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Basic bounds for list disjunct and list separable matrices

1 Lower bounds

Recall that in the last lecture we have shown (in an exercise) that a (d, `)-list-separable matrix is a (d−1, `)-
list-disjunct matrix, and a (d, `)-list-disjunct matrix is (d, `)-list-separable. Hence, the optimal number of
rows of a list-disjunct and a list-separable matrices are asymptotically the same. Thus, we shall only study
the optimal number of rows of a list-disjunct matrices.

Let t(d, `,N) denote the minimum number of rows of a (d, `)-list-disjunct matrix with N columns. This
lecture derives a couple of upper and lower bounds for this function.

Proposition 1.1 (Proposition 2 in [4]). . Given positive integers N ≥ d + `, we have

t(d, `,N) ≥ log
(

N

d

)
− log

(
d + `− 1

d

)
.

Exercise 1. Prove Proposition 1.1.

The following lower bound for (d, `)-list-disjunct matrices is better than the similar bound proved in [3]
in two ways: (1) the actual bounds are slightly better, and (2) the bound in [3] requires a precondition that
n > d2/(4`) while ours does not. We make use of the argument from Erdős-Frankl-Füredi [5, 6], while [3]
uses the argument from Ruszinkó [7] as presented in Alon-Asodi [1].

Lemma 1.2. For any N, d, ` with N ≥ d + `, we have

t(d, `,N) > d log
(

n

d + `− 1

)
. (1)

When d ≥ 2`, the following bound holds

t(d, `,N) >
bd/`c(d + 2− `)

2 log (ebd/`c(d + 2− `)/2)
log
(

N − d− 2` + 2
`

)
. (2)

Proof. Proposition 1.1 leads to (1) straightforwardly:

t(d, `,N) ≥ log

( (
N
d

)(
d+`−1

d

)) = log
N · · · (N − d + 1)
(d + `− 1) · · · `

≥ log
(

N

d + `− 1

)d

= d log
N

d + `− 1
.

Consider the case when d ≥ 2`. Let M be a t ×N (d, `)-list-disjunct matrix. Fix a positive integer w ≤ t
to be determined later. Let C denote the collection of all columns of M, and think of C as a set family on [t].
Then, C satisfies the property that the union of any ` members of C is not covered by the union of any other
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d members of C. For any C ∈ C, a subset X ⊆ C is called a private subset of C if X is not a subset of any
other C ′ in C. Partition C into three sub-collections

C = Cp
≥w ∪ C

np
≥w ∪ C<w

defined as follows.

Cp
≥w := {C ∈ C : |C| ≥ w and C has a private w-subset}
Cnp
≥w := {C ∈ C : |C| ≥ w and C has no private w-subset}
C<w := {C ∈ C : |C| < w} .

We make three claims.
Claim 1. If w ≤ t/2 then |Cp

≥w|+
⌊
|C<w|

`

⌋
≤
(

t
w

)
.

Claim 2. Let C1, · · · , C` be any ` different members of Cnp
≥w. For any integer j ≤ d/` − 1 and any

sub-collection D ⊆ C \ {C1, · · · , C`} such that |D| = j`, we have∣∣∣∣∣⋃̀
i=1

Ci \
⋃

D∈D
D

∣∣∣∣∣ ≥ (d− (j + 1)` + 1)w + 1. (3)

Claim 3. If w ≥ 2(t−bd/`c)
bd/`c(d+2−`) , then |Cnp

≥w| ≤ d + `− 1.

Let us complete the proof of the lemma before proving the claims. Set w =
⌈

2(t−bd/`c)
bd/`c(d+2−`)

⌉
. Then,

w ≤ t/2 when d ≥ 2`. Note that w < w̄ = 2t
bd/`c(d+2−`) and the function (te/w)w is increasing in w when

w ∈ [0, t]. From Claims 1 and 3,

N = |C| =
(
|Cp
≥w|+ |C<w|

)
+ |Cnp

≥w|

≤
(

`

(
|Cp
≥w|+

⌊
|C<w|

`

⌋)
+ (`− 1)

)
+ d + `− 1

≤ `

(
t

w

)
+ d + 2`− 2

≤ `(te/w)w + d + 2`− 2
≤ `(te/w̄)w̄ + d + 2`− 2.

Inequality (2) follows.
We now prove Claim 1. Let P1 be a collection of private w-subsets of sets in Cp

≥w such that P1 contains
exactly one private w-subset per set in Cp

≥w. Let L be an arbitrary sub-collection of exactly ` different
members of C<w, namely L ⊆ C<w and |L| = `. Then, there must exist C ∈ L such that such that C is not
a subset of any set in P1∪C<w \L. Otherwise, the union of sets in L will be covered by the union of at most
` ≤ d sets in C. We refer to such C as a representative of L. For each L, pick an arbitrary representative
of L to be the representative of L. Partition C<w into

⌊
|C<w|

`

⌋
sub-collections of cardinalities ` each, plus

possibly one extra sub-collection whose size is less than `. Let P2 be the set of the representatives of the
first

⌊
|C<w|

`

⌋
sub-collections. Then, P1 ∪ P2 is a Sperner family, each of whose members is of cardinality

at most w. For w ≤ t/2, it is well-known (see, e.g., [2]) that |P1 ∪ P2| ≤
(

t
w

)
. Noting that |P2| =

⌊
|C<w|

`

⌋
and |P1| = |Cp

≥w|, Claim 1 follows.
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Next, we prove Claim 2. Assume for the contrary that∣∣∣∣∣⋃̀
i=1

Ci \
⋃

D∈D
D

∣∣∣∣∣ ≤ (d− (j + 1)` + 1)w

for some D and j satisfying the conditions in the claim. For every i ∈ [`], define

C ′i := Ci \
⋃

D∈D
D ∪ C1 · · · ∪ Ci−1.

xi :=
⌊
|C ′i|
w

⌋
yi := |C ′i| mod w.

Then,

(d− (j + 1)` + 1)w ≥

∣∣∣∣∣⋃̀
i=1

Ci \
⋃

D∈D
D

∣∣∣∣∣ =
∑̀
i=1

|C ′i| =
∑̀
i=1

(xiw + yi) = w

(∑̀
i=1

xi

)
+
∑̀
i=1

yi.

Partition C ′i into xi parts of size w each and one part of size yi ≤ w − 1. First, assume
∑`

i=1 yi > 0, then∑`
i=1 xi ≤ d−(j+1)`. Because Ci has no private w-subset (and thus no private yi-subset), the set C ′i can be

covered by at most xi+1 other sets in C. The union
⋃

i∈[`] C
′
i can be covered by at most

∑`
i=1 xi+` ≤ d−j`

sets in C. Those d − j` sets covering the C ′i along with j` sets in D cover the ` sets Ci, i ∈ [`], which is a
contradiction. Second, when

∑`
i=1 yi = 0 we only need

∑`
i=1 xi ≤ d− (j + 1)` + 1 ≤ d− j` sets to cover

the C ′i. The same contradiction is reached.
Finally we prove Claim 3. Suppose |Cnp

≥w| ≥ d + `. Consider d + ` sets C1, . . . , Cd+` in Cnp
≥w. For

j = 0, 1, · · · , bd/`c − 1, define Dj = {C1, · · · , Cj`}. (D0 = ∅.) Then, noting Claim 2, we have

t ≥
d+⋃̀
i=1

Ci

≥
bd/`c−1∑

j=0

∣∣∣∣∣∣
(j+1)`⋃
i=j`+1

Ci \ Dj

∣∣∣∣∣∣+

∣∣∣∣∣
d+⋃̀

i=d+1

Ci \
d⋃

i=1

Ci

∣∣∣∣∣
≥

bd/`c−1∑
j=0

[(
d− (j + 1)` + 1

)
w + 1

]
+ 1

= wbd/`c [d + 1− `(bd/`c+ 1)/2] + bd/`c+ 1

≥ 1
2
wbd/`c(d + 2− `) + bd/`c+ 1,

which contradicts the assumption that w ≥ 2(t−bd/`c)
bd/`c(d+2−`) .

2 Probabilistic upper bound and an application

Theorem 2.1. Given positive integers N ≥ d + `. Then,

t(d, `,N) ≤ 2d

(
d

`
+ 1
)(

log
N

d + `
+ 1
)

.
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Proof. Fix positive integers n, q to be determined. Let M be the concatenation of the random code Cout

and the identity code Cin = IDq. The random code is of length n, each of whose codewords is chosen by
setting each position to be a uniformly chosen symbol from an alphabet Σ of size q.

Suppose M is not (d, `)-list-disjunct, then there exist two disjoint sets of columns S, T of M such that
S = ` and T = d such that the union of columns in S is contained in the union of columns in T . We call
this pair (S, T ) bad for M. The columns in S and T correspond to two sets of codewords. Overloading
notations, let S and T denote the two sets of codewords.

For each position i ∈ [n], let Ti and Si denote the set of symbols which the codewords in T and S have
at that position, respectively. Then, the union of columns in S is contained in the union of columns in T if
and only if for every position i we have Si ⊆ Ti. For a fixed i ∈ [n], the probability that Si ⊆ Ti is at most
(d/q)`. Hence, the probability that Si ⊆ Ti for all i ∈ [n] is at most (d/q)`n. Overall, the probability that a
fixed pair (S, T ) is bad for M ist at most (d/q)`n.

Pick n = 2
(

d
` + 1

) (
log N

d+` + 1
)

, q = 3d ≥ ed, and taking the union bound over all choices of S and
T , we obtain

Prob[M is not (d, `)-list-disjunct] = Prob[some pair (S, T ) is bad for M]

≤
∑
S,T

Prob[the pair (S, T ) is bad for M]

≤
(

N

d + `

)(
d + `

`

)
(d/q)`n

≤ exp
(

(d + `) ln
Ne

d + `
+ ` ln

(d + `)e
`

− `n

)
< 1.

Corollary 2.2. When ` = Ω(d), we do have a nice reduction in the number of tests compared to the d-
disjunct case:

t(d, Ω(d), N) = O(d log(N/d)).

Corollary 2.3 (Optimal adaptive group testing). Consider the adaptive group testing problem where the
tests are performed in stages: the next test can be designed after seeing the result of the previous test(s).
Then, the optimal number of tests is Θ(d log(N/d)).

Proof. For any adaptive group testing scheme, there are
∑d

i=0

(
N
i

)
= 2Ω(d log(N/d)) possible candidate

sets of positives. With t tests we can only distinguish at most 2t candidate positive sets. Hence, t =
Ω(d log(N/d)). This type of argument is called the information theoretic reasoning.

A two stage group testing scheme with O(d log(N/d)) tests can be designed as follows. We first use
a (d, d)-list-disjunct matrix to identify a set of at most 2d − 1 items including all the positives. Then, an
identity matrix of order 2d is used for the second stage to identify precisely the positives.
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