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1. INTRODUCTION

The problem of constructing small sample spaces that ‘‘approximate’’ the indepen-
dent distribution on n random variables has received considerable attention

Ž w x.recently cf. 1, 2, 4, 7, 18 . The primary motivation for this line of research is that
random variables that are ‘‘approximately’’ independent suffice for the analysis of
many interesting randomized algorithms, and hence, constructing a small probabil-
ity space that ‘‘approximates’’ the independent distribution yields a way to ‘‘de-
randomize’’ these algorithms, i.e., convert them to deterministic algorithms of
reasonable complexity by using the deterministically constructed sample space in
place of the ‘‘internal coin tosses’’ of the algorithm. A typical example of the use of
this methodology has been provided by Luby in his work on the maximal indepen-

w xdent set problem 16 . Surprisingly, it is often ignored that the random variables
used in that work are neither identically distributed nor uniformly distributed over
some sets, and furthermore that this is likely to be the case in many applications.

Ž .In contrast, all general constructions for limited independence presented so far
Žapply to random variables uniformly distributed over the same set in most cases

� 4.the two-element set 0, 1 . Hence it is of primary importance to investigate the
extent to which these constructions can be generalized to deal with the ‘‘k-wise
approximation’’ of arbitrary stochastically independent events.

A. Definitions of Approximation

Throughout the paper we consider the approximation of product distributions;
Ž .namely, distributions that are the product of many say, n independent distribu-

tions. Without loss of generality, we assume that each of the individual distribu-
� 4tions has a support that is a subset of 0, 1, . . . , my1 . Thus a product distribution

on n general m-valued random variables is described by a n-by-m probability
� � 4 � 44matrix PP s p : ig 1, . . . , n , ¨ g 0, . . . , my1 , which is a matrix of nonneg-n, m i, ¨

ative entries such that the sum of the entries in each row equals 1. We refer to this
Ž .matrix as the specification matrix. The i, ¨ -entry, p , specifies the probability thati, ¨

the ith random variable should take on value ¨ .
From PP we want to produce a finite set S that induces a distribution on nn, m

Ž .random variables X , . . . , X that approximates in the sense defined below the1 n
independent distribution for PP . We view S as a sample space that induces an, m
distribution on X , . . . , X defined by choosing a sample point uniformly from S.1 n

Ž . � 4That is, for each point sgS and each index i, we have X s g 0, . . . , my1 ,i
Ž .where X s is the value of the random variable X on the sample point s. We leti i

X denote the subsequence of random variables indexed by I, and X sV denotesI I
� 4 < I <the event that the subsequence X takes on the value sequence Vg 0, . . . , my1 .I

w xBy Pr X sV we denote the probability that event X sV occurs in the distribu-S I I
tion induced by S.

v We say that S is perfect for PP if it induces a distribution on X , . . . , Xn, m 1 n
² : � 4nsuch that, for all Vs ¨ , . . . , ¨ g 0, . . . , my1 ,1 n

Pr X sV spS ²1, . . . , n: ²1, . . . , n: , V

def l ² : ² :where p s Ł p for Is i , . . . , i and Vs ¨ , . . . , ¨ .I, V js1 i , ¨ 1 l 1 lj j
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v Ž .We say that S is a k, e -approximation for PP if for any subsequence I ofn, m
� 4 lsize lFk and for any set of possible values Vg 0, . . . , my1 ,

< <w xPr X sV yp Fe 1Ž .S I I , V

Ž .We stress that Eq. 1 asserts a bound on the Max-Norm of the difference
Ž .between X and the p vector. Bounds in other norms e.g., Norm-1 canI I

easily be derived from the Max-Norm bound. Specifically, we say that S is a
Ž .k, e -L1-approximation of PP if for all subsequences I of size k,n, m

1
< <w x? Pr X sV yp Fe 2Ž .Ý S I I , V2 k� 4Vg 0, . . . , my1

v ŽWe say that S is an e-approximation for PP if the above holds for ksn i.e.,n, m
Ž . � 4 < I <.Eq. 1 holds for all I ’s and all Vg 0, . . . , my1 .

v Ž .We say that S is a k-wise independent approximation for PP if Eq. 1 holdsn, m
with es0.

ŽHereafter, the quantification ‘‘for PP ’’ is omitted for brevity whenever PP isn, m n, m
.clear from the context.

All constructions for sample spaces considered in this paper are efficient in the
sense that there is a deterministic algorithm that produces the sample space S in
time polynomial in the length of the description of S, where the sample space is
described as a list of sample points and each sample point is described by an n-ary

� 4sequence over 0, . . . , my1 .

B. Previous Work on Approximation

All previous work in this area deals with the approximation of identical random
variables that are uniformly distributed over a finite set.1 Let UU be then, m
probability matrix with all entries equal to 1rm that describes the special case of n
identically and uniformly distributed m-valued random variables. Thus UU is then, 2

Žimportant subcase in which all entries are 1r2 describing n identically and
.uniformly distributed Boolean-valued random variables . It is easy to prove that S

n Žhas to be of size at least 2 to be perfect for V or any other joint distribution ofn, 2
.n nondegenerate random variables . Previously known approximations to UU aren, m

of three forms:

v k-wise independent approximations: Constructions of sample spaces of size
� 4kmax n, m that are k-wise independent approximations for UU are given inn, m

w x1, 7 .
v Ž .e-approximations: Constructions of sample spaces of size poly nre that are

w xe-approximations for UU are given in 2, 18 .n, 2
v Ž . ŽŽ . .k, e -approximations: Constructions of sample spaces of size poly k log n re

Ž . Žthat are k, e -approximations for UU can be derived from the above via then, 2
w x.reduction of 18 .

1 w xThis sentence refers to work prior to the conference publication 9 of the current work. In addition to
w xthe discussion in Section 1F, the reader is referred to 11, 14 .
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Ž .Efficient constructions of k, e -approximations for general PP with sizen, m
Ž � 4.k Ž w x.max n, kre are implicit in many works cf. 1, 16 . In fact, any k-wise indepen-

Ž .dent approximation to UU can be transformed into a k, e -approximation forn, k re

Ž . 2any PP by rounding the entries in PP to integer multiples of erk . Forn, m n, m
Ž .constant k and espoly 1rn , this yields a sample space of size polynomial in n.

On the other hand, it has been shown that the sample space has to be of size at
? k r2 @ w xleast n to be a k-wise approximation for UU 6 , and for nonconstant k this isn, 2

not polynomial in n.
For some applications the constructions described above suffice. For example, in

the analysis of some of the randomized algorithms for graph problems presented in
w x Ž w x.16 and in 1 , approximate pairwise independence of the random variables

Ž .suffices. Thus a construction of a sample space of polynomial size that is a
pairwise independent approximation for general PP can be used to convert thesen, m
Ž . Ž .polynomial-time randomized algorithms into deterministic polynomial-time al-

Ž w x.gorithms. In other applications see 18 , approximations of identically and uni-
formly distributed Boolean-valued random variables suffice. However, in the other
applications the random variables are general, and more than a constant amount of
independence may be required in the analysis. Thus it is of primary importance to
develop constructions for these cases.

C. New Results on Approximation

In this paper we describe a construction of small sample spaces that are approxi-
mations of the independent distribution for any PP . The construction yields an, m

Ž .sample space that is a k, e -approximation, where the size of the sample space is
Ž . k Ž w x.polynomial in log n , 2 , and 1re . Previous results cf., 1, 16 that achieve the

Ž .same kind of approximation yield a sample space of size polynomial in log n and
Ž .k Ž Ž .. Ž .kre . In contrast to previous results, when ksO log n and espoly 1rn , the
size of the sample space in our construction is polynomial in n. This case is

Žimportant to some applications e.g., this construction improves the running time of
w x.some of the algorithms presented in 17 . Two natural examples follow in which we

obtain a significant improvement.

Example 1. Suppose we wish to approximate n independently distributed 0-1
random variables, each assigned 1 with probability 1r2q2e and 0 otherwise.
Using previously known techniques, one obtains a sample space of size polynomial

Ž . Ž .k Ž .in log n and kre , which is a k, e -approximation of the above. In contrast to
previous results, our construction results in a sample space of size polynomial in

Ž . klog n , 1re , and 2 .

Example 2. Suppose we wish to approximate n independently distributed random
variables, where the ith random variable is uniformly distributed over the set
� 41, 2, . . . , m and the m ’s are arbitrary. Using previously known techniques, onei i

2 Ž .This simple argument does not extend to k, e -approximation of UU , because we need a boundn, k re

Ž .of e on the Norm-1 of the distance to UU rather than a Max-Norm bound. Indeed, we may obtainn, k re

Ž k .such a Norm-1 bound by using a k, erm -approximation of UU , but then the sample space will ben, k re

mk times bigger.
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Ž � 4.k Ž .obtains a sample space of size polynomial in max n, kre that is a k, e -
approximation of the above. Again, our construction improves over the above by

Ž . kproviding a sample space of size polynomial in log n , 1re , and 2 .

D. An Overview of the Main Construction

Our main construction is described in this paragraph. For simplicity, we consider
here the special case of approximating the joint distribution of n independent 0-1

� 4random variables. Namely, each random variable X satisfies X g 0, 1 . Leti i
Ž . Ž .p sPr X s0 . To construct a k, e -approximation of XsX ??? X , we use ai i 1 n

Ž lq1. � 4nll, er2 -approximation of the uniform distribution over 0, 1 , where l sdef
Ž Ž ..O kq log 1re . We partition the latter nl Boolean random variables into n

consecutive blocks with l random variables in each block. We interpret each block
as the binary representation of an integer, and let B denote the integer repre-i
sented by the ith block. The approximation to X, denoted YsY ??? Y , is deter-1 n
mined by letting Y s0 if B -p ?2 l, and Y s1 otherwise.i i i i

Ž k l.If the B ’s are a k, er2 -approximation of the uniform distribution overi
� l 4n Ž .0, 1, . . . , 2 y1 , then the Y ’s defined above would be a k, e -approximation ofi
the specification PP . This, however, requires the individual bits of all of the B ’sn, 2 i

Ž k l. � 4 lnto be a l ?k, er2 -approximation of the uniform distribution over 0, 1 . How-
Ž . Ž lq1.ever, we want to and do use a much weaker approximation, that is, a l, er2 -

� 4 lnapproximation of the uniform distribution over 0, 1 .
Our analysis uses the observation that, typically, each Y is determined by a fewi

Ž .of the most significant bits of the corresponding B . Specifically, we show thati
only with small probability are the values of the Y ’s determined by more thani

Ž Ž ..lsO kq log 1re bits in the representation of the B ’s. Thus it suffices that thei
bit string, obtained by concatenating the binary representations of the B ’s, is ani
Ž lq1. Ž � 4 ln.l, er2 -approximation of the uniform distribution over 0, 1 .

We end this overview by presenting an alternative construction of unknown
Ž .quality. The problem of constructing k, e -approximations to arbitrary product

distributions is reminiscent of the classic problem of generating arbitrary probabil-
Žity distributions by using a uniform probability distribution over binary strings or,

.in other words, by using an unbiased coin . In particular, Knuth and Yao have
extensively analyzed the expected number of coin tosses required in such schemes
w x13 . The input to such a scheme is a uniformly distributed binary sequence, and
the output is a sequence that approximates the desired distribution. A natural

Ž .suggestion is to use one of these schemes to produce an a k, e -approximation to
Ž Ž . .the n-fold distribution, by feeding it as input a O k , e 9 -approximation to the

uniform binary distribution, for some appropriate e 9. We do not know whether this
alternative approach works; actually, we conjecture that, in general, it does not.

E. Omitted from This Version

w xThe conference version 9 of the current paper contains some material that is
omitted here. This includes

v Discussing the problem of constructing small sets with low discrepancy with
Ž .respect to certain families of axis-parallel rectangles in high-dimensional
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spaces. We comment that, in subsequent literature, the rectangles considered
w xin 9 are referred to as geometric rectangles.

v Relating the problem of constructing approximations of product distributions
Ž .to the problem of constructing small sets with low discrepancy as above . In

particular, the main construction presented in this write-up was presented in
w x9 , using the terminology of low discrepancy sets.

v Ref. 9 contains two additional constructions of small sets with low discrep-
w xancy. The first such construction has been superseded by Chari et al. 5 and

w xby Armoni et al. 3 , whereas the second construction follows immediately
w xfrom a theorem in 19 . Both constructions apply also to combinatorial

Ž w x .rectangles although the statement in 9 refers only to geometric rectangles .

In light of the above developments, we chose to omit all of these results from the
w xcurrent write-up. In particular, we have omitted a result of 9 that has found

Ž w x.further application in subsequent work e.g., 5 . We refer to the fact that, for any
specification matrix PP , any k-wise independent approximation to PP consti-n, m n, m

yV Žk . Ž w x .tutes a 2 -approximation to PP . A proof can be found in 5, 9, or 10 .n, m

F. Subsequent Work

ŽIn the 5 years that have elapsed since the conference presentation of this work cf.
w x.9 , a few related works have appeared. We briefly describe the related results in
w x5, 15 .

w xThe work of Chari et al. 5, Sect. 3 is most relevant to the current write-up. It
presents constructions that match or yield an improvement over the sizes of all

w xconstructions presented in 9 . However, for some natural setting of the parame-
wters, the size of the main construction of the current write-up is only matched by 5,

x Ž .Sect. 3 . Specifically, their construction has size polynomial in log n , 1re , and
� k logŽ1re .4 Ž Ž .min 2 , k whereas our construction has size polynomial in log n , 1re , and

k . w x yk2 . Thus 5, Sect. 3 yields no improvement when e-2 , which is the typical case
Žwhen one requires a bound on the approximation in the Norm-1 measure rather

. 3than in Max-Norm, as defined above .
w xLinial et al. 15 consider a one-sided version of the discrepancy problem. That

is, rather than construct sets that approximate the volume of all rectangles, they
construct sets that hit all sufficiently big rectangles. Their construction is polyno-

Žmial in all relevant parameters including the bound on the density of rectangles
.that must be hit .

The problem of constructing low discrepancy sets of polynomial size in all
relevant parameters is still open. In particular, it is an open problem to construct

Ž y1 . Ž .sample spaces of size poly n, k, e that k, e -approximate any n-fold product
distribution. We comment that if one drops the requirement that the sets be

Ž .efficiently constructible, then sets resp., spaces of the desired sizes can easily be
shown to exist by using a random construction. This suggests the following

3 Ž . Ž . ŽRecall that an k, e -approximation in Max-Norm to, say, UU yields a variation distance i.e.,n, 2
. kNorm-1 approximation of, at most, 2 e over windows of size k. Thus, to derive a meaningful result for

Norm-1, one needs to have e-2yk .
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Ž .probably easier, definitely no harder open problem: using randomness to produce
Žcertified low discrepancy sets i.e., a Las Vegas rather than Monte Carlo random-

.ized construction .

2. MAIN CONSTRUCTION

Ž .Theorem 1 General product approximator . There is a deterministic algorithm,
� 4which on input a specification matrix PP s p : is1, . . . , n, js0, . . . , my1 , andn, m i, j

Ž . Ž k y1 .parameters k, e outputs a sample space of size poly 2 , e , log n , which constitutes
Ž . Ž k y1 .a k, e -approximation for PP . The algorithm works in time poly n, 2 , e , log m .n, m

Ž k .The above yields a k, m ?e -L1-approximation of PP .n, m
Ž .We first present our construction for the special yet interesting case of

approximating Boolean-valued random variables. We later generalize the construc-
tion to handle random variables ranging over arbitrary sets.

A. Special Case: Boolean-Valued Random Variables

�Assume we are given a Boolean specification matrix, PP s p : is1, . . . , n, jsn, 2 i, j
4 Ž .0, 1 i.e., ms2 . Clearly, it suffices to specify the probability that each of the n

variables is to be assigned 0. Let p s p , for every iFn, and denote byi def i, 0
Ž . Ž . Ž Ž . yj .p 1 , p 2 , . . . the bits in the binary expansion of p i.e., p sÝ p j ?2 . Wei i i i jG1 i

Ž .construct a k, e -approximation of PP as follows.n, 2
Ž ŽLet l and t be integer parameters to be determined later e.g., ls ts4 kq

Ž .. . Ž .log 2re will do . In our construction we use an arbitrary efficiently constructible
Ž Ž tq1.. � 4 lnt, er2 -approximation of the uniform distribution over 0, 1 . Let us denote

Ž . Ž . Ž .the 0-1 random variables in this approximation by Z 1 , . . . , Z l , Z 1 , . . . ,1 1 2
Ž . Ž . Ž .Z l , . . . , Z 1 , . . . , Z l . Intuitively, l denotes the number of 0-1 random variables2 n n

that may affect a single random variable in the result, and t denotes the total
number of 0-1 variables that will actually be considered in the analysis.

Ž . Ž . Ž . Ž . Ž . Ž .Construction 1. Let Z 1 , . . . , Z l , Z 1 , . . . , Z l , . . . , Z 1 , . . . , Z l be a1 1 2 2 n n
Ž tq1. � 4 lnt, er2 -approximation of the uniform distribution o¨er 0, 1 . For e¨ery i, if the

Ž . Ž . Ž . Ž . Ž .string Z 1 ??? Z l is smaller in lexicographic order than the string p 1 ??? p l ,i i i i
then set Y s0; otherwise set Y s1.i i

Ž Ž . .In other words, the sample space S over which the Z j ’s are defined also servesi
as the probability space for the Y ’s. Each sample point in S, denoted byi
Ž . Ž . Ž . Ž .z 1 , . . . , z l , . . . , z 1 , . . . , z l , is mapped to a point, y , . . . , y , in the new1 1 n n 1 n

Ž Ž . Ž . Ž . Ž ..sample space where y s0 iff z 1 ??? z l -p 1 ??? p l .i i i i i
Our analysis of the above construction is somewhat analogous to the proof of

w xTheorem 3 in 17 . We fix k variables Y , . . . , Y out of Y , . . . , Y , and consider thei i 1 n1 k

quality of the approximation that they provide. Without loss of generality, we
consider the random variables Y , . . . , Y . Rather than bounding the Max-Norm1 k

Ž .performance of the approximation as required in the theorem , we will actually
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bound the variation distance:

k1
? Pr Y ??? Y ss ??? s y p 3Ž . Ž .Ý Ł1 k 1 k i , s i2 is1s ??? s1 k

Ž .Consider the following card game. The values of the random variables Z j arei
written on cards that are placed face down. We turn the cards over, one by one,

Ž .starting with the card holding Z 1 , and continue turning the cards over in the first1
Žblock until the value of Y is determined which happens when the sequence of1

Ž . .Z j ’s deviates from the binary expansion of p . Then we skip to the next block,1 1
Žand continue in the same fashion. Our goal is to prove that if ts ls4 kq

Ž ..log 2re , then the probability that we will turn over more than t cards is2
Ž .bounded by er2. This will enable us to take advantage of variables Z j that are ai

Ž tq1.t, er2 -approximation of nl perfectly random bits. Our proof is divided into
Ž .two stages: First we assume that the bits Z j are perfectly random, and we boundi

the probability of having to turn over more than t cards. Then we add the error
Ž .term due to the fact that the Z j ’s are not perfectly random.i

We model this card game by considering an infinite random walk in a labeled
infinite binary tree as follows.

1. Each node has two children, one reachable by an edge labeled 0, and the
other reachable by an edge labeled 1. We associate with each path the binary
string obtained by the edge labels along the string. Moreover, this binary
string is interpreted as the binary representation of fraction 0.b b . . . , where1 2
the most significant bit appears closer to the root. The random walk starts at
the root, and at each node a random step is made so that each of the two

Ž .children is reached with equal probability of one-half . A step in the random
walk corresponds to turning a card over in the card game.

Ž .2. The nodes in the tree are labeled by pairs of the form i, s , where
� 4 � 4ig 1, . . . ,k and sg 0, 1, ) . The i component in a node label signifies the

block that we are now dealing with. The s component signifies the status of
� 4 Žthe block as follows: sg 0, 1 means that Y has been determined i.e., Y seti i

.to s , and ss) means that Y is not determined yet, and that we need toi
reveal more bits from the ith block.

3. We now describe how the node labels are defined. We start by describing how
the labels corresponding to Y are ‘‘hung’’ from the root. The root is labeled1
Ž . Ž . Ž . Ž .1, ) . Consider the infinite path, denoted by path root, p sp 1 , p 2 , . . . ,1 1 1
starting from the root, that corresponds to the binary representation of p .1

Ž . Ž .All of the nodes along path root, p are labeled 1, ) . All of the nodes that1
Ž . Ž . Ž .are exactly an edge away from path root, p are labeled either 1, 0 or 1, 11

according to the following rule: consider the fractions corresponding to the
labels along paths, and consider the order induced by this correspondence on

Ž .paths that have the same starting point. A deviation from path root, p that1
Ž . Ž .defines a path ‘‘smaller’’ than path root, p ends with a node label 1, 0 , and1

Ž .a deviation that defines a path ‘‘greater’’ than path root, p ends with a node1
Ž . Ž .label 1, 1 . For example, suppose that p j s0; then the node reached by1

Ž . Ž . Ž .the path p 1 , . . . , p jy1 , 1 has label 1, 1 . This completes the description1 1
of the node labels corresponding to Y .1
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4. We continue to label the tree with node labels corresponding to Y by2
Ž . Ž .‘‘hanging’’ them from subtrees rooted at nodes labeled 1, 0 or 1, 1 . Given a

Ž . � 4 Ž . Ž . Ž .node ¨ labeled 1, s , where sg 0, 1 , let path ¨ , p sp 1 , p 2 , . . . de-2 2 2
note the infinite path starting at ¨ corresponding to the binary representation

Ž . Ž . Ž .of p . All of the nodes along path ¨ , p except ¨ are labeled 2, ) .2 2
Ž . Ž . Ž .Deviations from path ¨ , p are labeled 2, 0 or 2, 1 , depending on whether2

Ž .they are ‘‘smaller’’ or ‘‘greater’’ than path ¨ , p . We continue in this fashion2
until the nodes labels of Y , . . . , Y are given.1 k

Ž . Ž .5. We define a node to be complete if it has the label k, 0 or k, 1 . For the
Ž . Ž .sake of simplicity, we label by k, s the children of any node labeled k, s

� 4for sg 0, 1 . Recall that reaching a complete node via a random walk results
Ž .in setting values for all of the relevant variables Y , . . . , Y .1 k

The following claims are easily verified.

˜Claim 1. Consider a random infinite path going down the tree and set Y ss if andi i
Ž . � 4only if the path goes through a node labeled k, s , where s g 0, 1 . Then for e¨eryi i

� 4kass ??? s g 0, 1 ,1 k

k
˜ ˜Pr Y ??? Y sa s pŁž /1 k i , s i

is1

˜Proof. The process by which the Y ’s are set is identical to independently andi
˜Ž . w xuniformly selecting real numbers r ’s in the interval 0, 1 and setting Y s0 ifi i

˜Ž .r -p and Y s1 if r )p . Bi i i i i

Claim 2. The number of noncomplete nodes at le¨el t is

ky1
t Ž3r4. tqk<2 .Ý ž /i

is0

Proof. Consider an incomplete node ¨ and the path p from the root to ¨ . Let i
Ž . Ž .denote the maximum index for which a label i, 0 or i, 1 exists along the path p.

The path p is uniquely determined by the iy1 levels that contain nodes with
Ž . Ž . Ž .labels i9, 0 or i9, 1 where i9F i along p. The reason for this is that, between

two such levels, the path p follows the edge labels equal to the binary representa-
Ž .tion of the fraction p , where i9y1, s is the last non-* node label reached. Thusi9

the number of noncomplete nodes at level t equals

ky1
t .Ý ž /i

is0

Clearly, for tF4k, this expression is bounded by 2 t F2Ž3r4. tqk. For t)4k, the
3H Žk r t .? t Ž3r4. tqk2 Ž Ž .expression is bounded by 2 -2 since H a - qa for all a-1,2 4

.where H is the binary entropy function . B2



EVEN ET AL.10

˜Claim 3. Consider a random path of length t going down the tree and set Y ss ifi i
Ž . � 4the path goes through a node labeled i, s , where s g 0, 1 . In case in which thei i

˜Ž . Ž � 4.path does not go through any node labeled i, s with sg 0, 1 , set Y arbitrarily.i
˜ ˜Then the ¨ariation distance between the distribution of Y ??? Y and the specification1 k

PP is bounded by 2yŽ tr4yk ..n, 2

Proof. By Claim 1, the variation distance is due to non-complete nodes in the t th
level. Using Claim 2, such nodes are reached with probability bounded by 2yt r4qk.

B

˜The definition of the Y ’s in Claim 3 differs from the setting of the Y ini i
Construction 1 only in the independence requirements. Specifically, the proof of
Claim 3 assumes that each path in the tree is equally likely, whereas in Construc-

Ž . Ž tq1.tion 1, the Z j are a t, er2 -approximation of the uniform distribution overi
� 4 ln Ž .0, 1 . We show below that using the Z j ’s to define the probabilities of takingi
the paths down the tree merely adds an error term bounded by er2. Hence we get

Ž Ž ..Proposition 1. Let ls ts4 kq log 2re . Then Y ’s presented in Construction 12 i
Ž .constitute a k, e -L1-approximation of PP .n, 2

Proof. Our aim is to establish an upper bound on the variation distance of
Ž .expression 3 for the Y ’s presented in Construction 1. By Claim 3 and the settingi

˜of t, it follows that for the Y ’s, as defined in Claim 3, we havei

k1 e
yŽ tr4yk .˜ ˜? Pr Y ??? Y sa y p -2 s 4Ž .Ý Łž /1 k i , s i2 2is1a

˜However, we claim that the Y ’s are set exactly as they would have been set in thei
Ž .construction if the Z j ’s were to be a t-wise independent approximation of thei

ln ˜� 4uniform distribution over 0, 1 . Intuitively, the Y ’s are defined by limiting thei
length of the random walk down the tree to t levels, and the same should hold
even when the moves down the tree are governed by a nondisjoint sequence of
random variables, as long as the random variables along each path are independent

� 4and uniformly distributed in 0, 1 .

Ž .Claim 4. Suppose that the Z j ’s are a t-wise independent approximation of thei
� 4 lnuniform distribution o¨er 0, 1 . Then Y ’s presented in Construction 1 constitute ai

Ž .k, er2 -L1-approximation of PP .n, 2

Ž .Proof. Recall that the values of the Z j ’s determine the random walk down thei
Ž . Ž � 4.tree. Specifically, the steps taken until node 1, s with sg 0, 1 is reached are

determined by the random variables in the first block,

Z 1 , Z 2 , . . . , Z j ,Ž . Ž . Ž .1 1 1 1

Ž .where j F tF l is the number of such steps. The next steps, taken until node 2, s1
Ž . Ž . Ž .is reached, are determined by the random variables Z 1 , Z 2 , . . . , Z j , where2 2 2 2

j F t is the number of such steps, and so on. It is important to observe that,2
Ž . Ž .although different paths make us consider or reveal different Z j ’s, the hypoth-i
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Ž . Žesis that the Z j ’s constitute a t-wise independent approximation to the uniformi
� 4 ln.distribution over 0, 1 implies that each node in level t is reached with probabil-

ity 2yt.
This important observation follows from the fact that we reach a specific node ¨

Ž .in level t if and only if we reveal t specific values on t specific Z j ’s. The cardsi
we reveal from the ith block are determined by the subpath from the root to ¨ , the

Ž .nodes of which are labeled i, s , and the values that we reveal in the ith block are
the edge labels along this subpath. Thus, as claimed, each node in level t is

yt Ž .reached with probability 2 , and so Y , . . . , Y is distributed identically to1 k
˜ ˜Ž . Ž .Y , . . . , Y . Using Eq. 4 , the claim follows. B1 k

Ž . Ž tq1.Turning to the actual Z j ’s, which are ‘‘only’’ a t, er2 -approximations ofi
� 4 lnthe uniform distribution over 0, 1 , we conclude that if the walk on the tree is

Ž .determined by the actual Z j ’s, then, for every node ¨ in level t, the probabilityi
w yt tq1 yt tq1 xof reaching ¨ is in the interval 2 yer2 , 2 qer2 . Thus the Y ’s deviatei

˜ t yŽ tq1.from the Y ’s by at most 2 ?2 ?e , and the proposition follows. Bi

Ž . ŽComment 1. Proposition 1 holds also when setting ls log 4kre and ts4 kq2
Ž . Ž Ž ..log 4re . This can be accomplished by rounding the probabilities to O log kre2

Ž .bits of precision, and modifying the tree labeling so that paths labeled i, ) are
finite. However, the gain is negligible, since the value of l has only a poly-log effect

Ž . Žon the size of the sample space for the Z j ’s specifically, the size is exponentiali
Ž Ž .. Ž Ž ..in k and logarithmic in l, and so reducing l from O kq log 1re to O log kre

.has little impact .

B. The General Case

The construction for the general case extends Construction 1 in an obvious
� 4manner. That is, let PP s p : 1F iFn, 0F jFmy1 be a specification ma-n, m i, j

jy1 Ž .trix. For is1, . . . , n and js0, 1, . . . , m, let q s Ý p and q s0 . De-i, j def ¨s0 i, ¨ i, 0
Ž . Ž .note by q 1 , q 2 , . . . the bits in the binary expansion of q . Let l and t bei, j i, j i, j

Ž Ž Ž .. .integers to be determined later e.g., ls ts4 2kq log 2re will do .

Ž . Ž . Ž . Ž . Ž . Ž .Construction 2. Let Z 1 , . . . , Z l , Z 1 , . . . , Z l , . . . , Z 1 , . . . , Z l be a1 1 2 2 n n
Ž Ž tq1.. � 4 lnt, er2 -approximation of the uniform distribution over 0, 1 . For every i, if

Ž . Ž . Ž . Ž . Ž .the string Z 1 ??? Z l is in lexicographic order between the string q 1 ??? q li i i, j i, j
Ž . Ž . Ž . Ž . Ž .and the string q 1 ??? q l , then set Y s j. In case Z 1 ??? Z l sq 1 ???i, jq1 i, jq1 i i i i, j

Ž .q l , set Y s j.i, j i

Extending the argument used in the previous subsection, we can easily evaluate the
quality of approximation provided by Construction 2. Again, we consider without
loss of generality, the variables Y , . . . , Y . This time, we upper bound for each1 k

� 4kass ??? s g 0, 1, . . . , my1 , the absolute difference1 k

k

Pr Y ??? Y sa y p 5Ž . Ž .Ł1 k i , s i
is1
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The card game we play this time depends on s ??? s , and the purpose of the1 k
game is to decide whether Y ss , for is1, . . . , k. This means that we turn overi i
cards from each block until we can decide whether Y ss or not. In the casei i
where Y /s , we do not care about the exact value of Y .i i i

The labeling of the binary tree that models the card game depends on s ??? s1 k
and is described below. For each is1, . . . , k, we are interested in the binary
expansions of both q and q . Each node in the tree is labeled by a pair ofi, s i, s q1i i

Ž . � 4the form i, t , where is1, . . . , k and tg q, y, ) . Intuitively, a node labeled
Ž . Ž .i, q corresponds to a setting Y ss , a node labeled i, y corresponds to ai i

Ž . Žsetting Y /s , and a node labeled i, ) indicates that Y is yet to be set. Indeed,i i i
.in the binary case setting, Y /s means Y ss [1.i i i i

Ž .The root is labeled 1, ) , and there are two infinite paths going down from the
Ž .root with all nodes on it labeled 1, ) . These are the paths corresponding to the

binary expansion of q and q , respectively. All of the nodes reached by1, s 1, s q11 1

following such a path up to some node and then taking a single step away from the
Ž . � 4 Ž .path are labeled 1, t , where tg q, y . Specifically, if q j s0, then the path1, s1

² Ž . Ž . :going down from the root following the edge labeling q 1 , . . . , q jy1 , 11, s 1, s1 1
Ž . Ž .reaches a node labeled 1, q . In the case where q j s1, the path going down1, s1

² Ž . Ž . :from the root following the edge labeling q 1 , . . . , q jy1 , 0 reaches a1, s 1, s1 1
Ž . Ž . Ž Ž . .node labeled 1, y . Similarly, if q j s0 resp., q j s1 , then the path1, s q1 1, s q11 1

² Ž . Žgoing down from the root following the edge labeling q 1 , . . . , q jy1, s q1 1, s q11 1
. : Ž ² Ž . Ž . :.1 , 1 resp., labeling q 1 , . . . , q jy1 , 0 reaches a node labeled1, s q1 1, s q11 1
Ž . Ž Ž ..1, y resp., labeled 1, q . Recall that when a random walk reaches a node

Ž . Ž Ž .. Žlabeled 1, q resp., labeled 1, y , the random variable Y is set to s resp., to1 1
.s 9/s .1

Ž . � 4From each node labeled i, t , with i-k and tg q, y , there are two infinite
Ž .paths going down the tree with all nodes labeled iq1, ) . These are the paths

corresponding to the binary expansion of q and q , respectively.iq1, s iq1, s q1iq1 iq1
Ž .The nodes reached from a node labeled i, t by following the ‘‘q -expansioniq1, s iq1

Ž .path’’ resp., ‘‘q -expansion path’’ up to some node and then taking aiq1, s q1iq1
Ž . � 4single step away from the path are labeled iq1, t 9 , where t 9g q, y . Again, if

Ž . Ž Ž . .q j s0 resp., q j s1 , then the path going down from the rootiq1, s iq1, siq1 iq1
² Ž . Ž . : Žfollowing the edge labeling q 1 , . . . , q j y 1 , 1 resp., labelingiq1, s 1, siq1 iq1

² Ž . Ž . :. Ž . Žq 1 , . . . , q jy1 , 0 reaches a node labeled iq1, q resp., labelediq1, s 1, siq1 iq1
Ž .. Ž . Ž Ž . .iq1, y . Furthermore, if q j s0 resp., q j s1 , then theiq1, s q1 iq1, s q1iq1 iq1

² Ž .path going down from the root following the edge labeling q 1 , . . . ,iq1, s q1iq1
Ž . : Ž ² Ž . Ž . :.q jy1 , 1 resp., labeling q 1 , . . . , q jy1 , 0 reaches a1, s q1 iq1, s q1 1, s q1iq1 iq1 iq1

Ž . Ž Ž .. Žnode labeled iq1, y resp., labeled iq1, q . Reaching a node labeled iq
. Ž Ž .. Ž1, q resp., labeled iq1, y sets the random variable Y to s resp., toiq1 iq1

. Ž . Ž .s "1 . We define a node to be complete if it has the label k, q or k, y . Foriq1
Ž . Ž .the sake of simplicity, we label by k, t the children of any node labeled k, t for

� 4tg q, y . Intuitively, reaching a complete node via a random path from the root
w xmeans that we can determine for every ig 1, . . . , k whether Y ss .i i

Ž .The following analogous to the above claims are easily verified

� 4kClaim 5. Let ass ??? s g 0, 1 , and consider a random infinite path going down1 k
Ž .the tree in which nodes are labeled according to a as described abo¨e . Suppose we set
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˜ Ž .Y ss if and only if the path goes through a node labeled i, q . Theni i

k
˜ ˜Pr Y ??? Y sa s pŁž /1 k i , s i

is1

Claim 6. The number of nodes at le¨el t that are not complete is

ky1
t iq1 Ž3r4. tq2 k?2 <2Ý ž /i

is0

iq1 Ž .The extra 2 factor compared to Claim 2 is due to the fact that incomplete
paths are not fully determined by the levels in which the path is not marked by )
Ž . Ž . � 4as before . From each vertex marked j, t , with jF i and tg q, y , there are

Ž . Ž .two paths rather than one marked by jq1, ) , and so an incomplete path is
determined by both the non-) levels and the identity of one of the two correspond-
ing possible paths.

� 4kClaim 7. Let ass ??? s g 0, 1 , and consider a random path of length t going1 k
˜down the tree in which nodes are labeled according to a . Suppose we set Y ss if thei i

˜Ž .path goes through a node labeled i, q , and set Y /s if the path goes through ai i
Ž .node labeled i, y . In the case where the path does not go through any node labeled

˜Ž . � 4i, t , with tg q, y , we set Y arbitrarily. Theni

k
yŽ tr4y2 k .˜ ˜Pr Y ??? Y ss y p -2Łž /1 k i , s i

is1

˜The definition of the Y ’s in Claim 7 corresponds to the setting of the Y ’s ini i
Ž .Construction 2, provided that the Z j ’s constitute a t-wise independent approxi-i

� 4 lnmation of the uniform distribution over 0, 1 , and that lG t. As in the proof of
Ž . Ž Ž tq1..Proposition 1, setting ls t and allowing the Z j ’s to constitute a t, er2 -ap-i
� 4 lnproximation of the uniform distribution over 0, 1 merely adds an error term

bounded by er2. Hence we get

Ž Ž ..Proposition 2. Let ls ts4 ? 2kq log 2re . Then Y ’s presented in Construction2 i
Ž .2 constitute a k, e -approximation of PP .n, m

Ž . Ž .We are able to prove k, e -L1-approximation in the binary case and only k, e -
approximation in the general case because the tree labeling in the general case
depends on the values s ??? s , whereas in the binary case the tree labeling1 k

Ždepends only on the probed indices which, for simplicity, were chosen to be
.1, . . . , k .

Ž .Proof of Theorem 1. Using the known results on t, e 9 -approximation of the
� 4 lnuniform distribution over 0, 1 , Theorem 1 follows. Specifically, we need a

Ž yŽ tq1. . � 4 lnt, 2 ?e -approximation of the uniform distribution over 0, 1 , where ls ts
Ž Ž .. w x4 ? 2kq log 2re . By the results of 2 , such approximations can be efficiently2
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constructed with sample space of size

22 2 tq2t ? log ln 2 ? t log lnŽ . Ž .Ž .2 2syty1 2ž /2 e e

216 k2 ? log nŽ .˜sO 10ž /e

˜Ž . Ž .where O x spoly log x ?x. The theorem follows. B

Comment 2. The complexity of our construction is determined by the complexity
Ž . � 4 ln tq1of the t, e 9 -approximation to the uniform distribution over 0, 1 , for e 9ser2 .

The overhead added by our construction is merely performing the easily computed
Ž .mapping of ln-bit-long sequences i.e., points in the latter sample space to

� 4 Ž .n-sequences over 0, . . . , my1 i.e., points in the former sample space . Recall
that this mapping amounts to comparisons of l-bit strings.

Comment 3. Construction 2 corresponds to a small set of low discrepancy with
Ž . Ž .respect to axis-parallel geometric rectangles with at most k-nondegenerate

Žcoordinates. This claim follows from the fact that the underlying sample space i.e.,
Ž . Ž ..the random variables Z 1 , . . . , Z l do ot depend on the specification matrix1 n

PP . Thus, for any specification matrix PP , the approximation Y , . . . , Y isn, m n, m 1 n
Ž . Ž .determined by the same Z j ’s using the actual specification matrix PP .i n, m

Furthermore, it is important that each Y is determined only by the randomi
Ž . Žvariables Z j ’s, js1, . . . , l, and that the setting of Y under any specificationi i

. Ž . Ž .matrix corresponds to settings of Z 1 , . . . , Z l that correspond to intervals ini i
w x w x0, 1 . For details see 9 . Actually, to derive such low discrepancy sets, it suffices to
use our construction while setting ms3.

3. ALTERNATIVE CONSTRUCTION FOR A SPECIAL CASE

In the special case in which all of the entries in the specification matrix, PP , aren, m
Ž .rationals of the form qrp, for some small prime p or prime power e.g., ps3 ,

Ž . Ž .better k, e -approximation schemes can be constructed. In this case, a k, e -
Ž . Ž .approximation of PP is constructed in the obvious manner by using a k, e -n, m

Ž .n Ž .approximation of the uniform distribution over GF p . Recall that k, e -ap-
Ž .nproximation of the uniform distribution over GF p can be constructed by using

support of the same cardinality as in the construction of such approximations for
w x Ž w x. 4the uniform binary distribution 2, 4, 8 cf. 10, Chap. 3 . We get

4 Ž .nWe stress that when a small-bias probability space is constructed over GF p , the size of the space
does not depend on p, provided small bias is defined in terms of an upper bound on the Fourier

Ž .coefficients. The transformation from max-norm in the Fourier basis to max-norm in the standard
Žpointwise basis preserves this upper bound. Note that the Fourier basis is not normal, and while

k . w x'normalizing one gains a p factor in the basis transformation. For details see 10, Chap. 3 .
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Theorem 2. Let p be a prime and MM p denote the set of all n-by-m specificationn, m
matrices in which e¨ery entry is an integer multiple of 1rp. Then there is a determina-

�tion algorithm, which on input of a prime p, a specification matrix PP s p : isn, m i, j
4 p Ž .1, . . . , n, js0, . . . , my1 g MM , and parameters k, e , outputs a sample space ofn, m

Ž y1 .2 Ž Ž . .size k ?e ? log n , which constitutes a k, f PP ?e -approximation for PP ,p n, m n, m
where

def
� 4f PP s max p ? max pŽ . Łp n , m i , jž /½ 5

< < js0, . . . , my1I : I Fk igI

Ž .Proof. We use an efficient construction of a k, e -approximation of the uniform
Ž .n Ž y1 .2distribution over GF p . Such a construction has size k ?e ? log n . We trans-

Ž . Ž .form each sample point s , . . . , s in the above space to a sample point r , . . . , r1 n 1 n
in our space by setting r s j, if q -s Fq , where q s Ý jy1 p . Clearly,i i, j i i, jq1 i, j def ¨s0 i, ¨

² : � 4 l Žthe value sequence ¨ , . . . , ¨ g 0, . . . , my1 , lFk as an assignment to a1 l
² : .specific sequence i , . . . , i of coordinates , deviates from the specification by at1 l

Ž l Ž ..most Ł p ?p ?e , and the theorem follows. Bjs1 i , ¨j j

The alternative construction can be extended to the case in which all entries in
the specification matrix PP are well approximated by rationals of the form qrp,n, m
for some small prime p. By ‘‘good approximation’’ we mean that each entry is
approximated up to an additive error er2k, where e is the approximation parame-
ter desired for the final construction. Hence this approach is applicable only if the
specification matrix is approximated well by a rational matrix with a relatively small
common denominator.
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