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The complexity of group testing is a long-standing open problem. Recently, Du and Ko studied
some related problems which can explain the hardness of group testing undirectly. One of such
problems is called the determinacy problem on which they left open questions for some models.
In this paper, we answer all of them.
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1. Imtroduction

Group testing was first discovered by Dorfman [1] when he did blood testing
during World War II. Since then, one has found many applications in statistics,
of
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the pr roblem is as follows:
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Let N be a set of n items denoted by 1,2,...,n; some items are defective. We need
to find out all defective items by a given kind of tests. What is the best way in some
sense to do so? All defective items form a set that is called a sample. The sample
space consists of all possible samples. For every set S, let | S| denote the number of
elements of S, we will study the following sample spaces: The space ¢, consists of
all subsets S of N, the space ¢, 4 consists of all subsets S of N with |S|=d and the
space ¢, <4 consists of all subsets S of N with |S|<d. Each test in group testing
problems is on a subset 7 of N. For simplicity, we denote by the same symbol T
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called the answer function. There are different definitions in
various models. In this paper, we consider the following definition:
if |ISNT|=i<k
ANsy(r)= {0 ITISATI=i<k,
’ {k, if [SNT|=k,

where k& is a fixed natural number.

Let A,(Ay, Af) denote the model with the above answer function and the sample
space @,(@, 4 ¢ <q)- The determinacy problem for model Me {A4,, A},
is as foliows.
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DM. Given a natural number # (or two natural number » and d) and a collection
of tests Q={Tj|j= 1,2,...,m}, determine whether Q is determinant for model M,
i.e., for any two different samples S, and S,, there is 7€ Q such that ANSs (T) #
ANSg (T).

Du and Ko [2] showed that DA, is polynomial-time solvable, and DA, k=4,
and DA;, k=4, are co-NP-complete. But DA,, DA; and DA}, k=1,2,3, remain
open. We will show that DA; and DA}, k=1,2,3 are co-NP-complete, and DA, is
polynomial-time solvable. Meanwhile, we will also show that DA, is polynomial-
time solvable when there exists no test Te Q with |T| =3. This is interesting because
in the same special case, DA, k=4, is co-NP-complete. (In [2], Du and Ko did not
use tests of size 3 to prove the completeness of DA, k=4.) we will also show DA/,
k=1, to be co-NP-complete.

2. DA} and DA}
We now use the following NP-complete problem [4] to prove our results.

VERTEX-COVER. Given a graph G =(V, E) without isolated vertex and a positive
integer A< |V |~ 1, determine whether there is a set YC V with | Y| </ such that each
edge e€ E is incident with some ve Y.

The above statement is a little different from the usual one on the restrictions of
G and h. However, it is easy to see that the VERTEX-COVER problem remains NP-
complete with the current statement.

Theorem 2.1. DA} (k=1) is co-NP-complete.

Proof. It is easy to see that DA (k=1) is in co-NP. Now we show that VERTEX-
COVER is polynomial-time reducible to the complement of DAY, and hence DA}
is co-NP-complete.

Let G=(V, E) and integer & (0<h<|V|-1) form an instance of VERTEX-
COVER. Assume V={1,2,...,n}. Bvery edge e is represented by a subset of two
elements of V. Define an instance of DAY as follows:

X;={i}, fori=1,2,....n+k-1,

T,=eU{n+1,n+2,...,n+k}, foreckE,
and

O={X;|i=1,2,...,n+k—1}U{T,|ecE}.

In the following, we will show that G has a vertex-cover Y with |Y|=# if and only
if {n+k,d,Q} is not determinant, where d=~h + k.
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First, assume that G has a vertex-cover Y with |Y|<h. Define two sets S, =
YU{n+1,n+2,...,n+k—1} and S,=S,U{n+k}. Obviously, S, #S,, |S;|<d and
|S;l=d. It is easy to see that ANSg(X;)=ANSs,(X)), i=1,2,...,n+k—1 and

ANSs (T,)=k=ANSs(T,) VeeE. Hence {n+k,d, Q} is not determinant

pnn‘/prselr assume that [n.t.l'/]nl is not determinant, then there exists
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S1S2€EPuik <ar S1ESy, such that for all Te Q, ANSg (T)=ANSs(T). Without
loss of generality, we assume S, \ S,#60. From ANS;s (X;)=ANSs (X;), we see
that i¢S;\'S, and i¢ S, \ S, for all i=1,2,...,n+k—1. Hence, S|\ S,={n+k}
and S,\S;=#. It follows that for any eckE, |S,NT,|=[S,NT,/+1. Since
ANS;,(T,) = ANSs,(T,), we have

|S;NT,|=k VeeE, 2.1)
S,Ne+@ Veek. (2.2)
Next, we show that

{n+1n+2,...,n+k-1}CS

.
2.

2.3)

Assume, for otherwise, that (2.3) is not true, then, [S;N{n+1,n+2,...,
n+k—1}|=k-2, and |S,Ne|=2 VYeeFE. Because G has no isolated vertex,
VES,, we have n+k—2—iS2[=|S1|—-1<d—1:k+h—1, which implies that

n—1<h. By assumption, h<n-1 a contradiction. Hence {n+1.n+2
n—i=<h. By ontradic +
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n+k—1}CS,. Define Y=S,\{n+1,n+2,...,n —1}, then |Y|<d—k=h. By
(2.2), YNe#0 VeeckE, so Y is a vertex-cover of G with |Y|<h. O

Theorem 2.2. DA (k=1) is co-NP-complete.
Proof. It is easy to see that DA} (k=1) is in co-NP. Now, we show that VERTEX-

COVER is polynomial-time reducible to the complement of DA}, and hence DA},
is co-NP-complete.

at £ (Y I A lmboncar L N L - 11/] 1y £ A tnmnan ~f VDTV
Let G={(V, £) and integer # Ww<a<|v | — 1) 10rnl a given istance o1 VveRI1LA-
COVER. Assume V= { ,2,...,n}. Every edge e is represented by a subset of two
elements of V. Define an instance of DA/ as follows
X;={i} Vvi=1,2,...,n+k-1,
T,=eU{n+1,n+2,...,n+k} VeekE,

and
Q0=1{X;|i=1,2,..,n+k—-1}U{T,|ecE}.

It is only routine checking that G has a vertex-cover Y with |Y|=<# if and only if
{n+k+1,k+h Q} is not determinant, in particular, it cannot distinguish the
following two sets:

S, =YU{n+1,n+2,...,n+k},

S,=YU{n+1i,n+2,...,n+k—1,n+k+1}. ]
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3. DA, and DA,

To prove that DA, is polynomial-time solvable, we first show two lemmas.

Lemma 3.1. Let Q be a collection of tests. If there exist S, S, € @,, S1# S, such that
Jor all Te Q, ANSs (T)=ANSs,(T) in the model Ay, then there exist S1,S5€ ¢,,
S§1#S83 and S{US;=N such that for all TeQ, ANSs(T)=ANSs(T) in the
model Ay.

Proof. Let S/=S,U(N\(S5,US,)), i=1,2, then
ANSs(T) = min{k, ANSg(T)+ ITONN (S{US))|}.
From ANSg (T)=ANSs,(T), we see that ANSg(T)=ANSg(T). U

Lemma 3.2. Let {n,Q} be an instance of DA,. Then, {n,Q} is not determinant
if and only if there exist Y\, Y, in ¢,, Y\NY,=0, Y,\UY,#8, such that for any
T e Q the following conditions hold:

() If |T|<2, then |Y,NT|=|Y,NT]|.
(2) If |T|=3, then |Y\NT|<|T| =2 and |TO Y, <|T|-2.

Proof. Assume that {n, Q} is not determinant. By Lemma 3.1, there exist Si,S;€
@, S{#S; and S{US; =N such that ANSs(T)=ANSg(T) for all Te Q. Define
Y, =S\ S;=N\S3, Y,=S;\S{=N\S;. If |T|=<2, then |S{NT|=|S3NT]|, so
lY\NT|=IS{NT|~|TNS{NS;|=I1SSNT| - 1T,NSiNS3| =Y,NT|. If |T|=3,
from S;US;=N, we see that |S{NT|=2 or |S;NT|=2. Assume, without loss of
generality, that |[S{NT|=2. Then ANSs(T)=ANSs(T)=2, so [S;NT|=2.
Therefore, |Y{NT|<|T|-2 and |Y,NT|=|T|-2.

Conversely, assume that there exist Y,,Y,e9p,, Y/NY,=0, Y,UY,#0, satis-
fying conditions (1) and (2). Define S; =N\ Y, and S, =N\ Y, then §;#S,. It is
easy to see that ANSg (T)=ANSs (T) for all TeQ. O

Let {n,Q} be an instance of DA,. Define GQ=(N, E) to be the graph with
vertex set N and edge set E={TeQ||T|=2}. A graph G=(V, E) is said to be
bicolourable if its vertex set V can be partitioned into two disjoint parts V, and V,
such that every edge of G is between V| and V,. For a connected graph G, if such
partition exists, then it is unique. In this case V| and V, are called monochromatic
subsets of G.

Theorem 3.3. Let {n, g} be an instance of DA,. Then, {n,Q} is not determinant if
and only if GQ has a connected component that is bicolourable and its monochro-
matic vertex subsets Y, and Y, satisfy the following conditions:

() If TeQ, |T|=1, then TO(Y,UY,)=0.
() If TeQ, |T|=3, then |TNY||<|T| -2, and |TNY,|<|T|-2.
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Proof. Assume that GQ has a connected component that is bicolourabie, the mono-
chromatic vertex subsets Y, and Y, satisfy the conditions (1) and (2), then by

Tamma?1? fu NDVic nnt datarminant (Canvarcely acenimea that S NV ic nat dAatar.
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minant, then there exist Y, and Y, satisfying Lemma 3.2. For any Te€E, since
lY,NT|=|Y,NT|=0 or 1, we have either TN(Y,UY,)=0 or TC Y,UY,. Hence
the subgraph GQIY ur, induced by YUY, is the union of some connected com-
ponents of GQ. Moreover, for each edge T of GQ{YIUy, we must have that
|ITNY,|=|TN Y, =1. Thus GQ| ¥,u, is bicolourable. Consider a connected com-
ponent of GQ | ¥Y,Ur,  Its two monochromatic vertex subsets must be subsets of Y,
and Y, and hence satisfy the conditions (1) and (2). LI

s
holds 1f and only 1f there exists no odd cycle ina bas1 of
louring of a graph is polynomial-time solvable. If a connected graph is bicolourable,
then its vertex set can be uniquely partitioned into two disjoined monochromatic
subsets. By Theorem 3.3, it is easy to see that the corollary is true. [

Next, we consider DA;.

Lemma 3.5. Let {n,Q} be an instance of DA,, then {n,Q} is not determinant if
and only if there exist V.. Y, cop Yynvy.-ag YUY, +g such that for any T O
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the following conditions hold:

(1) If |T|=<3, then |[Y\NT|=|Y,NT]|.
Q) If |[T|=4, then |[Y\NT|=|Y,NT|, or |TN(Y,UY,) =1.
(3) If |T|=5, then |Y\NT|<|T| -3 and |Y,NT|=|T|-3.

Proof. Assume that {n, Q} is not determinant. By Lemma 3.1, there exist S},S5€
@ns S3#81, S{US; =N such that ANS,(T)=ANSs,(T) for all Te Q. Define Y, =
Si\S;=N\S; and Y,=S;\S{=N\S{. If |[T|=4 and |Y|NT|#|Y,NT]|, then

L evy o~ rv) L ges o~ )

|Y;NT|=|T|-|S;_;NT| impiies {S;MN7 |¢\bzl 111 But ANSs(T)=ANSg(T),

$O |S ﬂT}>3 and [S;NT]=3, henceJYlﬂTl or 1) if and only1f|Y20T|—1
{far MY LIV YN T =1 hoa nranf of r\fl’\or cacog ie gimilar ta that ~Ff
\Ul U}’ 1 \r 3 ‘\‘ IV 4 2/! LI 4 J 1. lll\r PlUUl vl vLiivi vasvy 1o Dllll ial LV LiaL vl
Lemma 3.2.

Conversely, assume that there exist ¥, and Y, satisfying the conditions of the
lemma, then define S{=N\Y,, S5=N\Y,. It is easy to verify that S| and S;
satisfy Lemma 3.1. Hence, {n, Q} is not determinant. [

Let /DA; denote the special case of DA; that there exists no test Te Q with

i .
|T|=1.

Theorem 3.6. 3DA
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Proof. The first of all, we state an algorithm, then show its correctness. Let {n, O}
be an instance of 3DA;, define E={TeQ||T|=2} and the graph GQ=(N, E).

Accsume that the bicalourable connected comnonente of (30) are (3. (3, (; and
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the monochromatic vertex subsets of G; are X; and Z;.

Step 0. Let

-~
.
>

-«

//
n

f\

\/

Step i (1<si=m). Let Yi=X;and Y":=Z7;.
(A) If Y and Y satisfy the following conditions:
(D If TeQ, |T|=1, then TN(YUY)=0.
() If TeQ, |T|=4, then [YNT|=|Y'NT| or (YUY)NT|=1.
B)If TeQ, |T|=5, then |YNT|<|T|-3 and |Y'NT|=<|T|-
Then stop, and conclude that {#, Q} is not determinant.
If Y and Y’ do not satisfy (1) or (3), then let R:=RUX,UZ;, and go to Step
i+1.

|T| =4 such that exther

ITNY|22 and |TNY'|<! G.1)
or

ITNY|<1 and |TNY|=2. (.2)

If TEYUY’, then let R:=RUX,UZ; and go to Step i+ 1, else choose xe T\
(YUY'). If xeR, then let R:=RUX;UZ,, go to Step i+ 1. If x¢ R, then x must be
a vertex ot G; for some j=1,2,...,m. When (3.1) occurs, let

Y:=the union of Y and the monochromatic vertex subset that
does not contain Xx, (3.3)
Y’:=the union of Y’ and the monochromatic vertex subset that )
contains x;

when (3.2) occurs, let
Y:=the union of Y and the monochromatic vertex subset that

contains x

oo . 3.4
Y’:=the union of Y’ and the monochromatic vertex subset that G4

does not contain x,

and go to (A).

Now, we show its correctness as follows.

Assume that {n, 0} is not determinant, then there exist Y, and Y, satisfying
Lemma 3.5. If |T|=2, TeQ, then |TNY,|=|TNY,, so, GQIY.UYZ is the union
of some bicolourable connected components of GQ. Let G be the connected com-

.......................................... e Ll
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ponent of GQ|YIUY2 with the smallest index. We claim that the algorithm stops
not later than Step / and conclude that {n, Q} is not determinant. We first see two
facts.

Claim 1. At step i, YC Y, YC Y, (or YCY,, Y'CY)).

Proof. If Y=X;, Y'=Z,, then, obviously YT Y|, Y'CY,. In the following, we
show that the claim is still true when Y and Y’ are redefined by (3.3) or (3.4). For
convenience, let ¥ and Y’ denote the redefined Y and ¥’. We must show that
YC Y, and YO Y, imply YC Y, and Y'CY,. If (3.1) occurs, then YZ Y, |T|=4,
|Y{NT|=2. By Lemma 3.5, |[Y,NT|=|Y,NT|=2.So, T\ (YUY)C Y,, Xe¥,.
Hence, the ¥ and Y’ obtained from (3.3) satisfy YZ Y;, Y'C Y,. If (3.2) occurs,
we can show the claim by a similar argument. 0O

Claim 2. The algorithm cannot go to Step i+ 1 from Step i.

Proof. For otherwise, assume that the algorithm goes to Step /+ 1 from Step /, then
one of the following occurs.

(a) Y and Y’ do not satisfy (1) or (3).

(b) Y and Y’ do not satisfy (2) with 7and TC YU Y".

(©) (T\ (YUY)NR=O holds.

If (a) occurs, then by Claim 1, Y, and Y, do not satisfy the condition (1) or (3)
in Lemma 3.5. If (b) occurs, then Y and Y’ do not satisfy the condition (2) in Lemma
3.5. Therefore, (a) and (b) cannot occur. Next, suppose that (c) occurs. Note that
|T|=4. Since Y, and Y, satisfy the conditions in Lemma 3.5, we have |TNY,|=
|TNY,|=2. Thus, TE Y,UY,. (c) implies RN(Y,U Y,)#0. However, during the
computation of Step i/, we have

m
R=N\ hU‘ (XxUZy)
=1
and by the assumption on G;, we have

m
YUYt U x,uzy)
hZi

contradicting RN(Y,UY,)#0. O

By Claim 2, the algorithm must stop before or at Step i. Note that the loop at
each step cannot go for infinitely many times since each time when the computation
goes to (A) from the last instruction of the step, the number of vertices in YU Y’
will increase. Therefore, the algorithm must stop at the place where {n,Q} is
pointed out not to be determinant.

Now, assume that {n, Q} is determinant, we need to show that the computation
must enter Step m. For otherwise, suppose that the computation stops before Step
m. Then, there must exist Y and Y’ satisfying (1), (2) and (3). It follows that ¥ and
Y’ satisfy Lemma 3.5 and hence {n, Q} is not determinant, a contradiction. O
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Next, we show the co-NP-completeness of DA; by reducing the following
problem to it.

One-in-three-SAT. Given a set U of variables and a set ¢ of clauses, with each Ce¢
containing exactly three variables from U, determine whether there is a truth as-
signment ¢ on U such that each clause C in ¢ contains exactly one TRUE variable.

Theorem 3.7. DA, is co-NP-complete.

Proof. It is easy to see that DA, is in co-NP. Now we show that one-in-three-SAT
is polynomial-time reducible to the complement of DA, and hence DA; is co-NP-
complete.

Let (U,¢) be a given instance of one-in-three-SAT such that U={X,..., X, },
e={Cy,...,C,}, |C;| =3 for all j. Without loss of generality, assume that every X;
in U occurs in some C; in ¢.

Define an instance {#, Q} of DA; as follows:

n:=p+15g+1, m:=22q,
N:={1,..., b, »,u(j, k), v(j, k), w(j, k), X(j, k), 20, &)
k=1,2,3, j=1,...,q}, [N|=n.

For convenience, assume that

u(j,4)=u(j 1), u(j, 0)=u(; 3),
v(j, 4 =v( 1), v(, 0) = v(/; 3),
wi,H=w(, 1),  w(,00=w(,3),
x(J, 4 =x0 1), x(J, 0) = x(j 3).

For each j=1,...,q, assume that C;={X;, X;, X } (with j;<j,</3) and define

Q as follows:

29

Q=1 Tjh1 U'jk’ Mjk! ]ijs ij, [_Ijk’ ijl

j=1,...,q, h=0,1,2,3, k=1,2,3}, |Q|=m,

where
ij():{jl’jbjb y},
Te={Jw ul, k) 00 k),
L]jl = {jZ, j3’ u(j’ 2): Z(j» 1)}9
U, =i Jsu,3), 20, 2)},
U,={j1J2ul ), 20,3},
My = {ul), k+ 1), x(j, K)},
Nye= {20, k), x(J, )},
ij = {X(j’ k)9 W(Jv k)s y},
Hy = {20, k), w(j, k + 1), w(j, k= 1), y},
Py=1{z(j, k), v(j, k), x(j, k + D}
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Case 1. Assume that ¢ is a truth assignment on U such that for each Cjee, ¢
assigns exactly one TRUE value to the variables in C;. Define two sets S, S, as
follows:

S,={i|l=i<p, t(X;)= TRUE}
U{u(j, k+ 1,00, k—1), z(j,k)|the kth variable X; in C; has
#X;)=TRUE}
U{y}.

S,={i|l=i<p, #(X;)=FALSE}
U {v(j, k), x(J, k), w(j, k+ 1), w(j, k — 1)]the kth variable X in C;
has #(X;)=TRUE}.

Obviously, S;#S,, we claim that for all TeQ, ANS;5 (T)=ANSs,(T), hence
{n, Q} is not determinant. To show so, we check the following:

Claim 1.1. For all j, k, |SNT,|=|$,NT;|=2, |S,N\Tyl=|S,NTyl=1,
ISINUp|=|$:NUyl=1 or 2, [SINMy|=[$;NMy|=0 or 1, |S;NNy|=
S, N | =0 or 1.

Proof. From the definitions of S; and S,, we have that for any j and &, X(j,k) e
Sy & Z(j,k)yeS,. If {X;)=TRUE and HX},)=X;)=FALSE, then

SlnTjoz{jlay}’ SznTjoz{J.z,h};
SlnTj,:{jl}, Szﬂle={u(j,1)};
SINT;, ={u(,2)}, S$NT;,=4{/2};
S0 T ={v(3)} $:0 T ={j3};
Sln(]jlz{u(jaz)!z(j,l)}’ Sln(]jlz{jZ’jS};
S$INU;, ={u(j, D}, $NU;,={/3};
S$iNU;,=4{ji}s S$:NU;,=4/2}-

The other two cases are similar. [

Claim 1.2. For all j and k, |S\NHy|=1 or 2, [S;NH,|=1 or 2, |SiNL;
1S20L1k|=1, |Snij|=|Sznijl=O or 1.

Proof. If #(X;)=TRUE, «(X;)=t(X;)=FALSE, then,
Slnij:{y}s k=1’2’3) S2nLj|:{x(ja 1)}’

S$2NL;,={w(j,2)}, S;NL; ={w(j,3)},
SiNH; =1y, 20, D}, SN H; = {w(j, 2), w(j,3)},
Si1NH;, =8 NH; ={y}, SN Hj, ={w(j,3)},
S$;NH; ={w(j,2)}, SiNP; ={z(j, D},
Sznpjl={l)(j,1)}, SzﬂPj2=SlnPj2=ﬂ,
SINP; ={v(),3)}, $,NP; ={x(j,1)}.

The other two cases are similar. O
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Case 2. Conversely, assume that {#, Q} is not determinant. By Lemma 3.5, there
exist Yy, Yoe9,, Y\UY,#0, Y,NY,=0 such that for any T Q,

S R Sy o RS | 4N aYe all

(1) if |T|=3, the 11|‘11||T|—|}2||1|,
(2) if |T|=4, then |Y\NT|=|Y,NT|, or (Y, UY))NT|=1.

First, we show the f‘n"nunn factg
orst, we snow acts.

281 1OV i

Claim 2.1. For all j=1,...,q, and k=1,2,3,

u(jk+)eY, o x(j,k)eY, & z(j,k)e Yy,
u(Gk+)eY, & x(j,k)eY, & z(j,k)eY,.

Proof. It follow immediately from |Y,NM;|=|Y,NM;| and |[YNNy|=

Y,NN. O

Claim 2.2. For any j, if |{j1,J» 3} NY | =1 and |{j1, j2 i3} N Yo| =1, then u(j, k),
AVEFI PN £ YAV IIY. faw Al I-—1 D 2

o(J, k), w(j, k), x(j, k), z(, k)¢ YUY, for all k=1,2,3.

Proof, By Claim 2.1, {u(j,k+1),z(j,k)}N(Y,UY,)#0 implies either {j;,,
Jes2d EY1, of {Jki1rJis2 EY,. Thus, we must have u(j, k), z(j, k)¢ YUY, for
k=1,2,3, and hence x(j,k)E YUY, for k=1,2,3. Since |Pkﬂ Y| =|ijﬂ Y,| we

N o ) Ao PGS, Jy

aiso have Uu,l()et PR 12 for £=1,2,3. If ye& 1 U 12, then by \,uuaxucliug ij, W<
n obtain w(j, k)¢ YUY, for k=1,2,3. If ye Y, UY,, then by considering L
we can obtain w(j,k)eY,UY, for k=1,2,3, Thus, |H;N(Y,NY;)|=3. Thm is

Ll Ovwalldl L AEE A JOSE N ISEN;

impossible. O

Ciaim 2.3. ye Y, UY,.

Proof. Suppose to the contrary that y¢ YU Y,. Then the hypothesis of Claim 2.2
holds for all j=1,...,q, and hence none of u(j, k), v(j, k), w(j, k), z(j, k) is in

Y,UY,. Furthermore, by considering T}, we can see that none of j; is in Y, UY,.
Thus, Y,UY,=6, a contradiction. [

Since ye Y, UY,, without loss of generality, we assume ye Y.

Claim 2.4. For all j=1,...,q, |{j1,j»j3}NY;|=1.

Proof. Suppose to the contrary that for some j, |{j;, /2 3} N Yy|#1. Then, we
must have |{jj,/j2,/j3} N Y, =0. By considering test T, we see that |{j, j» j3} N
Y,|=1. Thus, the hypothesis of Claim 2.2 holds for j and hence for k=1,2,3,
u(j, k), v(j, k), w(j,k), x(j,k) and z(j,k) are not in Y,UY,. It follows that
LMY, |#0= |ij| \Y,|, a contradiction. [

Now, we define a truth assignment ¢ on V by

« )_gTRUE ieY,,
"7 |FALSE, igY,

L0170 L1

'=1,...,q9. From Claim 2.4, it is easy to see that this is a one-in-three truth

Q
17
»
V.
09~
=
=
=
a -
—
=
1=
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