Efficiently decodable list-disjunct matrices from list-recoverable codes

The method described here is from Ngo-Porat-Rudra [2], with some basic ideas already appeared in Indyk-Ngo-Rudra [1].

1 List Recoverable Codes

The usual decoding problem is the following: given a received word y which is not necessarily a codeword, recover a near-by codeword c. For example, if y = comtlemant we might want to recover c = complement. See Figure 1 for an illustration. In many cases, if we relax the unique decoding requirement, allowing the

Figure 1: The "usual" decoding problem

decoding algorithm to produce a small *list* of possible codewords, we will be able to design codes with a better rate/distance tradeoff. This is the *list decoding problem*, illustrated in Figure 1. For example, if y = complbment then we might want to recover the list { complement, compliment }.

Generalizing the problem definition further, we consider the notion of *list recoverable* codes. In the *list recovery problem*, the input contains for each position $i \in [n]$ has a (small) set S_i of characters. We want to

Figure 2: The list decoding problem

return a list of codewords agreeing with a large fraction of the sets. For example,

$$\begin{bmatrix} \{c, f\} \\ \{a, o\} \\ \{t, r\} \\ \{b, h\} \\ \{e, s\} \\ \{a, r\} \end{bmatrix} \Longrightarrow \left\{ \begin{bmatrix} f \\ a \\ t \\ h \\ e \\ r \end{bmatrix}, \begin{bmatrix} m \\ o \\ t \\ h \\ e \\ r \end{bmatrix} \right\}$$

Formally, Let $\ell, L \ge 1$ be integers and let $0 \le \alpha \le 1$. A *q*-ary code *C* of block length *n* is called an (α, ℓ, L) -*list recoverable* if for every sequence of subsets S_1, \ldots, S_n such that $|S_i| \le \ell$ for every $i \in [n]$, there exists at most *L* codewords $\mathbf{c} = (c_1, \ldots, c_n)$ such that for at least αn positions $i, c_i \in S_i$. A $(1, \ell, L)$ -list recoverable code will be henceforth referred to as an (ℓ, L) -zero error list recoverable code. We will need the following powerful result due to Parvaresh and Vardy [3]:

Theorem 1.1 ([3]). For all integers $s \ge 1$, for all prime powers r and all powers q of r, every pair of integers $1 < k \le n \le q$, there is an explicit \mathbb{F}_r -linear map $E : \mathbb{F}_q^k \to \mathbb{F}_q^n$ such that:

- 1. The image of E, $C \subseteq \mathbb{F}_{q^s}^n$, is a code of minimum distance at least n k + 1.
- 2. Provided

$$\alpha > (s+1)(k/n)^{s/(s+1)}\ell^{1/(s+1)},\tag{1}$$

C is an $(\alpha, \ell, O((rs)^s n\ell/k))$ -list recoverable code. Further, a list recovery algorithm exists that runs in $poly((rs)^s, q, \ell)$ -time.

We will mostly use the above theorem for the r = 2 case. Let us re-state the special case when r = 2. When s = 1, the code is the Reed-Solomon code.

Theorem 1.2. For all positive integers $s \ge 1$, $q = 2^m$, $1 < k \le n \le q$, there exists an explicit \mathbb{F}_2 -linear map $E : \mathbb{F}_{2^m}^k \to \mathbb{F}_{2^{ms}}^n$ such that:

Figure 3: Illustration of the decoding process.

- 1. The image $C \subseteq \mathbb{F}_{2^{ms}}^n$ of E is a code of minimum distance at least n k + 1.
- 2. Provided

$$\alpha > (s+1)(k/n)^{s/(s+1)}\ell^{1/(s+1)},\tag{2}$$

C is an $(\alpha, \ell, O(s^s n\ell/k))$ -list recoverable code. Further, a list recovery algorithm exists that runs in poly (s^s, q, ℓ) -time.

3. When s = 1, the code is the RS-code which is $(\alpha, \ell, O(n\ell/k))$ -list-recoverable in time $poly(q, \ell)$ as long as

$$\alpha > \sqrt{k\ell/n}.\tag{3}$$

2 Construct a efficiently decodable list-disjunct matrices from list-recoverable codes

We introduce the idea of using list-recoverable codes to construct efficiently decodable list-disjunct matrices by applying the RS case of the above theorem.

Let C_{out} be the $[n, k]_q$ -RS code for q some power of 2. Let C_{in} be any (d, d)-list-disjunct matrix with q columns and t_{in} rows. We have shown using the probabilistic method that there exist (d, d)-list-disjunct matrices with q columns and $t_{in} = O(d \log(q/d))$ rows. Let $\mathbf{M} = C_{out} \circ C_{in}$. We claim that \mathbf{M} is a list-separable matrix which can be efficiently decoded. The decoding algorithm works as follows. (See Figure 3 for an illustration.)

- From the t_{in} test results for each position i ∈ [n], we run the naive decoding algorithm for C_{in} to recover a set S_i of less than l = 2d columns of C_{in}.
- These columns naturally correspond to a set S_i (overloading notation) of symbols of the outer code.

 As long as 1 > kℓ/n, Theorem 1.2 ensures that there is a poly(q, ℓ)-time algorithm which recovers a list of L = O(nℓ/k) codewords of C_{out} each of which agrees with all the S_i. These codewords certainly contain all of the positives. (Why?)

To minimize the number of tests, which is $O(n \cdot t_{in}) = O(nd \log(q/d))$, we can choose the parameters as follows.

$$n = q$$

$$q = \frac{4d \log N}{\log(4d \log N)}$$

$$k = \frac{\log N}{\log q}.$$

We need to verify that $k\ell < n$ which is the same as $2d \log N < q \log q$. Note that

$$q\log q = \frac{4d\log N}{\log(4d\log N)}\log\left(\frac{4d\log N}{\log(4d\log N)}\right) = (2d\log N) \cdot 2\left(1 - \frac{\log\log(4d\log N)}{\log(4d\log N)}\right) > 2d\log N$$

whenever

$$\frac{\log\log(4d\log N)}{\log(4d\log N)} < 1/2.$$

But the above holds true for any $d \ge 1, N \ge 3$. The total number of tests is

$$t = O\left(\frac{4d^2\log N}{\log(4d\log N)}\log\left(\frac{4\log N}{\log(4d\log N)}\right)\right) = O(d^2\log N).$$

The total decoding time is $O(nqt_{in} + poly(q, \ell)) = poly(t)$. Stacking this efficiently decodable (d, L)-list-separable matrix on top of any *d*-disjunct matrix, and we obtain an efficiently decodable *d*-disjunct matrix with the best known number of tests. We just proved the following theorem.

Theorem 2.1. By concatenating the RS-code with a good list-disjunct inner code (i.e. matrix), we obtain a (d, L)-list-disjunct matrix with $L = O(d^2)$ which is decodable in time poly $(d, \log N)$. The total number of tests is $O(d^2 \log N)$. Thus, by stacking the result on top of a d-disjunct matrix with $O(d^2 \log N)$, we obtain a d-disjunct matrix with $t = O(d^2 \log N)$ rows which is decodable in poly(t)-time.

Since we do not know of any way to construct explicit (or strongly explicit) (d, d)-list-disjunct matrices, the above construction is not explicit. Of the three objectives: (1) mininum number of tests, (2) explicitly constructible, (3) fast decoding, the above construction gives us (1) and (3) but not (2).

Open Problem 2.2. Find a (strongly or not) explicit construction of (d, d)-list-disjunct matrices attaining the probabilistic bound $O(d \log(N/d))$.

Some application does not require disjunt matrix, but only a (d, poly(d))-list-disjunct matrix which is efficiently decodable. From the above, we are able to construct from the RS-code an efficiently decodable $(d, \Theta(d^2))$ -list-disjunct matrix with $t = O(d^2 \log N)$ number of rows. However, the probabilistic bound for $(d, \Omega(d))$ -list-disjunct matrices says that we can achieve $t = O(d \log(N/d))$ rows. Thus, there is still work to be done here too.

Open Problem 2.3. Find a (strongly or not) explicit construction of (d, poly(d))-list-disjunct matrices attaining the probabilistic bound $O(d \log(N/d))$ and are efficiently decodable.

In the next section, we will use the PV^s code instead of the $RS = PV^1$ code to show that we can partly address this problem.

3 Construct a efficiently decodable list-disjunct matrices from PV^s codes

In this section, we prove a generic lemma where the outer code is the PV^s -code and the inner code is an arbitrary (d, ℓ) -list-disjunct matrix. Later we shall apply the lemma by "plugging-in" different values of s and different constructions of (d, ℓ) -list-disjunct matrices. What is interesting about this lemma is that it shows a *black-box* conversion procedure which converts a (family of) list-disjunct matrix into another one which is efficiently decodable.

Lemma 3.1 (Black-box conversion using list-recoverable codes). Let $\ell, d \ge 1$ be integers. Assume that for every $Q \ge d$ there exists a (d, ℓ) -list-disjunct matrix with $\overline{t}(d, \ell, Q)$ rows and Q columns. For all integers $s \ge 1$ and $N \ge d$, define

$$A(d, \ell, s) = (d+1)^{1/s}(s+1)^{1+1/s}$$

Let k be the minimum integer such that $k \log(kA(d, \ell, s)) \ge \log N$, and $q = 2^m$ be the minimum power of 2 such that $q > kA(d, \ell, s)$. Then, there exists a (d, L)-list separable $t \times N$ matrix **M** with the following properties:

- (i) $t = O\left(s^{1+1/s} \cdot (d+\ell)^{1/s} \cdot \left(\frac{\log N}{\log q}\right) \cdot \bar{t}(d,\ell,q^s)\right).$ (ii) $L = s^{O(s)} \cdot (d+\ell)^{1+1/s}.$
- (iii) It is decodable in time $t^{O(s)}$.

Furthermore, if the $\overline{t}(d, \ell, Q) \times Q$ matrix is (strongly) explicit then **M** is (strongly) explicit.

Proof. Let M be the concatenation of $C_{out} = PV^s$ with C_{in} which is a (d, ℓ) -list-disjunct matrix with $\overline{t}(d, \ell, Q)$ rows and $Q = q^s$ columns. (Recall that the PV^s-code has length n, alphabet size $q^s = 2^{ms}$, and q^k codewords.) We will have to choose parameters $1 < k \leq n \leq q$ so that the PV^s-code is $(\alpha = 1, d + \ell, O(s^s n(d + \ell)/k))$ -list-recoverable. In particular, the followings must hold:

$$N \leq q^k$$
 (because there are q^k codewords)
 $1 > (s+1)^{s+1} (k/n)^s (d+\ell)$ (to satisfy (1) with $\alpha = 1$).

We will pick q = n and k such that $\log N \le k \log q = k \log n$. The second condition is satisfied iff $q = n > k(s+1)^{1+1/s}(d+\ell)^{1/s} = kA(d,\ell,s)$. Hence, if q and k satisfy the conditions stated in the lemma then the above two inequalities are satisfied.

The number of rows of \mathbf{M} is

$$\begin{split} t &= n \cdot \bar{t}(d, \ell, Q) \\ &\leq 2kA(d, \ell, s)\bar{t}(d, \ell, Q) \\ &= O\left(\frac{\log N}{\log(kA(d, \ell, s))}\right)A(d, \ell, s)\bar{t}(d, \ell, Q) \\ &= O\left(\frac{\log N}{\log(q/2)}\right)A(d, \ell, s)\bar{t}(d, \ell, Q) \\ &= O\left(\frac{\log N}{\log q}\right)A(d, \ell, s)\bar{t}(d, \ell, Q). \end{split}$$

To show the matrix is list-separable we uses the natural decoding algorithm which is identical to the one we did for the RS-code in the previous section. First, we run the naive decoding algorithm for each position

 $i \in [n]$ to obtain a list of less than $d + \ell$ columns of the inner code. Naturally, the column list for each position *i* corresponds to a set S_i of size less than $d + \ell$. Finally, we run the list-recovery algorithm for the PV^s outer code to obtain a list of at most $L = O(s^s n(d + \ell)/k) = O(s^s(s + 1)^{1+1/s}(d + \ell)^{1+1/s})$ codewords.

Now, fix any constant $0 < \epsilon < 1$ and $s = 1/\epsilon$. We apply the above lemma with a random inner code which is (d, d)-list-disjunct with $t = O(d \log(q^s/d)) = O(ds \log(q))$ rows and q^s columns. Then, we obtain an efficiently decodable $(d, (1/\epsilon)^{O(1/\epsilon)} d^{1+\epsilon})$ -list-separable matrix **M** with: $t = O((1/\epsilon)^{2+\epsilon} d^{1+\epsilon} \log N)$ rows, N columns. That is a proof of the following simple corollary.

Corollary 3.2 (Concatenating PV^s with a random inner code). For every $\epsilon > 0$, there exists an efficiently decodable $(d, (1/\epsilon)^{O(1/\epsilon)}d^{1+\epsilon})$ -list-disjunct matrix **M** with N columns and $t = O((1/\epsilon)^{2+\epsilon}d^{1+\epsilon}\log N)$ rows.

References

- P. INDYK, H. Q. NGO, AND A. RUDRA, *Efficiently decodable non-adaptive group testing*, in Proceedings of the Twenty First Annual ACM-SIAM Symposium on Discrete Algorithms (SODA'2010), New York, 2010, ACM, pp. 1126–1142.
- [2] H. Q. NGO, E. PORAT, AND A. RUDRA, *Efficiently decodable error-correcting list disjunct matrices and applications (extended abstract)*, in ICALP (1), 2011, pp. 557–568.
- [3] F. PARVARESH AND A. VARDY, Correcting errors beyond the Guruswami-Sudan radius in polynomial time, in Proceedings of the 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS), 2005, pp. 285–294.