case whenn = ¢ =3, m = 2,

1 2 3 3

Con={ |11 (1] 2| f2] boaa={ 2] [5] - [0] -
2 3 2 3



Then,

Cout © Cin =

=== O = O
SO = O O =
—_ o = O O
[N el o Ne)

0 0 0 0

L~ L~ L~ L~

Abusing notation, we often also state that a code is a matrix which is constructed by putting all codewords
of the code as columns of the matrix in an arbitrary order. For example, the matrix M = Cy; o C}y, above is

0100
1000
0011

M=1/ 10 0
1010

0 0 0 0]

In the concatenation Cyy © Ciy, Coyy is called the outer code and Ciy, the inner code. By instantiating the
outer and inner codes with carefully chosen codes, we obtain good group testing matrices. One of the most
basic inner codes is the trivial identity code, ID,, which is the binary code of length g and size ¢ whose ith
codeword is the ith standard basis vector. The corresponding matrix is the identity matrix of order q.

4 Gilbert-Varshamov Bound

Let A;(n, A) denote the maximum size of a g-ary code of length n and minimum distance A. Determining
Ay(n, A) is a major open problem in coding theory. Define

Voly(n, ) = Zgj <;’> (g —1)!

J=0

to be the “volume” of the Hamming ball of radius ¢ around any codeword, i.e. the number of vectors of
distance at most £ from a given vector in Fy. Gilbert [1] and Varshamov [4] proposed a simple greedy
algorithm which constructs a linear code with size at least ¢ /Vol,(n, A — 1). Actually, Gilbert’s algorithm
does not produce a linear code; Varshamov’s does. However, their algorithms are very similar and achieves
similar bounds.

Theorem 4.1 (Gilbert-Varshamov Bound). The maximum size of a code of length n, alphabet size q, and

distance A satisfies
q" q"
Ay(n,A) > =

= Vol (n. A1)~ SAT (Mg 1)

There also exists linear codes achieving the bound.

Exercise 3 (Gilbert algorithm). Consider the following algorithm for code construction. Let 3 be an alpha-
bet of size ¢. Initially let C = (). While there still exists a vector ¢ € X" which is of distance at least A
from all the codewords in C', add c into C. Prove that when the algorithm stops, we obtain a code C' whose
size is at least ¢" /Vol,(n, A — 1).



To show that there exist /inear codes attaining the Gilbert-Varshamov (GV) bound, we use the proba-
bilistic method. In fact, we will prove the asymptotic form of the GV bound for linear codes.

Definition 4.2 (g-ary entropy). Let ¢ > 2 be an integer. The g-ary entropy function H, : [0,1] — Ris
defined by

1 1
H,(6) :510gqu+(1—5) log, 7 (1)

When g = 2 we drop the subscript ¢ and write the famous (Shannon) binary entropy function as

H(é)zélogl—i—(l—é)log

1
o 1-46

Occassionally, it might be easier to grasp the g-ary entropy funciton by rewriting (1) as
Hy(6) = élog,(q — 1) —dlog, 0 — (1 — d)log,(1 —0).

We define H,(0) = 0. The function Hy(x) is continuous in the interval [0, 1], is increasing from 0 to
1 —1/q, and decreasing from 1 — 1/q to 1.

Lemma 4.3. For any positive integers n,q > 2 and real number 0 < § <1 —1/q,

" HO o) < Vol (n, n) < g"Hal®),

Proof. We prove the upper-bound first, using the famous Bernstein trick. Without loss of generality, we
estimate the volume Vol,(n, dn) around the all-zero codeword. We can pick uniformly a random word w =
(wy,...,wy) € X" by picking each coordinates w; uniformly and independently from X. Let X;,..., X,
be independent Bernoulli variables with parameter 1 — 1/¢. Let wt(x) denote the weight of vector x. Then,
it is not hard to see that

Voly(n, én)/q" = Prob[wt(w) < on] = Prob[n — wt(w) > (1 — d)n] = Prob [i X;>(1- 5)71] .

Now, let t > 0 be an arbitrary real number. We have

Prob [Z Xi>(1— 5)71] < Prob [tZXZ» >t(1— 5)n]
=1 i=1
— Prob [et S Xi > et(lfa)n}
E [etz?:lxl}
L .
- et(1=d)n
H;L:l E [etXi]
T om
~ ILL (A =1/g)e’ +1/q)
N et(1=d)n

= (1= 1/g)e™ + (19 =) "
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To minimize the right hand side, we can pick ¢ = In W, which is non-negative because 6 < 1—1/q.
Plugging this value of ¢ back into the inequality we conclude that

Vol,(n, on n 1—-1 5 n nHgq(5)
g = pon [;X =0 _5)”] < (@=nacams) ~ o

The upper-bound is thus proved. To prove the lower-bound, observe that Vol,(n, dn) > (L in J) (g — 1)lond,
For notational simplicity, define m = |én] and p = m/n. It is not hard to see that the function f(k) =
(Z)pk(l — p)" ¥ is increasing when 1 < k < m and decreasing when m < k < n. Since >_1_, f(k) = 1,
the largest term f(m) is at least 1/(n + 1) because the sum has n + 1 terms. Consequently,

Vol (n, 6n) > (;) (g—1)m > " (ﬁ>m ( n )n_m (q—1)™

n+1\m n—m

Note that

and that for sufficiently large n

<n - 5n>" > (”‘”’21)“ =(1=1/(n=m))" > (1—1/(n—6én))" >1/3"7°.

n—m n —

Hence, for large n we have
n\m n nem
i —_ 1™
<m> (n — m> (¢=1)
sn n—on . n . m on
_ (ﬁ) n (g— 1) 1 _ n—on n—m on
on n—on (g—1)m=m \n—m m n—on

()" (- M)Hn (-0 s (ﬁa)ém

nHg () g—mo(1)

q

O]

A central problem in coding theory is to characterize the tradeoff between the distance and the rate of a
code. The relative distance §(C') of a code C of length n is A(C')/n. If C has dimension k then its rate is
defined to be R(C) = k/n.

Theorem 4.4 (Asymptotic form of the GV bound). Let ¢ > 2 be an integer. Forany 0 < 6 < 1 —1/q,
there exists an infinite family of g-ary codes with rate R > 1 — H,(0) — o(1). In fact, such code exists for
all sufficiently large length n.

We will prove the linear code version of the above bound.

Exercise 4. Show that for a linear code the minimum distance is equal to the minimum weight of a non-zero
codeword. (The weight of a codeword is the number of non-zero entries in it.)



Exercise 5. For positive integers k£ < n, let G be a random k x n matrix chosen by picking each of its
entries from I, uniformly and independently. Fix a vectory € IE",;. Prove that the vector yG is a uniformly
random vector in [y .

Theorem 4.5 (Linear code version of the asymptotic form of the GV bound). Let ¢ > 2 be any prime power.
Let0 < § <1—1/q, Let n > 2 be any integer. Then, for any integer k < (1 — H,(5))n there exists an
[n, k, dn]q-code.

Proof. We want a k-dimensional linear subspace C' of Fj where the minimum weight of non-zero codewords
is at least A = dn. The subspace can be generated by a n x k matrix G of rank k, called the generator
matrix for the code. The columns of G form a basis for the subspace. We pick a random generator matrix
G and show that it satisfies two properties with positive probability:

(a) G has full column rank, and
(b) for every non-zero vector y € F¥, Gy has weight at least A.

Let wt(x) denote the weight of vector x. Actually, property (b) implies property (a) because if the columns
of G are linearly dependent then there is some non-zero vector y for which Gy = 0. To pick the random
matrix G, we simply pick each of its entry from I, uniformly and independently. For any fixed non-zero
vector y € F¥, Gy is a uniformly random vector in [y . Hence, by Lemma 4.3

Voly(n, on) _ JHa®=Dn.

Prob[wt(Gy) < on| = ~ <
q

Now, taking a union bound over all non-zero vectors y € F¥, the probability that wt(Gy) < én for some y

18 at most
(qk’ _ 1)q(Hq(5)—1)n < q(l—Hq(5))nq(Hq(5)—1)n - 1.

In a later lecture, we shall show how to derandomize the above algorithm.
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