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Efficiently decodable list-disjunct matrices from list-recoverable codes

The method described here is from Ngo-Porat-Rudra [2], with some basic ideas already appeared in
Indyk-Ngo-Rudra [1].

1 List Recoverable Codes

The usual decoding problem is the following: given a received word y which is not necessarily a codeword,
recover a near-by codeword c. For example, if y = comtlemant we might want to recover ¢ = complement.
See Figure 1 for an illustration. In many cases, if we relax the unique decoding requirement, allowing the
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Figure 1: The “usual” decoding problem

decoding algorithm to produce a small /ist of possible codewords, we will be able to design codes with a
better rate/distance tradeoff. This is the list decoding problem, illustrated in Figure 1. For example, if y =
complbment then we might want to recover the list { complement, compliment }.

Generalizing the problem definition further, we consider the notion of list recoverable codes. In the list
recovery problem, the input contains for each position 7 € [n] has a (small) set S; of characters. We want to



Figure 2: The list decoding problem

return a list of codewords agreeing with a large fraction of the sets. For example,
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Formally, Let £, L > 1 be integers and let 0 < o < 1. A g-ary code C of block length n is called an

(a, £, L)-list recoverable if for every sequence of subsets S, . .

., Sy, such that |S;| < ¢ for every i € [n],

there exists at most L codewords ¢ = (¢, ..., ¢y,) such that for at least an positions ¢, ¢; € S;. A (1,4, L)-
list recoverable code will be henceforth referred to as an (¢, L)-zero error list recoverable code. We will

need the following powerful result due to Parvaresh and Vardy [3]:

Theorem 1.1 ( [3]). For all integers s > 1, for all prime powers r and all powers q of r, every pair of
integers 1 < k < n < q, there is an explicit F,.-linear map F : F’q“ — s such that:

1. The image of E, C C Fis, is a code of minimum distance at least n — k + 1.

2. Provided

> (S + 1)(k/n)s/(s+1)€1/(5+1)’ (1)

Cisan (a,l,0((rs)*nl/k))-list recoverable code. Further, a list recovery algorithm exists that runs

in poly((rs)®, q, 0)-time.

We will mostly use the above theorem for the » = 2 case. Let us re-state the special case when r = 2.

When s = 1, the code is the Reed-Solomon code.

Theorem 1.2. For all positive integers s > 1, ¢ = 2™, 1 < k < n < g, there exists an explicit Fy-linear

map E : F%,. — Fl.. such that:



Naive decoding

. . l <2d —
Cout is (1,1, L)-list-recoverable
Oj1j0j0ojJOojJOojJO]|1
1o 1 0 1 |
111j0]1]0 110 n

I
a

Naive decoding [ <

[o]o]~]

List Recovery

- - [ |

—> L codewords

— {d} =S3
il
] [o] 4

[-I-Te [=TeT=Te [=T=T-[o -]
[eT-Te[ETe=Te [=T=T-[o -]

Figure 3: Illustration of the decoding process.

1. The image C' C F3,.. of I is a code of minimum distance at least n — k + 1.

2. Provided
> (54 1) (/)" D/, @)

C'is an (o, £,0(s*nl/k))-list recoverable code. Further, a list recovery algorithm exists that runs in
poly(s®, q, 0)-time.

3. When s = 1, the code is the RS-code which is (o, £, O(nl/k))-list-recoverable in time poly(q, ) as

long as
a >/ kl/n. 3)

2 Construct a efficiently decodable list-disjunct matrices from list-recoverable
codes

We introduce the idea of using list-recoverable codes to construct efficiently decodable list-disjunct matrices
by applying the RS case of the above theorem.

Let Coys be the [n, k]4-RS code for ¢ some power of 2. Let Cj, be any (d, d)-list-disjunct matrix with
g columns and t;, rows. We have shown using the probabilistic method that there exist (d, d)-list-disjunct
matrices with ¢ columns and ¢, = O(dlog(q/d)) rows. Let M = Coyy © Ciy. We claim that M is a list-
separable matrix which can be efficiently decoded. The decoding algorithm works as follows. (See Figure
3 for an illustration.)

e From the t;, test results for each position i € [n], we run the naive decoding algorithm for Cj, to
recover a set S; of less than ¢ = 2d columns of Cjy,.

e These columns naturally correspond to a set .S; (overloading notation) of symbols of the outer code.



e Aslong as 1 > kf/n, Theorem 1.2 ensures that there is a poly(g, £)-time algorithm which recovers
alist of L = O(nf/k) codewords of Coyy each of which agrees with all the S;. These codewords
certainly contain all of the positives. (Why?)

To minimize the number of tests, which is O(n - ti,) = O(ndlog(q/d)), we can choose the parameters as
follows.

n = gq
4dlog N

log(4dlog N)

log N

logq "

We need to verify that k¢ < n which is the same as 2dlog N < ¢glog g. Note that
4dlog N 4dlog N loglog(4dlog N

R o8 — (2dlog N) -2 (1 — logloslddlog N)
log(4dlog N) log(4dlog N) log(4dlog N)

qlogq = > > 2dlog N

whenever
loglog(4dlog N)

log(4dlog N)
But the above holds true for any d > 1, N > 3. The total number of tests is

4d?log N 4log N 9
t= — 2 _ = 0O(d"log N).
<log(4dlog N) °8 (log(4dlog N))) (d"log N)

The total decoding time is O(ngtin + poly(g, £)) = poly(t). Stacking this efficiently decodable (d, L)-list-
separable matrix on top of any d-disjunct matrix, and we obtain an efficiently decodable d-disjunct matrix
with the best known number of tests. We just proved the following theorem.

<1/2.

Theorem 2.1. By concatenating the RS-code with a good list-disjunct inner code (i.e. matrix), we obtain a
(d, L)-list-disjunct matrix with L = O(d?) which is decodable in time poly(d,log N). The total number of
tests is O(d? log N). Thus, by stacking the result on top of a d-disjunct matrix with O(d*log N), we obtain
a d-disjunct matrix with t = O(d? log N') rows which is decodable in poly(t)-time.

Since we do not know of any way to construct explicit (or strongly explicit) (d, d)-list-disjunct matrices,
the above construction is not explicit. Of the three objectives: (1) mininum number of tests, (2) explicitly
constructible, (3) fast decoding, the above construction gives us (1) and (3) but not (2).

Open Problem 2.2. Find a (strongly or not) explicit construction of (d, d)-list-disjunct matrices attaining
the probabilistic bound O(dlog(NN/d)).

Some application does not require disjunt matrix, but only a (d, poly(d))-list-disjunct matrix which is
efficiently decodable. From the above, we are able to construct from the RS-code an efficiently decodable
(d, ©(d?))-list-disjunct matrix with t = O(d? log N) number of rows. However, the probabilistic bound for
(d, Q(d))-list-disjunct matrices says that we can achieve t = O(dlog(NN/d)) rows. Thus, there is still work
to be done here too.

Open Problem 2.3. Find a (strongly or not) explicit construction of (d, poly(d))-list-disjunct matrices at-
taining the probabilistic bound O(dlog(N/d)) and are efficiently decodable.

In the next section, we will use the PV* code instead of the RS = PV code to show that we can partly
address this problem.



3 Construct a efficiently decodable list-disjunct matrices from PV*° codes

In this section, we prove a generic lemma where the outer code is the PV®-code and the inner code is an
arbitrary (d, ¢)-list-disjunct matrix. Later we shall apply the lemma by “plugging-in” different values of s
and different constructions of (d, ¢)-list-disjunct matrices. What is interesting about this lemma is that it
shows a black-box conversion procedure which converts a (family of) list-disjunct matrix into another one
which is efficiently decodable.

Lemma 3.1 (Black-box conversion using list-recoverable codes). Let £,d > 1 be integers. Assume that for
every Q > d there exists a (d, {)-list-disjunct matrix with t(d, £, Q) rows and Q columns. For all integers
s > land N > d, define

A(d, 0, s) = (d+ 1)/3(s + 1)1+,

Let k be the minimum integer such that klog(kA(d, ¢, s)) > log N, and g = 2™ be the minimum power of
2 such that ¢ > kA(d, !, s). Then, there exists a (d, L)-list separable t x N matrix M with the following
properties:

(i) t =0 (31“/8 NCEWIES (ng) #(d, ¢, qs)) .

log g

(ii) L= SO(S) X (d+€)l+l/s.
(iii) It is decodable in time t0(s),
Furthermore, if the t(d, £, Q) x Q matrix is (strongly) explicit then M is (strongly) explicit.

Proof. Let M be the concatenation of Coyy = PV® with C, which is a (d, £)-list-disjunct matrix with
t(d, ¢, Q) rows and @ = ¢° columns. (Recall that the PV*-code has length n, alphabet size ¢° = 2%,
and ¢* codewords.) We will have to choose parameters 1 < k < n < ¢ so that the PV*-code is (o =
1,d+¢,0(s*n(d + £)/k))-list-recoverable. In particular, the followings must hold:

N < qk (because there are qk codewords)
1 > (s+1)*T(k/n)*(d + ¢) (to satisfy (1) with o = 1).

We will pick ¢ = n and k such that log N < klogq = klogn. The second condition is satisfied iff
q=n>k(s+1)"/5(d+0)'/5 = kA(d, ¢, s). Hence, if q and k satisfy the conditions stated in the lemma
then the above two inequalities are satisfied.

The number of rows of M is

t = n-td4Q)
< 2kA(d, 2, s)t(d, 4, Q)
log N ~
O (gaca gy AL o6Q)
og N :
<10g(q/2)> A(d, ¢, s)t(d, 0, Q)
_ O(logN
log ¢

> A(d, £, 5)t(d, £, Q).

To show the matrix is list-separable we uses the natural decoding algorithm which is identical to the one we
did for the RS-code in the previous section. First, we run the naive decoding algorithm for each position



i € [n] to obtain a list of less than d + ¢ columns of the inner code. Naturally, the column list for each
position ¢ corresponds to a set .S; of size less than d + ¢. Finally, we run the list-recovery algorithm for
the PV*® outer code to obtain a list of at most L = O(s*n(d + £)/k) = O(s*(s + 1)1 1/3(d + £)1+1/%)
codewords. O

Now, fix any constant 0 < € < 1 and s = 1/e. We apply the above lemma with a random inner code
which is (d, d)-list-disjunct with t = O(dlog(q®/d)) = O(dslog(q)) rows and ¢° columns. Then, we obtain
an efficiently decodable (d, (1/€)?11/)d'*<)-list-separable matrix M with: ¢ = O ((1/€)>**d'*€log N)
rows, IN columns. That is a proof of the following simple corollary.

Corollary 3.2 (Concatenating PV® with a random inner code). For every € > 0, there exists an efficiently
decodable (d, (1/€)?1/€)d**¢)-list-disjunct matrix M with N columns and t = O ((1/€)>+<d'*<log N)
rows.
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