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Probabilistic Upper Bounds

There are a few different ways to prove the upper bound t(d,N) = O(d2 log(N/d)). We only present a
couple of them here.

1 Concatenating a random code with the identity code

Let q,N, d, n be integers such that q > d, and qn ≥ N . Let Cin be the identity code IDq. Let Cout be a
random code of length n, size N , alphabet [q] constructed as follows. We randomly select each codeword
c of Cout by picking uniformly a random symbol from [q] for each position of c independently. Let M =
Cout ◦Cin. We bound the probability that M is not d-disjunct. Let j0, . . . , jd be a fixed set of d+ 1 columns
of M. Then,

Prob[codeword Mj0 is covered by Mj1 , . . . ,Mjd ] ≤ (d/q)n.

Thus, by the union bound

Prob[M is not d-disjunct] ≤ (d+ 1)
(

N

d+ 1

)
(d/q)n.

The following proposition is thus proved.

Proposition 1.1. Let q,N, d, n be integers such that q > d and qn ≥ N . If

(d+ 1)
(

N

d+ 1

)
(d/q)n < 1

then there exists a d-disjunct matrix with qn rows and N columns.

Corollary 1.2. We have the following upper bound for t(d,N):

t(d,N) = O(d2 log(N/d)).

Proof. Pick q = 2d, and n = 2(d + 2) log(N/(d + 1)) + 1. Without loss of generality we can assume
e ≤ N/(d+ 1) and (d+ 1) ≤ (N/(d+ 1))2. Observe that

(d+1)
(

N

d+ 1

)
≤ (d+1)(Ne/(d+1))d+1 ≤ (N/(d+1))2+2(d+1) = 22(d+2) log(N/(d+1)) < 2n = (q/d)n.

Open Problem 1.3. The upperbound O(d2 log(N/d)) is only slightly larger than the best known lower
bound Ω(d22 logN/ log d) that we have proved in the previous lecture. Closing this gap is the major open
question in group testing theory.
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2 Connection to the k-RESTRICTION problem

2.1 The k-RESTRICTION problem

Alon-Moshkovitz-Safra [1] pointed out that constructing d-disjunct matrices is a special case of the k-
RESTRICTION problem, and showed that their derandomization result on the k-restriction problem can be
used to construct d-disjunct matrices in time NO(d); unfortunately, this is not polynomial time for super-
constant d. We present their construction here.

We will only need the binary version of the k-RESTRICTION problem, which is defined as follows. The
input to the problem is an alphabet Σ = {0, 1}, a length N , and a set of m possible demands fi : Σk →
{0, 1}, 1 ≤ i ≤ m. For every demand fi, there is at least one vector a = (a1, . . . , ak) ∈ Σk such that
fi(a) = 1 (in words, fi “demands” vector a). In English, every demand fi “demands” a non-empty subset
of vectors from Σk. A feasible solution to the problem is a subset T ⊆ ΣN such that: for any choice of k
indices 1 ≤ j1 < j2 < · · · < jk ≤ N , and any demand fi, there is some vector v = (v1, . . . , vN ) ∈ T
such that the projection of v onto those k indices satisfies demand fi; namely, fi(vj1 , vj2 , . . . , vjk) = 1.
The objective is to find a feasible solution T with minimum cardinality. Alon, Moshkovitz, and Safra gave
a couple of algorithmic solutions to the k-restriction problems. In order to describe their results, we need a
few more concepts.

Given a distribution D : ΣN → [0, 1], the density of a k-RESTRICTION problem with respect to D is

ε := min
1≤j1<···<jk≤N

1≤i≤m

{
Prob
v←D

[fi(vj1 , vj2 , . . . , vjk) = 1]
}

In words, for any k positions j1, . . . , jk, and any demand fi, if we pick a vector v from ΣN at random
according to D then the projection of v onto those k positions satisfies fi with probability at least ε.

Exercise 1. Show that every k-RESTRICTION problem has density at least 1/2k with respect to the uniform
distribution.

Exercise 2. Show that, every k-RESTRICTION problem with density ε with respect to some probability
distribution D has a solution of size at most

⌈
k lnN+lnm

ε

⌉
.

2.2 Disjunct matrices as a k-RESTRICTION problem

We can view the problem of constructing a d-disjunct matrix as the problem of finding a solution to a special
case of the k-RESTRICTION problem. We will set k = d+ 1 and m = d+ 1. There are m = d+ 1 demands
fi : Σd+1 → {0, 1} defined as follows:

fi(a) = fi(a1, . . . , ad+1) = ai ∧ a1 ∧ · · · ai−1 ∧ ai+1 ∧ · · · ad+1.

It is not hard to see that any solution T to the above instance of k-RESTRICTION form the rows of a |T |×N
matrix M which is d-disjunct.

From the above two exercises, we know there exist t×N d-disjunct matrices withO(2dd ln(Nd)) rows.
This number is too large compared to the random code concatenation technique we saw in the previous
section. It turns out, however, that there are better distributions than the uniform distribution for the group
testing problem. The density of the k-RESTRICTION problem can be much larger than 1/2d+1.
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2.3 Derandomization

The restriction Dj1,...,jk of a distribution D on ΣN to indices j1, . . . , jk is defined by

Dj1,...,jk(a) := Prob
v←D

[vj1 = a1 ∧ · · · ∧ vjk = ak]

Two distribution P,Q on ΣN are said to be k-wise ε-close if, for any 1 ≤ j1 < j2 < · · · < jk ≤ n,
‖Pj1,...,jk − Qj1,...,jk‖1 < ε. The support of a distribution on ΣN is the number of members of ΣN which
have positive probabilities. Finally, a distribution D on ΣN is said to be k-wise efficiently approximable if
the support of a distribution P which is k-wise ε-close to D can be enumerated in time poly(N, 1

ε , 2
k).

One of the main results from [1] is the following.

Theorem 2.1 (Alon-Moshkovitz-Safra [1]). Fix some k-wise efficiently approximable distributionD on ΣN .
For any k-restriction problem with density ε with respect to D, there is an algorithm that, given an instance
of the problem and a constant parameter 0 < δ < 1, obtains a solution T of size at most dk lnN+lnm

(1−δ)ε e in

time poly(m,Nk, 2k, 1
ε ,

1
δ ).

A distribution D on ΣN = {0, 1}N is called a product distribution if all coordinates are independent
Bernoulli variables. (Coordinate i is 1 with probability pi for some fixed pi.)

Theorem 2.2 (Even-Goldreich-Luby-Nisan-Velic̆ković [2]). Any product distribution on ΣN is k-wise effi-
ciently approximable.

Theorem 2.3. Given positive integers n ≥ d + 1, let ε0 =
(

1
d+1

)(
d
d+1

)d
. Then, a t × N d)-disjunct

matrix can be constructed so that t =
⌈

2(d+1) lnN+2 ln(d+1)
ε0

⌉
in time poly

(
Nd, 1

ε

)
. In particular, since(

d
d+1

)d
is a descreasing function in d (whose limit is 1/e), we know ε0 ≥ 1

e(d+1) , which means t ≤
2e(d+ 1)2 lnN + 2e(d+ 1) ln(d+ 1).

Proof. From the previous section we know how to cast the problem of constructing a d-disjunct matrix as a
special case of the k-RESTRICTION problem. Next, let D be the product distribution on {0, 1}N defined by
setting each coordinate to be 1 with probability p to be determined. Then, D is k-wise efficiently approx-
imable by Theorem 2.2. Fix 1 ≤ j1 < j2 < · · · < jk ≤ n and any demand fi. Choose any vector v from
{0, 1}N according to D. The projection of v onto coordinates j1, . . . , jk “satisfies” fi with probability

ε(p) = p (1− p)d .

The density ε(p) is maximized at p0 = 1/(d+ 1). Set ε0 = ε(p0), δ = 1/2, and apply Theorem 2.1.

References
[1] N. ALON, D. MOSHKOVITZ, AND S. SAFRA, Algorithmic construction of sets for k-restrictions, ACM Trans. Algorithms, 2

(2006), pp. 153–177.

[2] G. EVEN, O. GOLDREICH, M. LUBY, N. NISAN, AND B. VELIC̆KOVIĆ, Efficient approximation of product distributions,
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