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Basic bounds for list disjunct and list separable matrices

1 Lower bounds

Recall that in the last lecture we have shown (in an exercise) that a (d, ¢)-list-separable matrix is a (d — 1, ¢)-
list-disjunct matrix, and a (d, ¢)-list-disjunct matrix is (d, ¢)-list-separable. Hence, the optimal number of
rows of a list-disjunct and a list-separable matrices are asymptotically the same. Thus, we shall only study
the optimal number of rows of a list-disjunct matrices.

Lett(d, ¢, N') denote the minimum number of rows of a (d, ¢)-list-disjunct matrix with N columns. This
lecture derives a couple of upper and lower bounds for this function.

Proposition 1.1 (Proposition 2 in [4]). . Given positive integers N > d + {, we have

1
#(d, 6, N) > log @7) ~log <d+§ )

Exercise 1. Prove Proposition 1.1.

The following lower bound for (d, ¢)-list-disjunct matrices is better than the similar bound proved in [3]
in two ways: (1) the actual bounds are slightly better, and (2) the bound in [3] requires a precondition that
n > d? /(4¢) while ours does not. We make use of the argument from Erd&s-Frankl-Fiiredi [5, 6], while [3]
uses the argument from Ruszinké [7] as presented in Alon-Asodi [1].

Lemma 1.2. Forany N, d,{ with N > d + ¥, we have

t(d, ¢, N) > dlog <d+¢_1> . )

When d > 2/, the following bound holds
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Proof. Proposition 1.1 leads to (1) straightforwardly:
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Consider the case when d > 2¢. Let M be at x N (d, £)-list-disjunct matrix. Fix a positive integer w < ¢
to be determined later. Let C denote the collection of all columns of M, and think of C as a set family on [t].
Then, C satisfies the property that the union of any £ members of C is not covered by the union of any other



d members of C. For any C € C, a subset X C C'is called a private subset of C' if X is not a subset of any
other C’ in C. Partition C into three sub-collections

C=C%,UCT, Ul

defined as follows.

szw := {C €eC : |C|>wand C has a private w-subset}
cY, = {CeC : |C]>wandC has no private w-subset}
Ccww == {CeC :|C]<w}.

We make three claims.
Claim 1. If w < ¢/2 then [C2, | + | 1552 | < (!).

Claim 2. Let C4,---,Cy be any ¢ different members of Cgpw. For any integer j < d/¢ — 1 and any
sub-collection D C C\ {C4, - -- , Cy} such that |D| = j¢, we have
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Claim 3. If w > 2L then |C2 | <d 40— 1.

Let us complete the proof of the lemma before proving the claims. Set w = {%1. Then,

w < t/2 when d > 2¢. Note that w < w = W and the function (te/w)" is increasing in w when
w € [0,¢]. From Claims 1 and 3,

N=ic| = (I& \+rc<w|)+\c
< (( VC;”|J>+(5—1))+d+£—1
</ >+d+2€—2
< A(te/w)” +d+20—2
< A(te/w)” +d+ 20— 2.
Inequality (2) follows.

We now prove Claim 1. Let P; be a collection of private w-subsets of sets in ng such that P; contains
exactly one private w-subset per set in ng. Let £ be an arbitrary sub-collection of exactly ¢ different
members of C,, namely £ C C,, and |£| = £. Then, there must exist C' € £ such that such that C' is not
a subset of any set in P; UC«,, \ L. Otherwise, the union of sets in £ will be covered by the union of at most
¢ < d sets in C. We refer to such C' as a representative of L. For each L, pick an arbitrary representative

of L to be the representative of L. Partition C,, into UCLZ“J'

J sub-collections of cardinalities ¢ each, plus
possibly one extra sub-collection whose size is less than £. Let Py be the set of the representatives of the

first UCQ”'J sub-collections. Then, P; U Pa is a Sperner family, each of whose members is of cardinality

at most w. For w < ¢/2, it is well-known (see, e.g., [2]) that |P; U P,| < (}). Noting that |Ps| = UC@'J
and [Py| = |C2 |, Claim 1 follows.



Next, we prove Claim 2. Assume for the contrary that
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for some D and j satisfying the conditions in the claim. For every i € [¢], define

C! = CZ\ U DUCT - -UC;_.
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Then,
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Partition C’{ into x; parts of size w each and one part of size y; < w — 1. First, assume Zle y; > 0, then
Zle z; < d—(j+1)¢. Because C; has no private w-subset (and thus no private y;-subset), the set C/ can be
covered by at most z;+1 other sets in C. The union | ;¢ C! can be covered by at most Zle i+l < d—jl
sets in C. Those d — j¢ sets covering the C/ along with j¢ sets in D cover the ¢ sets C;, 4 € [¢], which is a
contradiction. Second, when Zle y; = 0 we only need Zle x; <d—(j+1)f+1 < d— jlsets to cover
the C/. The same contradiction is reached.

Finally we prove Claim 3. Suppose |C2 | > d + (. Consider d + ¢ sets C1,...,Cyi¢ in C2, . For
j=0,1,---,1d/t] —1,define D; = {C,---,Cj¢}. (Dy = (.) Then, noting Claim 2, we have
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which contradicts the assumption that w > %. 0

2 Probabilistic upper bound and an application

Theorem 2.1. Given positive integers N > d + £. Then,

d N
< — .
t(d,¢,N) < 2d<€ —i—l) <logd+£+1>




Proof. Fix positive integers n, g to be determined. Let M be the concatenation of the random code Cyy
and the identity code Cj, = ID,. The random code is of length n, each of whose codewords is chosen by
setting each position to be a uniformly chosen symbol from an alphabet X of size q.

Suppose M is not (d, £)-list-disjunct, then there exist two disjoint sets of columns S, 7" of M such that
S = ¢ and T = d such that the union of columns in S is contained in the union of columns in 7. We call
this pair (S,T) bad for M. The columns in S and 7" correspond to two sets of codewords. Overloading
notations, let S and T" denote the two sets of codewords.

For each position ¢ € [n], let T; and S; denote the set of symbols which the codewords in 7" and S have
at that position, respectively. Then, the union of columns in S is contained in the union of columns in 7" if
and only if for every position ¢ we have S; C T;. For a fixed i € [n], the probability that S; C T; is at most
(d/q)’. Hence, the probability that S; C T; for all i € [n] is at most (d/q)’™. Overall, the probability that a
fixed pair (S, T) is bad for M ist at most (d/q)"".

Pick n =2 (% + 1) (log di_w + 1), q = 3d > ed, and taking the union bound over all choices of S and
T, we obtain

Prob[M is not (d, £)-list-disjunct] = Prob[some pair (.5, T") is bad for M]
< Z Prob[the pair (S, T") is bad for M|
ST
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Corollary 2.2. When ¢ = Q(d), we do have a nice reduction in the number of tests compared to the d-
disjunct case:

t(d, (d), N) = O(dlog(N/d)).

Corollary 2.3 (Optimal adaptive group testing). Consider the adaptive group testing problem where the
tests are performed in stages: the next test can be designed after seeing the result of the previous test(s).
Then, the optimal number of tests is ©(dlog(N/d)).
Proof. For any adaptive group testing scheme, there are Z?:o (]27 ) = 28(dlog(N/d)) possible candidate
sets of positives. With ¢ tests we can only distinguish at most 2! candidate positive sets. Hence, t =
Q(dlog(N/d)). This type of argument is called the information theoretic reasoning.

A two stage group testing scheme with O(dlog(N/d)) tests can be designed as follows. We first use
a (d, d)-list-disjunct matrix to identify a set of at most 2d — 1 items including all the positives. Then, an
identity matrix of order 2d is used for the second stage to identify precisely the positives. O
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