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The complexity of group testing is a long-standing open problem. Recently, Du and Ko studied 
some related problems which can explain the hardness of group testing undirectly. One of such 
problems is called the determinacy problem on which they left open questions for some models. 
In this paper, we answer all of them. 
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1. Introduction 

Group testing was first discovered by Dorfman [l] when he did blood testing 
during World War II. Since then, one has found many applications in statistics, 

, combinatorics and computer science. The general form of the problem is as follows: 
Let N be a set of n items denoted by 1,2, . . . , n; some items are defective. We need 
to find out all defective items by a given kind of tests. What is the best way in some 
sense to do so? All defective items form a set that is called a sample. The sample 
space consists of all possible samples. For every set S, let ISI denote the number of 
elements of S, we will study the following sample spaces: The space pn consists of 
all subsets S of N, the space q,,d consists of all subsets S of N with /SI = d and the 
space %, <d consists of all subsets S of N with JS 15 d. Each test in group testing 
problems is on a subset T of N. For simplicity, we denote by the same symbol T 
the test and the subset on which one tests. For a sample S, ANS,(T) is the result 
of the test T and is called the answer function. There are different definitions in 
various models. In this paper, we consider the following definition: 

if ISfl Tj =i<k, 
if IS13T1kk, 

where k is a fixed natural number. 
Let A&l,& A{) denote the model with the above answer function and the sample 

space V)n(V)n,d, pn, cd). The determinacy problem for model ME {Ak, AL, Al/k? l} 
is as follows. 
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DM. Given a natural number n (or two natural number n and d) and a collection 
of tests Q={qlj= 1,2, . . . . m}, determine whether Q is determinant for model M, 
i.e., for any two different samples Sr and S2, there is TE Q such that AN,Ss,(T)# 
A=%,(T). 

Du and Ko [2] showed that DA, is polynomial-time solvable, and D&, k> 4, 
and DA;, kz4, are co-NP-complete. But DA,, DA, and DAL, k= 1,2,3, remain 
open. We will show that DA3 and DA;, k= 1,2,3 are co-NP-complete, and DA2 is 
polynomial-time solvable. Meanwhile, we will also show that DA3 is polynomial- 
time solvable when there exists no test TE: Q with ( T I= 3. This is interesting because 
in the same special case, DA,, kz4, is co-NP-complete. (In [2], Du and Ko did not 
use tests of size 3 to prove the completeness of DAk, k? 4.) we will also show DA,“, 

kz 1, to be co-NP-complete. 

2. DA; and DA; 

We now use the following NP-complete problem [4] to prove our results. 

VERTEX-COVER. Given a graph G = (V, E) without isolated vertex and a positive 
integer h < ( V ( - 1, determine whether there is a set YC v with 1 Y / 5 h such that each 
edge e E E is incident with some u E Y. 

The above statement is a little different from the usual one on the restrictions of 
G and h. However, it is easy to see that the VERTEX-COVER problem remains NP- 
complete with the current statement. 

Theorem 2.1. DA,” (kr 1) is co-NP-complete. 

Proof. It is easy to see that DA,” (kr 1) is in co-NP. Now we show that VERTEX- 
COVER is polynomial-time reducible to the complement of DA,“, and hence DA,” 

is co-NP-complete. 
Let G = (V, E) and integer h (0 <h < 1 V/I - 1) form an instance of VERTEX- 

COVER. Assume V={1,2, . . . . n}. Every edge e is represented by a subset of two 
elements of I/. Define an instance of DA{ as follows: 

Xi={i}, for i-l,2 ,..., n+k-1, 

T,=eU{n+l,n+2 ,..., n+k}, for eeE, 
and 

Q= (X;ji= 1,2, . . . ,n+k-l}U{T,]eeE}. 

In the following, we will show that G has a vertex-cover Y with / Y ( 5 h if and only 
if (n + k, d, Q} is not determinant, where d= h + k. 
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First, assume that G has a vertex-cover Y with 1 Y ( I h. Define two sets S, = 
YU{n+l,n+2,..., n+k-1) andS2=S1U{n+k}. Obviously, SrfS,, IS,l<dand 
ISzlsd. It is easy to see that ANS,,(Xi)=ANS,2(Xi), i=l,2,...,n+k-1 and 

ANSs, (T,) = k = ANSsz( T,) Ve E E. Hence {n + k, d, Q} is not determinant. 
Conversely, assume that {n + k,d, Q} is not determinant, then there exists 

S1,S2~v,+k,+d, S,#S,, such that for all TEQ, ANSs,(T)=ANSsz(T). Without 
loss of generality, we assume Si \ &#0. From ANSs,(Xi)=ANSsl(Xi), we see 
that ieS,\S, and i$S2\S1 for all i=1,2,...,n+k-1. Hence, S,\S,={n+k} 

and Sz\S1=O. It follows that for any egE, IS,nT,j=jS2nT,l+1. Since 
ANSsI (T,) = ANSs2( T,), we have 

IS,fIT,l?k VeeE, (2.1) 

S,ne#B VeEE. (2.2) 

Next, we show that 

{n+l,n+2 ,..., n+k-l}c&. (2.3) 

Assume, for otherwise, that (2.3) is not true, then, jS,n{n+ l,n+2, . . . , 
n+k-l}l=k-2, and ISzOel=2 VeEE. Because G has no isolated vertex, 
l&s,, we have n+k-2=lSZ1=IS11-lsd-l=k+h-1, which implies that 
n - 1 I/Z. By assumption, h<n - 1, a contradiction. Hence {n + l,n + 2, . . . , 
n+k-l}cS,. Define Y=S,\{n+l,n+2,...,n+k-l}, then IYlsd-k=h. By 
(2.2), YfIe#O VeeE, so Y is a vertex-cover of G with IYlsh. 0 

Theorem 2.2. DAL (kr 1) is co-NP-complete. 

Proof. It is easy to see that DA; (kr 1) is in co-NP. Now, we show that VERTEX- 
COVER is polynomial-time reducible to the complement of DA;, and hence DAL 

is co-NP-complete. 
Let G = ( V, E) and integer h (0 < h < I V) - 1) form a given instance of VERTEX- 

COVER. Assume V= { 1,2, . . . . n}. Every edge e is represented by a subset of two 
elements of V. Define an instance of DAL as follows: 

Xi=(i) Vi=1,2 ,..., n+k-1, 

T,=eU{n+ l,n+2 ,..., n+k} VeeE, 
and 

Q= {Xi/i= 1,2, . . . . n+k-l}U{T,leeE}. 

It is only routine checking that G has a vertex-cover Y with 1 Y 1 I h if and only if 
{n+k+l,k+h,Q} is not determinant, in particular, it cannot distinguish the 
following two sets: 

S,=YU{n+l,n+2 ,..., n+k}, 

S,=YU{n+l,n+2 ,..., n+k-l,n+k+l}. 0 
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3. DA2 and DA, 

To prove that DA, is polynomial-time solvable, we first show two lemmas. 

Lemma 3.1. Let Q be a collection of tests. If there exist S,, S2 E (P,,, S, # S2 such that 
for all TE Q, ANSs,(T) =ANSs,(T) in the model Ak, then there exist S;, S; E rp,,, 
S; #S; and S; US; = N such that for all TE Q, ANS,;(T) = ANSsi(T) in the 
model Ak. 

Proof. Let Sl=SiU(N\ (S,US,)), i= 1,2, then 

ANS,;(T)=min{k, ANSsr(T)+ (Tn(N\(S,US,))1}. 

From ANSs,(T) =ANS,*(T), we see that ANS,;(T) =ANSs;(T).  

Lemma 3.2. Let {n, Q} be an instance of DA,. Then, {n, Q) is not determinant 
if and only if there exist Y,, Y, in v)~, YIfl Y,=0, Y,U Y,#0, such that for any 
TE Q the following conditions hold: 

(1) ZffTls2, then /Y,nTI=\Y2nTI. 
(2) Zf lT/z3, then IY,nT(<ITj-2 and )TnY,\5IT(-2. 

Proof. Assume that (n, Q} is not determinant. By Lemma 3.1, there exist S;, S; E 
(Do, S; #S; and S; US; = N such that ANSs;(T) = ANSs;( T) for all TE Q. Define 
Y,=S[\S;=N\S;, Y,=S;\S;=N\S;. If IT112, then IS;nTI=\S~nTJ, so 
Ir,n7l=/s;nTI-~Tns;ns;l=(s;nr(-IT,ns;ns;~=~r,nrl. If 1~1~3, 
from S; US; = N, we see that 1 S; fl T ( e 2 or 1 S;n T / 2 2. Assume, without loss of 
generality, that lS;nTT/?2. Then ANS,;(T)=ANS,;(T)=2, so (S;nTjz2. 
Therefore, /Y,nTIIITI-2 and (YznTIs(TI-2. 

Conversely, assume that there exist Y,, Y, E pn, Y, fl Y2 = 0, Y, U Y,#0, satis- 
fying conditions (1) and (2). Define Si = N \ Y, and S, = N \ Y, , then St f S,. It is 
easy to see that ANS,,(T) = ANSsz(T) for all TE Q.  

Let {n, Q} be an instance of DA,. Define GQ= (N, E) to be the graph with 
vertex set N and edge set E={TEQI/TI=~}. A graph G=(V,E) is said to be 
bicolourable if its vertex set I/ can be partitioned into two disjoint parts Vi and V, 
such that every edge of G is between Vi and V,. For a connected graph G, if such 
partition exists, then it is unique. In this case V, and V, are called monochromatic 
subsets of G. 

Theorem 3.3. Let (n,q} be an instance of DA,. Then, (n, Q} is not determinant if 
and only if GQ has a connected component that is bicolourable and its monochro- 
matic vertex subsets Y, and Y, satisfy the following conditions: 

(1) If TEQ, /TI = 1, then Tn(Y,U Y2)=0. 
(2) If TEQ, ITlr3, then 1TnY,/(ITI-2, and lTnY,Is(T\-2. 
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Proof. Assume that GQ has a connected component that is bicolourable, the mono- 
chromatic vertex subsets Y, and Y, satisfy the conditions (1) and (2), then by 
Lemma 3.2, {n, Q) is not determinant. Conversely, assume that {n, Q} is not deter- 
minant, then there exist Y, and Y, satisfying Lemma 3.2. For any TEE, since 
)Y,fITI=lY,nTI=O or 1, we have either Tn (Y, U YJ = 0 or TC Y, U Y,. Hence 
the subgraph GQ 1 Y, u  Y , induced by Y, U Y, is the union of some connected com- 
ponents of GQ. Moreover, for each edge T of GQ 1 yIuy2, we must have that 
ITnY,l=ITnY,j=l. Thus GQlyluy, is bicolourable. Consider a connected com- 
ponent of GQ 1 Y , U  Y ,. Its two monochromatic vertex subsets must be subsets of Y, 
and Y, and hence satisfy the conditions (1) and (2). 0 

Corollary 3.4. DA, is polynomial-time solvable. 

Proof. A graph is bicolourable if and only if it contains no odd cycle, the latter 
holds if and only if there exists no odd cycle in a basis of cycles. Hence, the bico- 
louring of a graph is polynomial-time solvable. If a connected graph is bicolourable, 
then its vertex set can be uniquely partitioned into two disjoined monochromatic 
subsets. By Theorem 3.3, it is easy to see that the corollary is true. 0 

Next, we consider DA,. 

Lemma 3.5. Let {n, Q} be an instance of DA3, then {n, Q> is not determinant if 
and only if there exist Y,, Y, E rp,, Y, n Y, = 0, Y, U Y, # 0, such that for any TE Q 
the following conditions hold: 

(1) Zf ITls3, then IY,nTl=lY,nT/. 
(2) Zf JTI=4, then /Y,nTI=IY,nTI, or ITn(Y,UY,)l=l. 
(3) Zf IT/?5, then IY,fITI<ITJ-3 and IY,nTl<ITI--3. 

Proof. Assume that {n, Q} is not determinant. By Lemma 3.1, there exist S;, S; E 
p,, S; # S; , S{ US; = N such that ANS,;(T) = ANS,;(T) for all TE Q. Define Yi = 
S;\S;=N\S; and Y,=S;\S;=N\S;. If ITI= and IY,nT~#iY,nT(, then 
IYinTl=jT1-JS;_inTl implies I&n TI # lS$fI Tl. But AN&(T)=AN&(T), 
soJS;nT1r3andlS;nTJ23,hence1Y,nTJ=O,(or1)ifandonlyif)Y2nTI=1 
(or 0), i.e., i(Y, U Y,)fl TI = 1. The proof of other cases is similar to that of 
Lemma 3.2. 

Conversely, assume that there exist Y, and Y, satisfying the conditions of the 
lemma, then define S; =N\ Y,, S;=N\ Y,. It is easy to verify that S[ and Si 
satisfy Lemma 3.1. Hence, {n, Q} is not determinant. 0 

Let rDAJ denote the special case of DA3 that there exists no test TEQ with 
ITI =i. 

Theorem 3.6. 3DA, is polynomial-time solvable. 
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Proof. The first of all, we state an algorithm, then show its correctness. Let {n, Q} 
be an instance of 3DA,, define E = ( TE Q 11 T( = 2) and the graph GQ = (N, E). 

Assume that the bicolourable connected components of GQ are Gr, Gz, . . . , G, and 
the monochromatic vertex subsets of Gj are X, and Z;. 

Step 0. Let 

R:=N\ ii (XiUZi). 
i=l 

Step i (1 sism). Let Y:=Xi and Y’:=Zi. 
(A) If Y and Y’ satisfy the following conditions: 

(1) If TeQ, ITI=l, then Tn(YU Y’)=0. 

(2) If TEQ, lTl=4, then (YfITl=1Y’nT1 or ((YUY’)nT\=l. 
(3) If TEQ, ITlzS, then /YnTlslTl-3 and IY’nTIsITI-3. 

Then stop, and conclude that {n, Q} is not determinant. 
If Y and Y’ do not satisfy (1) or (3), then let R:=RUX,UZ,, and go to Step 

i+ 1. 
If Y and Y’ satisfy (1) and (3), but do not satisfy (2), then there exists TE Q, 

/T I= 4 such that either 

lTnY/r2 and ITnY’jsl (3.1) 
or 

ITnYjrl and /TflYlz2. (3.2) 

If TL YUY’, then let R:=RUXiUZ, and go to Step i-t 1, else choose XET\ 

(YUY’).Ifx~R,thenletR:=RUX,UZi,gotoStepi+l.Ifx~R,thenxmustbe 
a vertex of Gj for somej= 1,2,...,m. When (3.1) occurs, let 

Y:= the union of Y and the monochromatic vertex subset that 
does not contain x, 

Y’:= the union of Y’ and the monochromatic vertex subset that (3.3) 

contains x; 

when (3.2) occurs, let 

Y: = the union of Y and the monochromatic vertex subset that 
contains x, 

Y’: = the union of Y’ and the monochromatic vertex subset that (3.4) 

does not contain x, 

and go to (A). 
Step m + 1. Stop and conclude that {n, Q} is determinant. 

Now, we show its correctness as follows. 
Assume that {n, Q} is not determinant, then there exist Y, and Y, satisfying 

Lemma 3.5. If (Tj=2, TEQ, then ITfIY1j=ITf7Y2/, so, GQ\Y,~YZ is the union 
of some bicolourable connected components of GQ. Let Gi be the connected com- 
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ponent of GQ 1 y, u y2 with the smallest index. We claim that the algorithm stops 
not later than Step i and conclude that (n, Q} is not determinant. We first see two 
facts. 

Claim 1. At step i, YC Y,, Y’C Y, (or YC Y,, Y’L Y,). 

Proof. If Y=Xi, Y’= Zi, then, obviously Y& Y, , Y’C Y,. In the following, we 
show that the claim is still true when Y and Y’ are redefined by (3.3) or (3.4). For 
convenience, let P and p denote the redefined Y and Y’. We must show that 
YC Yi and Y’E Y, imply YC Y, and Y’K Y,. If (3.1) occurs, then YE Y, , / Tl = 4, 
IYiflT112. ByLemma3.5, IY,nTI=lY,nTl=2. So, T\(YUY’)EY,,XEY~. 
Hence, the Y and Y’ obtained from (3.3) satisfy YL Y,, Y’C Y,. If (3.2) occurs, 
we can show the claim by a similar argument. 0 

Claim 2. The algorithm cannot go to Step i+ 1 from Step i. 

Proof. For otherwise, assume that the algorithm goes to Step i+ 1 from Step i, then 
one of the following occurs. 

(a) Y and Y’ do not satisfy (1) or (3). 
(b) Y and Y’ do not satisfy (2) with T and TL YU Y’. 
(c) (T\ (YU Y’))nR#O holds. 
If (a) occurs, then by Claim 1, Y, and Y, do not satisfy the condition (1) or (3) 

in Lemma 3.5. If(b) occurs, then Yand Y’do not satisfy the condition (2) in Lemma 
3.5. Therefore, (a) and (b) cannot occur. Next, suppose that (c) occurs. Note that 
I T I= 4. Since Y, and Y, satisfy the conditions in Lemma 3.5, we have / Tfl Y, / = 
I Tfl Y,] = 2. Thus, TL Y, U Y,. (c) implies R 0 (Yi U Y,) # 0. However, during the 
computation of Step i, we have 

R=N\ ij (X,UZ,) 
h=i 

and by the assumption on Gi, we have 

y,uy,L ij (xhuz,) 
h=i 

contradicting R fl (Y, U Y,) # 0. 0 

By Claim 2, the algorithm must stop before or at Step i. Note that the loop at 
each step cannot go for infinitely many times since each time when the computation 
goes to (A) from the last instruction of the step, the number of vertices in YU Y 
will increase. Therefore, the algorithm must stop at the place where (n, Q} is 
pointed out not to be determinant. 

Now, assume that {n, Q} is determinant, we need to show that the computation 
must enter Step 111. For otherwise, suppose that the computation stops before Step 
m. Then, there must exist Y and Y’ satisfying (l), (2) and (3). It follows that Y and 
Y’ satisfy Lemma 3.5 and hence {n, Q} is not determinant, a contradiction. 0 
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Next, we show the co-NP-completeness of DA3 by reducing the following 
problem to it. 

One-in-three-SAT. Given a set U of variables and a set E of clauses, with each CE E 
containing exactly three variables from U, determine whether there is a truth as- 
signment t on U such that each clause C in E contains exactly one TRUE variable. 

Theorem 3.7. DA, is co-NP-complete. 

Proof. It is easy to see that DA, is in co-NP. Now we show that one-in-three-SAT 
is polynomial-time reducible to the complement of DA3, and hence DA, is co-NP- 
complete. 

Let (V, E) be a given instance of one-in-three-SAT such that U= {X,, . . . , Xp>, 
&={Cr,..., C,}, ICj I= 3 for all j. Without loss of generality, assume that every Xi 
in U occurs in some Cj in E. 

Define an instance {n, Q} of DA, as follows: 

n:=p+ 15q+ 1, m:=22q, 

N:={l,..., P, Y, Nj, Q, u(j, 4, Mj, Q, x(j, Q, z(.i 4 I 
k=1,2,3, j=l,..., q}, lNl=n. 

For convenience, assume that 

u(j, 4) = W, 1)) 24 0) = Nj, 31, 
o(j,4)=dj, I), W, 0) = o(j, 3), 
W, 4) = W, 11, W, 0) = W, 3), 
x(j, 4) =x(j, I), x(j, 0) = x(_L 3). 

For each j= 1, . . . . q, assume that Cj = {X,,, XJz, Xj,} (with jr <j, < j,) and define 
Q as follows: 

Q= (Tjh, ujk, MJk? Njk, Ljk, Hjk, Pjkl 

j=l ,..., q, h=0,1,2,3, k=1,2,3}, IQl=m, 

where 
Tj, = {jr, j,, j,, Y> j 
qk = {jk, u(j, k), u(j? k)), 

uj, = {A, .i3, Nj, 3, z(j, l)l, 
Ujz=(jlrj3,U(j,3), Z(_L2)), 

0;,=(j~,j2,“(j, 1X zU3)1, 
Mjk=(u(j,k+l),x(j,k)), 

Njk = {Zk k), X(j, k)}, 

Ljk = {x<j, k), w(.i k), r>, 

Hjk = { Z(j, k), w(j, k + I), w(j, k - 11, Y} , 
Pjk={Z(j,k),u(j,k),x(j,k+ l)>. 
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Case 1. Assume that t is a truth assignment on U such that for each Cj E E, t 
assigns exactly one TRUE value to the variables in Cj. Define two sets Si , S, as 
follows: 

S,={+<i<p, t(Xj)=TRUE} 
U {u(j, k+ l), o(j, k- I), z(j, k)lthe kth variable Xj, in Cj has 

t(Xjr) = TRUE} 

U(Y). 

S2={i]l<i<p, t(X;)=FALSE} 
U { u(j, k), x(j, k), ~(j, k+ I), w(j, k- 1)lthe kth variable Xj, in Cj 

has t(Xj,) = TRUE > . 

Obviously, S, # S,, we claim that for all TeQ, ANS,,(T)=ANS,*(T), hence 
{n, Q} is not determinant. To show so, we check the following: 

Claim 1.1. For all j, k, /S,n7J=IS,n~,l=2, 1S,flqkl=IS2nTJkI=1, 
ISifl Ujkl= IS2flUj,l= 1 or 2, /S,nMjk/ = ISZnMjkI =0 or 1, I&flNjkl = 
ISiflNjkI =0 or 1. 

Proof. From the definitions of Si and &, we have that for any j and k, X(j, k) E 
& H Z(j, k) E S, . If t(Xj,) = TRUE and t(Xj,) = t(Xj,) = FALSE, then 

4 n rj, = {ji, Y>, WTj,={j2,j31; 
Si n q, = {ji 1, W r,, = W, 1)); 
Vq2=Wm), &n q2= &I; 
s, n rj, = {G 3)) WTj,={js}; 
s,nuj,={uCi,2),z(j,i)}, &n Uj ,={j2,_h);  

s,n"j ,={M. i  l>>,  s2nuj ,={j3);  

wuj ,=m,  S2nuj ,={j2}.  

The other two cases are similar.  

Claim 1.2. For all j and k, IS,nHjkI =l or 2, /SznHjkI = 1 or 2, ISlnLjkl = 
IS2nLjkl = 1, ISflPj,I = IS2flPj,I =0 or 1. 

Proof. If t(Xj,> = TRUE, t(Xj,) = t(Xj,) = FALSE, then, 

S,nL,,={Y}, k=1,2,3, S2nLj ,=W,  111,  

S2nLj ,={W,2)) ,  &nLj ,={W,3)},  

~~nffj ,={Y~zdi ,1)) ,  s2nHj ,= {W,2) ,  M. i3)},  

SInHj,=S,nHj,={Y}, SZ n Hjz = { w(j, 3))) 
s2nHj l={W,2)},  $npj l= {z(_i l>>, 
S2nPj ,={G,  l>>,  SZflPj2=S1nPj,=0, 

S1 npj3= {Nj ,3)1,  S2npj ,= W,  I>>.  

The other two cases are similar. 0 
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Case 2. Conversely, assume that {n, Q> is not determinant. By Lemma 3.5, there 
exist Y,, Y2evn, Y,UY,#O, Y,nY,=0 such that for any TEQ, 

(1) if lT113, then IY,nrl=IY,flTI, 
(2) if lrl=4, then IY,flrl=jY,nTI, or I(Y,UY,)nTI=l. 
First, we show the following facts. 

Claim 2.1. For all j= 1, . . . . q, and k= 1,2,3, 

u(j,k+ 1)E Yi H x(j,k)E Y, w z(j,k)E Y,, 
u(j, k + 1) E Y, e x(j, k) E Y, e z(j, k) E Y,. 

Proof. It follow immediately from I Y1 f7M,, I = 1 Y, nA4jkI and I Y, “A&I = 
I W-Fjkl. 0 
Claim 2.2. For any j, if l{j,, j,, j3} n YJ I 1 and i{jl, j,, j3} n Y,l I 1, then u(j, k), 
u(j, k), w(j, k), x(j, k), z(j, k) $ Y, U YZ for all k = 1,2,3. 

Proof. By Claim 2.1, { u(j, k + l), z(j, k)} n ( Y1 U Y,) # 0 implies either {j,+ i , 
j,+,1 C Yi, or {jk +,,j,+*}E Y,. Thus, we must have u(j,k), z(j,k)$ Y,U Y2 for 
k=1,2,3, and hencex(j,k)EYiUY, for k=1,2,3. Since IPjkflYiI=IPjknYzl we 
also have u(j, k) $ YI U Y, for k = 1,2,3. If y $ Y, U Y,, then by considering Ljk, we 
can obtain w(j, k) $ Y, U Y, for k = 1,2,3. If y E Y, U Y,, then by considering Ljk, 
we can obtain w(j,k)eYlUY2 for k=1,2,3. Thus, IHjkfl(Y,nY2)1=3. This is 
impossible. 0 

Claim 2.3. y E Y, U Y2. 

Proof. Suppose to the contrary that y $ Y, U Y,. Then the hypothesis of Claim 2.2 
holds for all j= 1, . . . . q, and hence none of u(j, k), u(j, k), w(j, k), z(j, k) is in 
Yi U Y,. Furthermore, by considering T;k we can see that none of j, is in Y, U Y,. 
Thus, Y, U Y, = 0, a contradiction. 0 

Since y E Y, U Y,, without loss of generality, we assume y E Y, . 

Claim2.4. Forallj=l,..., q, I(j,,j2,j3}nY,I=1. 

Proof. Suppose to the contrary that for some j, I{ j,, j,, j,} n Y,\ # 1. Then, we 
must have l{ji, j,, js} tl Y,i = 0. By considering test Tjo, we see that I{ j, j,, j3} tl 
Y,l< 1. Thus, the hypothesis of Claim 2.2 holds for j and hence for k= 1,2,3, 
u(j, k), u(j, k), w(j, k), x(j, k) and z(j, k) are not in YiU Y,. It follows that 
I Ljk n Y, I # 0 = / Ljk tl Y,l , a contradiction. 0 

Now, we define a truth assignment t on V by 

t(x;) = 1 TRUE, iE Y,, 
FALSE, i $ Y,, 

for i=l , . . . . q. From Claim 2.4, it is easy to see that this is a one-in-three truth 
assignment. 0 
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