
CSE 709: Compressed Sensing and Group Testing. Part I Lecturers: Hung Q. Ngo and Atri Rudra
SUNY at Buffalo, Fall 2011 Last update: October 31, 2011

Efficiently decodable list-disjunct matrices from list-recoverable codes

The method described here is from Ngo-Porat-Rudra [2], with some basic ideas already appeared in
Indyk-Ngo-Rudra [1].

1 List Recoverable Codes

The usual decoding problem is the following: given a received word y which is not necessarily a codeword,
recover a near-by codeword c. For example, if y = comtlemant we might want to recover c = complement.
See Figure 1 for an illustration. In many cases, if we relax the unique decoding requirement, allowing the

Figure 1: The “usual” decoding problem

decoding algorithm to produce a small list of possible codewords, we will be able to design codes with a
better rate/distance tradeoff. This is the list decoding problem, illustrated in Figure 1. For example, if y =
complbment then we might want to recover the list { complement, compliment }.

Generalizing the problem definition further, we consider the notion of list recoverable codes. In the list
recovery problem, the input contains for each position i ∈ [n] has a (small) set Si of characters. We want to

1

Figure 2: The list decoding problem

return a list of codewords agreeing with a large fraction of the sets. For example,

{c, f}
{a, o}
{t, r}
{b, h}
{e, s}
{a, r}

 =⇒

f
a
t
h
e
r

 ,

m
o
t
h
e
r

Formally, Let `, L ≥ 1 be integers and let 0 ≤ α ≤ 1. A q-ary code C of block length n is called an
(α, `, L)-list recoverable if for every sequence of subsets S1, . . . , Sn such that |Si| ≤ ` for every i ∈ [n],
there exists at most L codewords c = (c1, . . . , cn) such that for at least αn positions i, ci ∈ Si. A (1, `, L)-
list recoverable code will be henceforth referred to as an (`, L)-zero error list recoverable code. We will
need the following powerful result due to Parvaresh and Vardy [3]:

Theorem 1.1 ([3]). For all integers s ≥ 1, for all prime powers r and all powers q of r, every pair of
integers 1 < k ≤ n ≤ q, there is an explicit Fr-linear map E : Fkq → Fnqs such that:

1. The image of E, C ⊆ Fnqs , is a code of minimum distance at least n− k + 1.

2. Provided
α > (s+ 1)(k/n)s/(s+1)`1/(s+1), (1)

C is an (α, `,O((rs)sn`/k))-list recoverable code. Further, a list recovery algorithm exists that runs
in poly((rs)s, q, `)-time.

We will mostly use the above theorem for the r = 2 case. Let us re-state the special case when r = 2.
When s = 1, the code is the Reed-Solomon code.

Theorem 1.2. For all positive integers s ≥ 1, q = 2m, 1 < k ≤ n ≤ q, there exists an explicit F2-linear
map E : Fk2m → Fn2ms such that:

2

Cin is (d, d)-list-disjunct

Cout is (1, l, L)-list-recoverable

Figure 3: Illustration of the decoding process.

1. The image C ⊆ Fn2ms of E is a code of minimum distance at least n− k + 1.

2. Provided
α > (s+ 1)(k/n)s/(s+1)`1/(s+1), (2)

C is an (α, `,O(ssn`/k))-list recoverable code. Further, a list recovery algorithm exists that runs in
poly(ss, q, `)-time.

3. When s = 1, the code is the RS-code which is (α, `,O(n`/k))-list-recoverable in time poly(q, `) as
long as

α >
√
k`/n. (3)

2 Construct a efficiently decodable list-disjunct matrices from list-recoverable
codes

We introduce the idea of using list-recoverable codes to construct efficiently decodable list-disjunct matrices
by applying the RS case of the above theorem.

Let Cout be the [n, k]q-RS code for q some power of 2. Let Cin be any (d, d)-list-disjunct matrix with
q columns and tin rows. We have shown using the probabilistic method that there exist (d, d)-list-disjunct
matrices with q columns and tin = O(d log(q/d)) rows. Let M = Cout ◦ Cin. We claim that M is a list-
separable matrix which can be efficiently decoded. The decoding algorithm works as follows. (See Figure
3 for an illustration.)

• From the tin test results for each position i ∈ [n], we run the naive decoding algorithm for Cin to
recover a set Si of less than ` = 2d columns of Cin.

• These columns naturally correspond to a set Si (overloading notation) of symbols of the outer code.

3

• As long as 1 > k`/n, Theorem 1.2 ensures that there is a poly(q, `)-time algorithm which recovers
a list of L = O(n`/k) codewords of Cout each of which agrees with all the Si. These codewords
certainly contain all of the positives. (Why?)

To minimize the number of tests, which is O(n · tin) = O(nd log(q/d)), we can choose the parameters as
follows.

n = q

q =
4d logN

log(4d logN)

k =
logN
log q

.

We need to verify that k` < n which is the same as 2d logN < q log q. Note that

q log q =
4d logN

log(4d logN)
log
(

4d logN
log(4d logN)

)
= (2d logN) · 2

(
1− log log(4d logN)

log(4d logN)

)
> 2d logN

whenever
log log(4d logN)

log(4d logN)
< 1/2.

But the above holds true for any d ≥ 1, N ≥ 3. The total number of tests is

t = O

(
4d2 logN

log(4d logN)
log
(

4 logN
log(4d logN)

))
= O(d2 logN).

The total decoding time is O(nqtin + poly(q, `)) = poly(t). Stacking this efficiently decodable (d, L)-list-
separable matrix on top of any d-disjunct matrix, and we obtain an efficiently decodable d-disjunct matrix
with the best known number of tests. We just proved the following theorem.

Theorem 2.1. By concatenating the RS-code with a good list-disjunct inner code (i.e. matrix), we obtain a
(d, L)-list-disjunct matrix with L = O(d2) which is decodable in time poly(d, logN). The total number of
tests is O(d2 logN). Thus, by stacking the result on top of a d-disjunct matrix with O(d2 logN), we obtain
a d-disjunct matrix with t = O(d2 logN) rows which is decodable in poly(t)-time.

Since we do not know of any way to construct explicit (or strongly explicit) (d, d)-list-disjunct matrices,
the above construction is not explicit. Of the three objectives: (1) mininum number of tests, (2) explicitly
constructible, (3) fast decoding, the above construction gives us (1) and (3) but not (2).

Open Problem 2.2. Find a (strongly or not) explicit construction of (d, d)-list-disjunct matrices attaining
the probabilistic bound O(d log(N/d)).

Some application does not require disjunt matrix, but only a (d, poly(d))-list-disjunct matrix which is
efficiently decodable. From the above, we are able to construct from the RS-code an efficiently decodable
(d,Θ(d2))-list-disjunct matrix with t = O(d2 logN) number of rows. However, the probabilistic bound for
(d,Ω(d))-list-disjunct matrices says that we can achieve t = O(d log(N/d)) rows. Thus, there is still work
to be done here too.

Open Problem 2.3. Find a (strongly or not) explicit construction of (d, poly(d))-list-disjunct matrices at-
taining the probabilistic bound O(d log(N/d)) and are efficiently decodable.

In the next section, we will use the PVs code instead of the RS = PV1 code to show that we can partly
address this problem.

4

3 Construct a efficiently decodable list-disjunct matrices from PVs codes

In this section, we prove a generic lemma where the outer code is the PVs-code and the inner code is an
arbitrary (d, `)-list-disjunct matrix. Later we shall apply the lemma by “plugging-in” different values of s
and different constructions of (d, `)-list-disjunct matrices. What is interesting about this lemma is that it
shows a black-box conversion procedure which converts a (family of) list-disjunct matrix into another one
which is efficiently decodable.

Lemma 3.1 (Black-box conversion using list-recoverable codes). Let `, d ≥ 1 be integers. Assume that for
every Q ≥ d there exists a (d, `)-list-disjunct matrix with t̄(d, `,Q) rows and Q columns. For all integers
s ≥ 1 and N ≥ d, define

A(d, `, s) = (d+ 1)1/s(s+ 1)1+1/s.

Let k be the minimum integer such that k log(kA(d, `, s)) ≥ logN , and q = 2m be the minimum power of
2 such that q > kA(d, `, s). Then, there exists a (d, L)-list separable t × N matrix M with the following
properties:

(i) t = O
(
s1+1/s · (d+ `)1/s ·

(
logN
log q

)
· t̄(d, `, qs)

)
.

(ii) L = sO(s) · (d+ `)1+1/s.

(iii) It is decodable in time tO(s).

Furthermore, if the t̄(d, `,Q)×Q matrix is (strongly) explicit then M is (strongly) explicit.

Proof. Let M be the concatenation of Cout = PVs with Cin which is a (d, `)-list-disjunct matrix with
t̄(d, `,Q) rows and Q = qs columns. (Recall that the PVs-code has length n, alphabet size qs = 2ms,
and qk codewords.) We will have to choose parameters 1 < k ≤ n ≤ q so that the PVs-code is (α =
1, d+ `, O(ssn(d+ `)/k))-list-recoverable. In particular, the followings must hold:

N ≤ qk (because there are qk codewords)

1 > (s+ 1)s+1(k/n)s(d+ `) (to satisfy (1) with α = 1).

We will pick q = n and k such that logN ≤ k log q = k log n. The second condition is satisfied iff
q = n > k(s+1)1+1/s(d+ `)1/s = kA(d, `, s). Hence, if q and k satisfy the conditions stated in the lemma
then the above two inequalities are satisfied.

The number of rows of M is

t = n · t̄(d, `,Q)
≤ 2kA(d, `, s)t̄(d, `,Q)

= O

(
logN

log(kA(d, `, s))

)
A(d, `, s)t̄(d, `,Q)

= O

(
logN

log(q/2)

)
A(d, `, s)t̄(d, `,Q)

= O

(
logN
log q

)
A(d, `, s)t̄(d, `,Q).

To show the matrix is list-separable we uses the natural decoding algorithm which is identical to the one we
did for the RS-code in the previous section. First, we run the naive decoding algorithm for each position

5

i ∈ [n] to obtain a list of less than d + ` columns of the inner code. Naturally, the column list for each
position i corresponds to a set Si of size less than d + `. Finally, we run the list-recovery algorithm for
the PVs outer code to obtain a list of at most L = O(ssn(d + `)/k) = O(ss(s + 1)1+1/s(d + `)1+1/s)
codewords.

Now, fix any constant 0 < ε < 1 and s = 1/ε. We apply the above lemma with a random inner code
which is (d, d)-list-disjunct with t = O(d log(qs/d)) = O(ds log(q)) rows and qs columns. Then, we obtain
an efficiently decodable (d, (1/ε)O(1/ε)d1+ε)-list-separable matrix M with: t = O

(
(1/ε)2+εd1+ε logN

)
rows, N columns. That is a proof of the following simple corollary.

Corollary 3.2 (Concatenating PVs with a random inner code). For every ε > 0, there exists an efficiently
decodable (d, (1/ε)O(1/ε)d1+ε)-list-disjunct matrix M with N columns and t = O

(
(1/ε)2+εd1+ε logN

)
rows.

References
[1] P. INDYK, H. Q. NGO, AND A. RUDRA, Efficiently decodable non-adaptive group testing, in Proceedings of the Twenty First

Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’2010), New York, 2010, ACM, pp. 1126–1142.

[2] H. Q. NGO, E. PORAT, AND A. RUDRA, Efficiently decodable error-correcting list disjunct matrices and applications -
(extended abstract), in ICALP (1), 2011, pp. 557–568.

[3] F. PARVARESH AND A. VARDY, Correcting errors beyond the Guruswami-Sudan radius in polynomial time, in Proceedings
of the 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS), 2005, pp. 285–294.

6

