A recursive construction of efficiently decodable list-disjunct matrices

The method described here is from Ngo-Porat-Rudra [1].

1 Main idea

Let **M** be a $t \times N$ (d, ℓ) -list-disjunct matrix. Given a test outcome vector $\mathbf{y} \in \{0, 1\}^t$, the naive decoder can identify the set $R_{\mathbf{y}}$ of items which contains all the positives plus $< \ell$ negative items in time O(tN). From the probabilistic proof in the previous lecture, we also know that we can achieve $t = O(d^2/\ell \log(N/(d+\ell)))$. For small d and ℓ , most of the running time of the naive decoding algorithm is "spent" on the linear term N. How do we reduce the running time down to sub-linear? Say even as high as $\tilde{O}(\text{poly}(d) \cdot \sqrt{N})$?

For concreteness, let us consider a special case when $d = \ell$. For every $d \le N/2$, there exists a (d, d)-list-disjunct matrix with $t = O(d \log(N/d))$ rows which is decodable in time $O(Nd \log(N/d))$. We shall use this knowledge to construct a (d, d)-list-disjunct matrix which is decodable in sub-linear time as follows.

Imagine putting all N blood samples on a $\sqrt{N} \times \sqrt{N}$ grid. Let us index the samples by pairs [r, c] for integers $1 \le c, r \le \sqrt{N}$. Every row and every column contains exactly \sqrt{N} blood samples each. For each column c, create a "column sample" labeled [*, c] by pooling together all samples [r, c] for $r \in [\sqrt{N}]$. We thus have \sqrt{N} column samples [*, c], each of which is a set of \sqrt{N} individual samples. Similarly, we have \sqrt{N} "row samples" labeled [r, *] for $r \in [\sqrt{N}]$. A column/row sample is said to be positive if it contains at least one positive sample.

Now, let \mathbf{M}_h (*h* is for *horizontal*) and \mathbf{M}_v (*v*) is for *vertical*) be two $t_1 \times \sqrt{N}$ (*d*, *d*)-list-disjunct matrices. Let \mathbf{M}^* be any $t_2 \times N$ (*d*, *d*)-list-disjunct matrix. We use \mathbf{M}_v to test the column samples, use \mathbf{M}_h to test the row samples, and use \mathbf{M}^* to test the normal samples. In total, we have $t = 2t_1 + t_2$ (perhaps adaptive) tests.

After running the naive decoding algorithm on \mathbf{M}_v and \mathbf{M}_h in time $O(t_1\sqrt{N})$, we can identify a set C of less than 2d column samples [*, c] which contain all the positive column samples; and, we can identify a set R of less than 2d row samples [r, *] which contain all the positive row samples. The positive individual samples *must* lie in the intersection of the columns C and the rows R. There are totally $2d \times 2d$ candidate samples in the intersections. Thus, we have narrowed down N to a set of at most $4d^2$ samples.

Finally, we run the naive decoding algorithm on \mathbf{M}^* restricted only to these $4d^2$ samples to get a set of at most 2d candidates. The running time of the decoding algorithm on \mathbf{M}^* is only $t \times (4d^2)$. In total, the running time is $O(t_1\sqrt{N} + td^2)$. Since we can achieve $t_1 = O(d\log(\sqrt{N}/d))$ and $t_2 = O(d\log(N/d))$, the total decoding time is about $O((d\sqrt{N} + d^3)\log(N/d))$, which is sublinear in N for small d.

2 Turning the idea into a non-adaptive system

We want a non-adaptive group testing strategy. The idea described above does not work as is. What we need is a single $t \times N$ matrix which is (d, d)-list-disjunct, not a few matrices of different dimensions. How do we

realize the idea of testing column samples and row samples? It turns out we only need the *structures* of the matrices $\mathbf{M}_v, \mathbf{M}_h$, but we do not need to use them directly.

From the matrix \mathbf{M}_v – which again is of dimension $t_1 \times \sqrt{N}$ – construct a matrix \mathbf{M}_v^* of dimension $t_1 \times N$ as follows. Each row *i* of \mathbf{M}_v^* represents a test (pool) of \mathbf{M}_v . If the test *i* in \mathbf{M}_v contains a column sample [*, c] then we put *all* items labeled [r, c] in the *i*th test of \mathbf{M}_v^* . In other words, there is a 1 in row *i* and column [r, c] of \mathbf{M}_v^* if and only if there is a 1 in row *i* and column [*, c] of \mathbf{M}_v . It is not hard to see that a test using \mathbf{M}_v^* turns positive if and only if the corresponding test using \mathbf{M}_v (on the column samples) turns positive. Similarly, we construct the matrix \mathbf{M}_h^* of dimension $t_1 \times N$. Our final group testing matrix \mathbf{M} is constructed by stacking vertically three matrices $\mathbf{M}_v^*, \mathbf{M}_h^*$, and \mathbf{M}^* , for a total of $t = 2t_1 + t_2$ rows.

The decoding strategy is to use the rest results corresponding to the rows of \mathbf{M}_h^* and \mathbf{M}_v^* to identify a set of at most $4d^2$ candidate columns of \mathbf{M} , and then run the naive decoder on the \mathbf{M}^* part restricted to these $4d^2$ columns. The total decoding time is $O(t_1\sqrt{N} + d^2t_2)$. Formally, the above reasoning leads to the following lemma.

Lemma 2.1. Let d be a positive integer. Suppose for $N \ge d^2$, there exists a (d, d)-list-disjunct matrix $\mathbf{M}_{\sqrt{N}}$ of size $t(d, \sqrt{N}) \times \sqrt{N}$ which can be decoded in time $D(d, \sqrt{N})$; and, there exists a (d, d)-list-disjunct matrix \mathbf{M}^* of size $t^*(d, N) \times N$. Then, there exists a (d, d)-list-disjunct matrix \mathbf{M}_N with

$$t(d, N) = 2t(d, \sqrt{N}) + t^*(d, N)$$

rows and N columns which can be decoded in time

$$D(d, N) = 2D(d, \sqrt{N}) + 4d^2 \cdot t^*(d, N).$$

Next, we apply the above lemma recursively. Let us apply recursion a few times to see the pattern. First, from the probabilistic method proof we discussed in a previous lecture, we know there exists an absolute constant c such that, for every $d \leq N$, there is a (d, d)-list-disjunct matrix $\mathbf{M}^*(d, N)$ of dimension $t^*(d, N) \times N$ where $t^*(d, N) = cd \log_2(N/d)$.

• When $N = d^2$, let $\mathbf{M}_{\sqrt{N}} = \mathbf{M}_d$ be the $d \times d$ identity matrix which is certainly (d, d)-list-disjunct with t(d, d) = d rows and which can be decoded in time D(d, d) = d. Now, using $\mathbf{M}^*(d, d)$ and the lemma, we obtain a matrix \mathbf{M}_{d^2} with dimension $t(d, d^2) \times d^2$ and decoding time $D(d, d^2)$, where

$$t(d, d^2) = 2d + cd \log d$$

$$D(d, d^2) = 2d + (4d^2) \cdot cd \log d$$

• When $N = d^4$, applying the lemma using $\mathbf{M}_{\sqrt{N}} = \mathbf{M}_{d^2}$ just constructed above, we obtain

$$t(d, d^4) = 4d + 2cd \log(d) + cd \log(d^3)$$

$$D(d, d^4) = 4d + 8cd^3 \log d + (4d^2) \cdot cd \log(d^3)$$

• Generally, for $N = d^{2^i}$ we have the following recurrences

$$t(d, d^{2^{i}}) = 2t(d, d^{2^{i-1}}) + cd\log(d^{2^{i-1}})$$

$$D(d, d^{2^{i}}) = 2D(d, d^{2^{i-1}}) + 4cd^{3}\log(d^{2^{i-1}})$$

The base case is when i = 0, where we have t(d, d) = d and D(d, d) = d.

When $N = d^{2^i}$, note that $2^i = \log_d N$ and $i = \log \log_d N$. To solve for $t(d, d^{2^i})$, we iterate the recursion as follows.

$$\begin{split} t(d, d^{2^{i}}) &= 2t(d, d^{2^{i-1}}) + cd\log(d^{2^{i}-1}) \\ &= 2t(d, d^{2^{i-1}}) + (2^{i}-1)cd\log d \\ &= 2\left[2t(d, d^{2^{i-2}}) + (2^{i-1}-1)cd\log d\right] + (2^{i}-1)cd\log d \\ &= 4t(d, d^{2^{i-2}}) + [2 \cdot 2^{i} - (1+2)]cd\log d \\ &= 4\left[2t(d, d^{2^{i-3}}) + (2^{i-2}-1)cd\log d\right] + [2 \cdot 2^{i} - (1+2)]cd\log d \\ &= 8t(d, d^{2^{i-3}}) + [3 \cdot 2^{i} - (1+2+4)]cd\log d \\ &= \dots \\ &= 2^{i}t(d, d) + [i2^{i} - (1+2+4+\dots+2^{i-1})]cd\log d \\ &= 2^{i}t(d, d) + [i2^{i} - 2^{i} + 1]cd\log d \\ &\leq 2^{i}t(d, d) + [i2^{i} - i]cd\log d \\ &= d\log_{d} N + (\log\log_{d} N) \cdot cd\log(N/d). \end{split}$$

For $d \ge 2$, obviously $\log_d N = O(\log(N/d))$. Hence,

$$t(d, d^{2^{i}}) = O\left(\left(\log \log_{d} N\right) \cdot d \log(N/d)\right).$$

What about the case when $N \neq d^{2^i}$ for some integer *i*? For $N \geq d^2$, let $i = \lceil \log \log_d N \rceil$, then $d^{2^{i-1}} < N \leq d^{2^i}$. This means $i < \log \log_d N + 1$. We construct \mathbf{M}_N by removing from $\mathbf{M}_{d^{2^i}}$ arbitrarily $d^{2^i} - N$ columns. The resulting matrix can be operated on as if those removed columns were all negative items. It is not hard to see that

$$t(d, N) = O\left(\left(\log \log_d N\right) \cdot d \log(N/d)\right).$$

What is really nice about this result is that we now have an efficiently decodable (d, d)-list-disjunct matrix \mathbf{M}_N for every $N \ge d^2$ whose number of rows is only brown up from the optimal $O(d \log(N/d))$ by a double-log factor of $\log \log_d N$.

Exercise 1. Using the above recurrence, show that

$$D(t, N) = O\left((\log \log_d N) d^3 \log(N/d) \right).$$

The above analysis leads to the following result.

Theorem 2.2. For any positive integers d < N, there exists a (d, d)-list-disjunct matrix **M** with

 $t = O\left(\left(\log \log_d N\right) \cdot d \log(N/d)\right)$

rows and N columns. Furthermore, M can be decoded in time

$$O\left(\left(\log \log_d N\right) \cdot d^3 \log(N/d)\right).$$

3 Generalizing the main idea

The above ideas can be greatly generalized. The following section can be skipped without losing much of the intuition behind the results.

Theorem 3.1. Let $n \ge d \ge 1$ be integers. Assume for every $i \ge d$, there is a (d, ℓ) -list disjunct $t(i) \times i$ matrix \mathbf{M}_i for integers $1 \le \ell \le n - d$. Let $1 \le a \le \log n$ and $1 \le b \le \log n/a$ be integers. Then there exists a $t_{a,b} \times n$ matrix $\mathbf{M}_{a,b}$ that is (d, ℓ) -list disjunct that can be decoded in time $D_{a,b}$ where

$$t_{a,b} = \sum_{j=0}^{\left\lceil \log_b \left(\frac{\log n}{a}\right) \right\rceil - 1} b^j \cdot t \left(\sqrt[b^j]{n}\right)$$
(1)

and

$$D_{a,b} = O\left(t_{a,b} \cdot \left(\frac{\log n \cdot 2^a}{a} + (d+\ell)^b\right)\right).$$
⁽²⁾

Finally, if the family of matrices $\{\mathbf{M}_i\}_{i \geq d}$ is (strongly) explicit then so is $\mathbf{M}_{a,b}$.

Proof. We will construct the final matrix $\mathbf{M}_{a,b}$ recursively. In particular, let such a matrix in the recursion with N columns be denoted by $\mathbf{M}_{a,b}(N)$. Note that the final matrix is $\mathbf{M}_{a,b} = \mathbf{M}_{a,b}(n)$. (For notational convenience, we will define $D_{a,b}(N)$ and $t_{a,b}(N)$ to be the decoding time for and the number of rows in $\mathbf{M}_{a,b}(N)$ respectively). Next, we define the recursion.

If $N \leq 2^a$, then set $\mathbf{M}_{a,b}(N) = \mathbf{M}_N$. Note that in this case, $t_{a,b}(N) = t(N)$. Further, we will use the naive decoder in the base case, which implies that $D_{a,b}(N) = O(t_{a,b}(N) \cdot N) \leq O(2^a \cdot t_{a,b}(N))$. It is easy to check that both (1) and (2) are satisfied. Finally because \mathbf{M}_N is a (d, ℓ) -list disjunct matrix, so is $\mathbf{M}_{a,b}(N)$.

Now consider the case when $N > 2^a$. For $i \in [b]$, define $\mathbf{M}^{(i)}$ to be the $t_{a,b}(\sqrt[b]{N}) \times N$ matrix whose kth column (for $k \in [N]$) is identical to the mth column in $\mathbf{M}_{a,b}(\sqrt[b]{N})$ where m is the ith chunk of $\frac{1}{b} \log n$ bits in k (again, we think of k and m as their respective binary representations). Define $\mathbf{M}_{a,b}(N)$ to be the stacking of $\mathbf{M}^{(1)}, \mathbf{M}^{(2)}, \ldots, \mathbf{M}^{(b)}$ and \mathbf{M}_N . Since \mathbf{M}_N is a (d, ℓ) -list disjunct matrix, so is $\mathbf{M}_{a,b}(N)$. Next, we verify that (1) holds. To this end note that

$$t_{a,b}(N) = b \cdot t_{a,b}(\sqrt[b]{N}) + t(N).$$
(3)

In particular, (by induction) all the $\mathbf{M}^{(i)}$ contribute

$$b \cdot \sum_{j=0}^{\left\lceil \log_{b}\left(\frac{\log \sqrt[b]{N}}{a}\right)\right\rceil - 1} b^{j} \cdot t\left(\sqrt[b^{j}]{\sqrt[b]{N}}\right) = \sum_{j=1}^{\left\lceil \log_{b}\left(\frac{\log N}{a}\right)\right\rceil - 1} b^{j} \cdot t\left(\sqrt[b^{j}]{N}\right)$$

rows. Since \mathbf{M}_N adds another t(N) rows, $\mathbf{M}_{a,b}(N)$ indeed satisfies (1). Finally, we consider the decoding of $\mathbf{M}_{a,b}(N)$. The decoding algorithm is natural: we run the decoding algorithm for $\mathbf{M}_{a,b}(\sqrt[b]{N})$ (that is guaranteed by induction) on the part of the (erroneous) outcome vector corresponding to each of the $\mathbf{M}^{(i)}$ $(i \in [b])$ to compute sets S_i with the following guarantee: each of the at most d defective indices $k \in [N]$ projected to the *i*th chunk of $\frac{1}{b} \log n$ is contained in S_i . Finally, we run the naive decoding algorithm for \mathbf{M}_N on $S \stackrel{def}{=} S_1 \times S_2 \times \cdots \times S_b$ (note that by definition of S_i all of the defective items will be in S). To complete the proof, we need to verify that this algorithm takes time as claimed in (2). Note that

$$D_{a,b}(N) = b \cdot D_{a,b}(\sqrt[b]{N}) + O\left(|\mathcal{S}| \cdot t(N)\right).$$

By induction, we have

$$D_{a,b}(\sqrt[b]{N}) = O\left(t_{a,b}(\sqrt[b]{N}) \cdot \left(\frac{\log N \cdot 2^a}{a} + (d+\ell)^b\right)\right).$$

and since $\mathbf{M}_{a,b}(\sqrt[b]{N})$ is a (d, ℓ) -list disjunct matrix, we have

$$|\mathcal{S}| \le (d+\ell)^b$$

The three relations above along with (3) show that $D_{a,b}(N)$ satisfies (2), as desired.

Finally, the claim on explicitness follows from the construction.

The bound in (1) is somewhat unwieldy. We note in Corollary 3.2 that when $t(i) = d^x \log^y i$ for some reals $x, y \ge 1$, we can achieve efficient decoding with only a log-log factor increase in number of tests. We will primarily use this result in our applications.

Note that in this case the bound in (1) can be bounded as

$$\sum_{j=0}^{\log_b\left(\frac{\log n}{a}\right)\left|-1\right.} b^j \cdot d^x \cdot \left(\frac{\log n}{b^j}\right)^y \le \left\lceil \log_b\left(\frac{\log n}{a}\right) \right\rceil \cdot d^x \log^y n$$

Theorem 3.1 with b = 2 and $a = \log d$, along with the observation above, implies the following:

Corollary 3.2. Let $n \ge d \ge 1$ be integers and $x, y \ge 1$ be reals. Assume for every $i \ge d$, there is a (d, ℓ) -list disjunct $O(d^x \log^y i) \times i$ matrix for integers $1 \le \ell \le n - d$. Then there exists a $t \times n$ matrix that is (d, ℓ) -list disjunct that can be decoded in $poly(t, \ell)$ time, where

$$t \le O\left(d^x \cdot \log^y n \cdot \log\log_d n\right).$$

Finally, if the original matrices are (strongly) explicit then so is the new one.

In other words, the above result implies that we can achieve efficient decoding with only a log-log factor increase in number of tests. We will primarily use the above result in our applications.

To show the versatility of Theorem 3.1 we present another instantiation. For any $0 \le \epsilon \le 1$, if we pick $a = b \log(d + \ell)$ and $b = (\log n/a)^{\epsilon}$, we get the following result:

Corollary 3.3. Let $n \ge d \ge 1$ be integers and $x, y \ge 1$, $0 < \epsilon \le 1$ be reals. Assume for every $i \ge d$, there is a (d, ℓ) -list disjunct $O(d^x \log^y i) \times i$ matrix for integers $1 \le \ell \le n - d$. Then there exists a $t \times n$ matrix that is (d, ℓ) -list disjunct that can be decoded in

$$\operatorname{poly}(t,\ell) \cdot 2 \sqrt[1+\epsilon]{\log^{\epsilon} n \cdot \log(d+\ell)}$$

time, where

$$t \le O\left(\frac{1}{\epsilon} \cdot d^x \log^y n\right).$$

Finally, if the original matrices are (strongly) explicit then so is the new one.

Note that the above result implies that with only a constant factor blow-up in the number of tests, one can perform sub-linear in n time decoding when $(d + \ell)$ is polynomially small in n.

References

[1] H. Q. NGO, E. PORAT, AND A. RUDRA, Efficiently decodable error-correcting list disjunct matrices and applications - (extended abstract), in ICALP (1), 2011, pp. 557–568.