
CSE 709: Compressed Sensing and Group Testing. Part I Lecturers: Hung Q. Ngo and Atri Rudra
SUNY at Buffalo, Fall 2011 Last update: October 13, 2011

A recursive construction of efficiently decodable list-disjunct matrices

The method described here is from Ngo-Porat-Rudra [1].

1 Main idea

Let M be a t×N (d, `)-list-disjunct matrix. Given a test outcome vector y ∈ {0, 1}t, the naive decoder can
identify the setRy of items which contains all the positives plus< ` negative items in timeO(tN). From the
probabilistic proof in the previous lecture, we also know that we can achieve t = O(d2/` log(N/(d+ `))).
For small d and `, most of the running time of the naive decoding algorithm is “spent” on the linear term N .
How do we reduce the running time down to sub-linear? Say even as high as Õ(poly(d) ·

√
N)?

For concreteness, let us consider a special case when d = `. For every d ≤ N/2, there exists a (d, d)-
list-disjunct matrix with t = O(d log(N/d)) rows which is decodable in time O(Nd log(N/d)). We shall
use this knowledge to construct a (d, d)-list-disjunct matrix which is decodable in sub-linear time as follows.

Imagine putting all N blood samples on a
√
N ×

√
N grid. Let us index the samples by pairs [r, c] for

integers 1 ≤ c, r ≤
√
N . Every row and every column contains exactly

√
N blood samples each. For each

column c, create a “column sample” labeled [∗, c] by pooling together all samples [r, c] for r ∈ [
√
N]. We

thus have
√
N column samples [∗, c], each of which is a set of

√
N individual samples. Similarly, we have√

N “row samples” labeled [r, ∗] for r ∈ [
√
N]. A column/row sample is said to be positive if it contains at

least one positive sample.
Now, let Mh (h is for horizontal) and Mv (v) is for vertical) be two t1×

√
N (d, d)-list-disjunct matrices.

Let M∗ be any t2 × N (d, d)-list-disjunct matrix. We use Mv to test the column samples, use Mh to test
the row samples, and use M∗ to test the normal samples. In total, we have t = 2t1 + t2 (perhaps adaptive)
tests.

After running the naive decoding algorithm on Mv and Mh in time O(t1
√
N), we can identify a set C

of less than 2d column samples [∗, c] which contain all the positive column samples; and, we can identify a
set R of less than 2d row samples [r, ∗] which contain all the positive row samples. The positive individual
samples must lie in the intersection of the columns C and the rows R. There are totally 2d × 2d candidate
samples in the intersections. Thus, we have narrowed down N to a set of at most 4d2 samples.

Finally, we run the naive decoding algorithm on M∗ restricted only to these 4d2 samples to get a set of
at most 2d candidates. The running time of the decoding algorithm on M∗ is only t × (4d2). In total, the
running time is O(t1

√
N + td2). Since we can achieve t1 = O(d log(

√
N/d)) and t2 = O(d log(N/d)),

the total decoding time is about O((d
√
N + d3) log(N/d)), which is sublinear in N for small d.

2 Turning the idea into a non-adaptive system

We want a non-adaptive group testing strategy. The idea described above does not work as is. What we need
is a single t×N matrix which is (d, d)-list-disjunct, not a few matrices of different dimensions. How do we

1

realize the idea of testing column samples and row samples? It turns out we only need the structures of the
matrices Mv,Mh, but we do not need to use them directly.

From the matrix Mv – which again is of dimension t1 ×
√
N – construct a matrix M∗

v of dimension
t1 ×N as follows. Each row i of M∗

v represents a test (pool) of Mv. If the test i in Mv contains a column
sample [∗, c] then we put all items labeled [r, c] in the ith test of M∗

v. In other words, there is a 1 in row i
and column [r, c] of M∗

v if and only if there is a 1 in row i and column [∗, c] of Mv. It is not hard to see that
a test using M∗

v turns positive if and only if the corresponding test using Mv (on the column samples) turns
positive. Similarly, we construct the matrix M∗

h of dimension t1 ×N . Our final group testing matrix M is
constructed by stacking vertically three matrices M∗

v,M
∗
h, and M∗, for a total of t = 2t1 + t2 rows.

The decoding strategy is to use the rest results corresponding to the rows of M∗
h and M∗

v to identify a
set of at msot 4d2 candidate columns of M, and then run the naive decoder on the M∗ part restricted to
these 4d2 columns. The total decoding time is O(t1

√
N + d2t2). Formally, the above reasoning leads to the

following lemma.

Lemma 2.1. Let d be a positive integer. Suppose for N ≥ d2, there exists a (d, d)-list-disjunct matrix
M√

N of size t(d,
√
N) ×

√
N which can be decoded in time D(d,

√
N); and, there exists a (d, d)-list-

disjunct matrix M∗ of size t∗(d,N)×N . Then, there exists a (d, d)-list-disjunct matrix MN with

t(d,N) = 2t(d,
√
N) + t∗(d,N)

rows and N columns which can be decoded in time

D(d,N) = 2D(d,
√
N) + 4d2 · t∗(d,N).

Next, we apply the above lemma recursively. Let us apply recursion a few times to see the pattern.
First, from the probabilistic method proof we discussed in a previous lecture, we know there exists an
absolute constant c such that, for every d ≤ N , there is a (d, d)-list-disjunct matrix M∗(d,N) of dimension
t∗(d,N)×N where t∗(d,N) = cd log2(N/d).

• When N = d2, let M√
N = Md be the d × d identity matrix which is certainly (d, d)-list-disjunct

with t(d, d) = d rows and which can be decoded in time D(d, d) = d. Now, using M∗(d, d) and the
lemma, we obtain a matrix Md2 with dimension t(d, d2)× d2 and decoding time D(d, d2), where

t(d, d2) = 2d+ cd log d
D(d, d2) = 2d+ (4d2) · cd log d

• When N = d4, applying the lemma using M√
N = Md2 just constructed above, we obtain

t(d, d4) = 4d+ 2cd log(d) + cd log(d3)
D(d, d4) = 4d+ 8cd3 log d+ (4d2) · cd log(d3)

• Generally, for N = d2i we have the following recurrences

t(d, d2i) = 2t(d, d2i−1
) + cd log(d2i−1)

D(d, d2i) = 2D(d, d2i−1
) + 4cd3 log(d2i−1).

The base case is when i = 0, where we have t(d, d) = d and D(d, d) = d.

2

When N = d2i , note that 2i = logdN and i = log logdN . To solve for t(d, d2i), we iterate the recursion as
follows.

t(d, d2i) = 2t(d, d2i−1
) + cd log(d2i−1)

= 2t(d, d2i−1
) + (2i − 1)cd log d

= 2
[
2t(d, d2i−2

) + (2i−1 − 1)cd log d
]

+ (2i − 1)cd log d

= 4t(d, d2i−2
) + [2 · 2i − (1 + 2)]cd log d

= 4
[
2t(d, d2i−3

) + (2i−2 − 1)cd log d
]

+ [2 · 2i − (1 + 2)]cd log d

= 8t(d, d2i−3
) + [3 · 2i − (1 + 2 + 4)]cd log d

= . . .

= 2it(d, d) + [i2i − (1 + 2 + 4 + · · ·+ 2i−1)]cd log d
= 2it(d, d) + [i2i − 2i + 1]cd log d
≤= 2it(d, d) + [i2i − i]cd log d
= d logdN + (log logdN) · cd log(N/d).

For d ≥ 2, obviously logdN = O(log(N/d). Hence,

t(d, d2i) = O ((log logdN) · d log(N/d)) .

What about the case when N 6= d2i for some integer i? For N ≥ d2, let i = dlog logdNe , then d2i−1
<

N ≤ d2i . This means i < log logdN + 1. We construct MN by removing from M
d2i

arbitrarily d2i −N
columns. The resulting matrix can be operated on as if those removed columns were all negative items. It is
not hard to see that

t(d,N) = O ((log logdN) · d log(N/d)) .

What is really nice about this result is that we now have an efficiently decodable (d, d)-list-disjunct matrix
MN for every N ≥ d2 whose number of rows is only brown up from the optimal O(d log(N/d)) by a
doulbe-log factor of log logdN .

Exercise 1. Using the above recurrence, show that

D(t,N) = O
(
(log logdN)d3 log(N/d)

)
.

The above analysis leads to the following result.

Theorem 2.2. For any positive integers d < N , there exists a (d, d)-list-disjunct matrix M with

t = O ((log logdN) · d log(N/d))

rows and N columns. Furthermore, M can be decoded in time

O
(
(log logdN) · d3 log(N/d)

)
.

3

3 Generalizing the main idea

The above ideas can be greatly generalized. The following section can be skipped without losing much of
the intuition behind the results.

Theorem 3.1. Let n ≥ d ≥ 1 be integers. Assume for every i ≥ d, there is a (d, `)-list disjunct t(i) × i
matrix Mi for integers 1 ≤ ` ≤ n − d. Let 1 ≤ a ≤ log n and 1 ≤ b ≤ log n/a be integers. Then there
exists a ta,b × n matrix Ma,b that is (d, `)-list disjunct that can be decoded in time Da,b where

ta,b =
dlogb(logn

a)e−1∑
j=0

bj · t
(
bj
√
n
)

(1)

and

Da,b = O

(
ta,b ·

(
log n · 2a

a
+ (d+ `)b

))
. (2)

Finally, if the family of matrices {Mi}i≥d is (strongly) explicit then so is Ma,b.

Proof. We will construct the final matrix Ma,b recursively. In particular, let such a matrix in the recursion
with N columns be denoted by Ma,b(N). Note that the final matrix is Ma,b = Ma,b(n). (For notational
convenience, we will define Da,b(N) and ta,b(N) to be the decoding time for and the number of rows in
Ma,b(N) respectively). Next, we define the recursion.

If N ≤ 2a, then set Ma,b(N) = MN . Note that in this case, ta,b(N) = t(N). Further, we will use
the naive decoder in the base case, which implies that Da,b(N) = O(ta,b(N) ·N) ≤ O(2a · ta,b(N)). It is
easy to check that both (1) and (2) are satisfied. Finally because MN is a (d, `)-list disjunct matrix, so is
Ma,b(N).

Now consider the case when N > 2a. For i ∈ [b], define M(i) to be the ta,b(
b
√
N) × N matrix whose

kth column (for k ∈ [N]) is identical to the mth column in Ma,b(
b
√
N) where m is the ith chunk of 1

b log n
bits in k (again, we think of k and m as their respective binary representations). Define Ma,b(N) to be the
stacking of M(1),M(2), . . . ,M(b) and MN . Since MN is a (d, `)-list disjunct matrix, so is Ma,b(N). Next,
we verify that (1) holds. To this end note that

ta,b(N) = b · ta,b(
b
√
N) + t(N). (3)

In particular, (by induction) all the M(i) contribute

b ·

‰
logb

„
log

b√
N

a

«ı
−1∑

j=0

bj · t
(

bj
√

b
√
N

)
=
dlogb(logN

a)e−1∑
j=1

bj · t
(
bj
√
N
)

rows. Since MN adds another t(N) rows, Ma,b(N) indeed satisfies (1). Finally, we consider the decoding
of Ma,b(N). The decoding algorithm is natural: we run the decoding algorithm for Ma,b(

b
√
N) (that is

guaranteed by induction) on the part of the (erroneous) outcome vector corresponding to each of the M(i)

(i ∈ [b]) to compute sets Si with the following guarantee: each of the at most d defective indices k ∈ [N]
projected to the ith chunk of 1

b log n is contained in Si. Finally, we run the naive decoding algorithm for

MN on S def
= S1 × S2 × · × Sb (note that by definition of Si all of the defective items will be in S). To

complete the proof, we need to verify that this algorithm takes time as claimed in (2). Note that

Da,b(N) = b ·Da,b(
b
√
N) +O (|S| · t(N)) .

4

By induction, we have

Da,b(
b
√
N) = O

(
ta,b(

b
√
N) ·

(
logN · 2a

a
+ (d+ `)b

))
,

and since Ma,b(
b
√
N) is a (d, `)-list disjunct matrix, we have

|S| ≤ (d+ `)b.

The three relations above along with (3) show that Da,b(N) satisfies (2), as desired.
Finally, the claim on explicitness follows from the construction.

The bound in (1) is somewhat unwieldy. We note in Corollary 3.2 that when t(i) = dx logy i for some
reals x, y ≥ 1, we can achieve efficient decoding with only a log-log factor increase in number of tests. We
will primarily use this result in our applications.

Note that in this case the bound in (1) can be bounded as

dlogb(logn
a)e−1∑

j=0

bj · dx ·
(

log n
bj

)y
≤
⌈
logb

(
log n
a

)⌉
· dx logy n.

Theorem 3.1 with b = 2 and a = log d, along with the observation above, implies the following:

Corollary 3.2. Let n ≥ d ≥ 1 be integers and x, y ≥ 1 be reals. Assume for every i ≥ d, there is a
(d, `)-list disjunct O(dx logy i)× i matrix for integers 1 ≤ ` ≤ n− d. Then there exists a t× n matrix that
is (d, `)-list disjunct that can be decoded in poly(t, `) time, where

t ≤ O (dx · logy n · log logd n) .

Finally, if the original matrices are (strongly) explicit then so is the new one.

In other words, the above result implies that we can achieve efficient decoding with only a log-log factor
increase in number of tests. We will primarily use the above result in our applications.

To show the versatility of Theorem 3.1 we present another instantiation. For any 0 ≤ ε ≤ 1, if we pick
a = b log(d+ `) and b = (log n/a)ε, we get the following result:

Corollary 3.3. Let n ≥ d ≥ 1 be integers and x, y ≥ 1, 0 < ε ≤ 1 be reals. Assume for every i ≥ d, there
is a (d, `)-list disjunct O(dx logy i)× i matrix for integers 1 ≤ ` ≤ n− d. Then there exists a t× n matrix
that is (d, `)-list disjunct that can be decoded in

poly(t, `) · 2
1+ε
√

logε n·log(d+`)

time, where

t ≤ O
(

1
ε
· dx logy n

)
.

Finally, if the original matrices are (strongly) explicit then so is the new one.

Note that the above result implies that with only a constant factor blow-up in the number of tests, one
can perform sub-linear in n time decoding when (d+ `) is polynomially small in n.

References
[1] H. Q. NGO, E. PORAT, AND A. RUDRA, Efficiently decodable error-correcting list disjunct matrices and applications -

(extended abstract), in ICALP (1), 2011, pp. 557–568.

5

