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AdaBoost

Meir and Rätsch wrote a very nice (though a bit old) introduction to boosting and leveraging [10]. Some
of our materials are based on that survey.

1 Bagging and Boosting, High-level Idea

The main idea of “boosting” is to combine a set of weak hypotheses into a stronger hypothesis. The question
of whether weak hypotheses can be combined to form a strong hypothesis has its root in PAC-learning [16].
Kearns and Valiant [8] proved that a weak PAC-learner can be “boosted” to form strong leaner (with arbitrary
small error). Schapire [14] was the first to show that weak PAC-learning and strong PAC-learning are
essentially equivalent: the boosting algorithm can be done in polytime. Finally, Freund and Schapire [6]
designed AdaBoost (Adaptive Boost) as we know it today, which is considered the first step toward practical
boosting.

To be more precise, recall the PAC setting where we have an unknown distribution D on Ω, a target
concept c ∈ H. A strong PAC-learner is an algorithm which, given any ε, δ > 0, takes m = poly(1/ε, 1/δ)
samples S = {(xi, c(xi))}mi=1 where xi ∼ D and outputs a hypothesis h satisfying

Prob
S

[err(h) ≤ ε] ≥ 1− δ.

The algorithm runs in time poly(1/δ, 1/ε, n = |xi|). A weak PAC-learner is a learner as above which works
only for a specific value of ε = ε0.

Exercise 1. Suppose we have a learner which works efficiently for a specific pair 0 < ε0, δ0 < 1/2, namely
it always outputs a hypothesis h in time poly(1/ε0, 1/δ0, n) such that

Prob
S

[err(h) ≤ ε0] ≥ 1− δ0.

Show how to use this learner to design a new learner which works efficiently for any small δ, i.e. the new
learner always outputs a hypothesis h where

Prob
S

[err(h) ≤ ε0] ≥ 1− δ

and it runs in time poly(1/ε0, 1/δ, n).

The above exercise shows that boosting the confidence is easy. Boosting the error is another story
though. Since the PAC-setting is quite limited, we will work on the inconsistent hypothesis model (IHM)
directly.

Under the IHM model, there is an unknown distribution D on Ω × {−1, 1}. A weak learner is an
algorithm A for which there exists an ε0 < 1/2 such that given any 0 < δ < 1/2, A takes m samples S
from D and produces a hypothesis h ∈ H which satisfies the following

Prob
S

[err(h) ≤ ε0] ≥ 1− δ.
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Recall that
err(h) = errD(h) = Prob

(x,y)∼D
[h(x) 6= y].

(Note that we are not concerned with the poly-size of m just yet, because our results hold for any m.)
AdaBoost is an ensemble method which outputs a “composite hypothesis” which is a linear combination

of the weak hypotheses. The hope (and reality confirms) is that weak hypotheses with errors close to 1/2
(but not equal to 1/2) are easy to find, and boosting gives us a meta-learning algorithm to produce good
learners. The main question is how to combine the weak classifiers.

Possibly the simplest type of “ensemble learning” is called Bagging (Boostrap Aggregating) by the
Berkeley statistician Breiman [2]. In bagging we take m training samples, then take m′ ≤ m uniform
samples with replacement from the training samples and feed m′ samples to a learner to fetch a hypothesis
h1. Do this independently T times to get hypotheses h1, . . . , hT . Finally, output a composite hypothesis
which always takes the majority vote of the hypotheses h1, . . . , hT . Bagging often can reduce the variance
of the output hypothesis. (Roughly speaking, the error of a hypothesis on an example x comes from 3
sources: noise, bias, and variance. Noise is unavoidable. This is intrinsic uncertainty over x’s true label.
Bias measures how close the prediction is to the real label. Variance measures how much a prediction
changes if the samples change.) Bagging does not improve the bias.

In boosting, instead of uniform sampling from the training samples we will focus more on the samples
which were wrongly classified in the previous rounds. The voting does not treat all (weak) hypotheses
equally. We take a weighted vote.

2 AdaBoost and its empirical error bound

In the following algorithm and analysis it is natural to include the notion of “soft classifiers.” As we have
discussed so far, the hypotheses are functions from Ω→ {−1, 1}. These types of classifiers are called hard
classifiers. Soft classifiers are functions from Ω→ R. If h is a soft classifier then the label of x ∈ Ω is 1 if
h(x) > 0 and −1 if h(x) ≤ 0. In other words, the label of x under h is sign(h(x)). Hard classifiers are a
special case of soft classifiers, certainly.

The generalization error of a soft classifier h cannot be defined to be Prob[h(x) 6= y] any more. To
formalize the notion of a “loss” for a soft classifier, we define a 01-loss function λ : R2 → {0, 1} by

λ(y′, y) = 1{y′y≤0}.

Hence, λ(h(x), y) is 1 if h(x) has a different sign from y or h(x) = 0, in which case we count the label
of h given to x as an error. Then, the performance of a soft classifier h is measured by the risk or the
generalization error

L01
D (h) =

∫
λ(h(x), y)dD(x, y) = E

D
[λ(h(x), y)].

Since D is often implicit, we write L01 instead of L01
D , except for cases when we want to emphasize the

underlying distribution. If h was a hard classifier, then this is precisely err(h) has we have been working
on. In a couple of lectures we will look at other types of loss functions. Naturally, the empirical risk or
empirical loss of h is defined by

L̂01(h) =
1
m

m∑
i=1

λ(h(xi), yi) =
1
m

m∑
i=1

1{h(xi)yi≤0}.
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Algorithm 1 AdaBoost
Require: A weak learner (also called base learner)

1: Take m training samples S = {(x1, y1), . . . , (xm, ym)} from the unknown distribution D on Ω ×
{−1, 1}.

2: D1(i) = 1/m, for all i ∈ [m]
3: for t = 1 to T do
4: Train the base learner using Dt on S
5: Get a base classifier ht from the weak learner
6: Select “weight” αt ∈ R // more below
7: Update for each i ∈ [m]: Dt+1(i) = Dt(i)e−αtyiht(xi)

Zt
8: // Zt is a normalizing factor so that Dt+1 is a distribution on S
9: end for

10: f(x) =
∑T

t=1 αtht(x)
11: Output H(x) = sign (f(x))

Algorithm 2 shows the skeleton of the Adaptive Boost algorithm. We first take m samples S from
the unknown distribution D. Then, we use S to train our weak learner using different distributions on S:
D1, . . . ,Dm. The first distribution D1 is simply the uniform distribution on S. In the second distribution
(t = 2), we “re-weight” the probability masses of points in S so that points which were wrongly classified
by h1 get (exponentially) higher weight. In particular, if yi 6= h1(xi) which means yih(xi) ≤ 0 then
D2(i) ∝ D1(i)eα1 and if yi = h(xi) then D2(i) ∝ D1(i)e−α1 . The weight α1 is a parameter which we
will choose later analytically. Later rounds are done similarly. Finally, we obtain a weighted average of all
the weak classifiers and output the weighted “vote.” Figure 1, taken from the survey by Meir and Rätsch,
illustrates the main idea.

How do we choose the αt? That is the main question. We use the Empirical Risk Minimization strategy
(a form of induction) which aims to minimize the empirical error of the ensemble hypothesis H . Thus, we
need to bound êrr(H), or equivalently in this case L̂01(f). Now, noting that 1{yif(xi)≤0} ≤ e−yif(xi), we
have

êrr(H) = L̂01(f) =
1
m

m∑
i=1

1{yif(xi)≤0} ≤
1
m

m∑
i=1

e−yif(xi)

=
1
m

m∑
i=1

e−yi
PT
t=1 αtht(xi)

=
m∑
i=1

D1(i)
T∏
t=1

e−yiαtht(xi)

=
m∑
i=1

D1(i)e−yiα1h1(xi)
T∏
t=2

e−yiαtht(xi)

=
m∑
i=1

Z1D2(i)
T∏
t=2

e−yiαtht(xi)

=
T∏
t=1

Zt.
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Figure 1: Illustration of AdaBoost, Taken from Meir and Rätsch’s survey

So we pick the αt to minimize the product
∏T
t=1 Zt. Let us do the analysis for the case where all ht are

hard classifiers, i.e. ht(x) ∈ {−1, 1}, ∀x ∈ Ω. Define

εt = errDt(ht) =
m∑
i=1

1{yi 6=ht(xi)}Dt(i) =
∑

yi 6=ht(xi)

Dt(i). (1)

Thus, by definition

Zt =
m∑
i=1

Dt(i)e−αtyiht(xi)

=
∑

yi 6=ht(xi)

Dt(i)eαt +
∑

yi=ht(xi)

Dt(i)e−αt

= εte
αt + (1− εt)e−αt

≥ 2
√
εt(1− εt),

where equality holds if only if we chose

αt =
1
2

ln
1− εt
εt

.

This is the value that we “plug in” to the algorithm. If all base classifiers ht are weak-classifiers in the sense
that there is some constant γ > 0 such that εt ≤ 1/2−γ, then the empirical risk of the output is bounded by

L̂01(H) ≤
∏
t

2
√
εt(1− εt) =

∏
t

2
√

1/4− (εt − 1/2)2 ≤
∏
t

√
1− 4γ2 ≤

∏
t

e−2γ2
= e−2Tγ2

.
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This is beautiful, because the empirical risk goes to zero as T → ∞. The problem is, as always, driving
down the empirical risk might “risk” driving up the generalization error due to overfitting.

Exercise 2 (When base classifiers are soft). The analysis above doesn’t quite work if the ht : Ω → [−1, 1]
are soft classifiers. We can make it work by following the following reasoning. Define

rt =
m∑
i=1

Dt(i)yiht(xi).

Then rt basically measures “how wrong” ht is.

(a) Show that, for any real number w, and any α ≥ 0

e−αw ≤ 1 + w

2
e−αw +

1− w
2

eαw.

(b) Now define wi = yiht(xi), derive that

Zt ≤
m∑
i=1

Dt(i)
(

1 + wi
2

e−αtwi +
1− wi

2
eαtwi

)
.

(c) Show that the right hand side above is minimized at αt = 1
2 ln 1+rt

1−rt .

(d) How does rt relate to L01
Dt(ht)?

(e) What can you say about the empirical risk of H in this case?

3 Generalization error bound

So we have a bound on the empirical error of the ensemble hypothesis H . What about its generalization
error? First of all, letH denote the function class of the weak classifiers ht. Define

ΘT (H) =

{
sign

(
T∑
t=1

αtht

)
| αt ≥ 0, ht ∈ H

}
.

Then clearlyH ∈ ΘT (H). From the Rademacher complexity lectures we know that with probability at least
1− δ we have

L01(H) ≤ L̂01(H) + R̂S(ΘT (H)) + 3

√
ln(2/δ)

2m
,

and

L01(H) ≤ L̂01(H) +Rm(ΘT (H)) +

√
ln(1/δ)

2m
.

In particular, applying Massart’s lemma or applying VC Theorem directly we have with probability at least
1− δ

L01(H) ≤ L̂01(H) +O

(√
VCD(ΘT (H)) lnm+ ln(1/δ)

m

)
.
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Thus, in order to estimate the generalization error bound we will need to either bound VCD(ΘT (H)) or
bound the Rademacher complexities of ΘT (H) directly.

Let us first bound VCD(ΘT (H)). Freund and Schapire in their original AdaBoost paper bounded this
quantity using a simple observation from Baum and Haussler [1]. We will work on Ω = Rn as this is
probably the most common usage. A feedforward net is a directed acyclic graph with n inputs and one
output. Each input corresponds to a coordinate from Rn. Each non-input node v is associated with a
function fv which belongs to a function class Fv. These nodes are called computation nodes. The in-degree
of a computation node v is denoted by INDEG(v). The function fv is from RINDEG(v) → {−1, 1}. The net
itself is associated with a function f : Rn → {−1, 1} defined in the obvious way. Let F denote the class of
functions f formed by this feedforward architecture.

It should be obvious that ΘT (H) is a feedforward architecture with T + 1 computation nodes. The first
T nodes correspond to functions h1, . . . , hT . The last node is the sign function, which is basically a linear
threshold function:

sign

(∑
t

αtyt

)
=

{
1
∑

t αtyt > 0
0
∑

t αtyt ≤ 0.

We also know that the class of linear threshold functions on RT have VC-dimension T + 1.
Going back to the general setting of Baum and Hassler. We will bound VCD(F) in terms of VCD(Fv)

for computation nodes v. Let’s order all computation nodes v1, . . . , vN so that the inputs of fvi are only
dependent on the actual inputs or the outputs of fvj for j < i. This is possible since the architecture is
acyclic. Let’s use Fi instead of Fvi to denote the function class corresponding to computation node vi.
Consider a set S of m sample points. F1 can label S in ΠF1(m) different ways. Then, for each of these
labelings F2 can label S in ΠF2(m) different ways. The process goes on. Hence, overall S can be labeled
by F in ΠF (m) ≤

∏N
i=1 ΠFi(m) different ways.

Now, let di = VCD(Fi) and d =
∑N

i=1 di. We assume that all di are finite. Suppose m ≥ d ≥ di. Then,

N∏
i=1

ΠFi(m) ≤
N∏
i=1

(
me

di

)di
= (me)d

N∏
i=1

(
1
di

)di
≤ (me)d(N/d)d.

To see the last inequality, we prove its equivalent form

N∑
i=1

di
d

log(1/di) ≤ log(N/d).

If we set pi = di/d and X = 1/di with probability pi, then the left hand side is E[log(X)] over this
distribution. Since log is concave, by Jensen’s inequality

E[log(X)] ≥ log E[X] = log

(
n∑
i=1

(1/di)(di/d)

)
= log(N/d).

We just proved the following lemma by Baum and Haussler.
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Several empirical observations (not all): AdaBoost 
does not seem to overfit, furthermore: 

Empirical Observations

10 100 1000
0

5

10

15

20

er
ro

r

# rounds
-1 -0.5 0.5 1

0.5

1.0

cu
m

u
la

ti
v
e 

d
is

tr
ib

u
ti

o
n

margin

Figure 2: Error curves and the margin distribution graph for boosting C4.5 on

the letter dataset as reported by Schapire et al. [69]. Left: the training and test

error curves (lower and upper curves, respectively) of the combined classifier as

a function of the number of rounds of boosting. The horizontal lines indicate the

test error rate of the base classifier as well as the test error of the final combined

classifier. Right: The cumulative distribution of margins of the training examples

after 5, 100 and 1000 iterations, indicated by short-dashed, long-dashed (mostly

hidden) and solid curves, respectively.

It is a number in and is positive if and only if correctly classifies the

example. Moreover, as before, the magnitude of the margin can be interpreted as a

measure of confidence in the prediction. Schapire et al. proved that larger margins

on the training set translate into a superior upper bound on the generalization error.

Specifically, the generalization error is at most

for any with high probability. Note that this bound is entirely independent

of , the number of rounds of boosting. In addition, Schapire et al. proved that

boosting is particularly aggressive at reducing the margin (in a quantifiable sense)

since it concentrates on the examples with the smallest margins (whether positive

or negative). Boosting’s effect on the margins can be seen empirically, for instance,

on the right side of Fig. 2 which shows the cumulative distribution of margins of the

training examples on the “letter” dataset. In this case, even after the training error

reaches zero, boosting continues to increase the margins of the training examples

effecting a corresponding drop in the test error.

Although the margins theory gives a qualitative explanation of the effectiveness

of boosting, quantitatively, the bounds are rather weak. Breiman [9], for instance,

7

training error

test error

C4.5 decision trees (Schapire et al., 1998).

Figure 2: Sometime AdaBoost does not overfit

Lemma 3.1 (Baum and Haussler). Let F be a feedforward architecture with N ≥ 2 computation nodes.
Let Fi be the function class associated with the ith computation node. Let di = VCD(Fi) and d =

∑N
i=1 di.

Then,

ΠF (m) ≤
N∏
i=1

ΠFi(m) ≤ (Nme/d)d

for m ≥ d.

Exercise 3. Let H be the hypothesis class of the (hard) base classifiers, and T be the number of iterations
in the AdaBoost algorithm. Then,

VCD(ΘT (H)) ≤ 2(d+ 1)(T + 1) log2(e(T + 1)).

From the exercise (which follows from Baum and Haussler’s lemma), there is a potential issue: when T
increases we are able to drive down the empirical error but the VCD of the ensemble function class increases
which potentially leads to overfitting. Some experiments did not confirm this worry (Figure 2). Is there
another explanation?

4 Boosting the Margin

There is a way to partly explain the fact that AdaBoost does not seem to overfit in some situation [15]. When
bounding the generalization error of H we use the empirical error of H . However, as H is only the sign of
f , we lost some information about f . In particular, the magnitude of the value of f(x) should give us some
indication about the degree of confidence that f has on its label. While H is a hard classifier, f is a soft
classifier. To assess the confidence f has, let us define a couple of other loss functions which try to capture
confidence levels.

The 01-margin loss function is defined to be

λ01
ρ (y, y′) = 1yy′≤ρ

where 1 ≥ ρ ≥ 0 is called the margin. If ρ = 0 then the 01-margin loss function is just the normal 01-loss
function. For ρ > 0, λ01

ρ (f(x), y) is 1 (i.e. counted as a loss) if f(x)y ≤ ρ. Now, if f(x) and y have
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different signs then it is a loss as before. For our problem y ∈ {−1, 1}. Hence, even when f(x)y > 0 we
would still have a loss if f(x) has the same sign as y but its magnitude (i.e. margin/confidence) is smaller
than ρ.

The margin loss function is defined by

λρ(y, y′) =


1 yy′ ≤ 0
1− yy′/ρ 0 < yy′ ≤ ρ
0 yy′ > ρ.

So in this case we “ease” the loss linearly from 1 down to 0 as yy′ approaches ρ. When ρ = 1 this is called
the Hinge loss function, an important loss function used in SVM. There are many types of loss functions
such as square loss, log loss, etc.

The margin loss of function f is defined to be

Lρ(f) := E[λ(f(x), y)]

and the empirical margin loss of f is

L̂ρ(f) :=
1
m

m∑
i=1

λρ(f(xi), yi).

It should be noted that
λ ≤ λρ ≤ λ01

ρ .

Thus
L01 ≤ Lρ ≤ L01

ρ ,

and
L̂01 ≤ L̂ρ ≤ L̂01

ρ .

The margin loss is an upper bound for the real loss, both of which are bounded by the 01-margin loss.
What do we gain with these new notions of loss? We will prove the following theorem.

Theorem 4.1 (General margin bound, Koltchinskii-Panchenko). Let F be a class of real valued functions.
Fix a margin 1 ≥ ρ > 0. Then, for any δ > 0, with probability at least 1− δ we have

L01(f) ≤ L̂ρ(f) +
2
ρ
Rm(F) +

√
log(1/δ)

2m

L01(f) ≤ L̂ρ(f) +
2
ρ
R̂S(F) + 3

√
log(2/δ)

2m
.

In the context of AdaBoost, we will be able to show that as long as ρ < γ then L̂ρ(f)→ 0 as T →∞.
Furthermore, we will show that D = VCD(F) is independent of T . From Rm(F) = O

√
(D lnm)/m we

can now infer that when ρ� 1/
√
m the other two terms goes to 0 as well. To summarize, in order to show

that in some cases AdaBoost does not overfit we have to do the following:

• Prove Theorem 4.1
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• Prove that L̂ρ(f) tends to 0 for some range of ρ as T tends to∞

• Prove that VCD(F) is independent of T

• Conclude that if we are able to make ρ � 1/
√
m then all terms in the upperbound for L01(f) tends

to 0.

These steps are implemented in the following four subsections.

4.1 Proof of Theorem 4.1

To prove this theorem, we need two lemmas. The first lemma we already proved in the Rademacher com-
plexity lecture.

Lemma 4.2 (Koltchinskii-Panchenko, 2002 [9]). Let G be a class of functions from Z to [0, 1], and D be an
arbitrary distribution on Z . For notational convenience, we write

E[g] = E
z∈D

[g(z)]

ÊS [g] =
1
m

m∑
i=1

g(zi), where S = {z1, . . . , zm}.

Then, for any δ > 0,

Prob
S∼Dm

[
sup
g∈G
{E[g]− ÊS [g]} ≤ 2Rm(G) +

√
ln(1/δ)

2m

]
≥ 1− δ, (2)

and

Prob
S∼Dm

[
sup
g∈G
{E[g]− ÊS [g]} ≤ 2R̂S(G) + 3

√
ln(2/δ)

2m

]
≥ 1− δ. (3)

The second lemma is called the Talagrand Contraction lemma []. A function ϕ : R → R is called
L-Lipschitz if for any x, y ∈ R |ϕ(x)− ϕ(y)| ≤ L · |x− y|.

Lemma 4.3 (Talagrand’s Contraction Lemma). Let ϕ : R → R be an L-Lipschitz function with ϕ(0) = 0.
Let F be any family of real-valued functions from Z to R. Then

R̂S(ϕ ◦ F) ≤ L · R̂S(F).

Here, S is a set of m (sample) points from Z .

Before proving Talagrand’s contraction lemma, let us finish the proof of Theorem 4.1 using the above
two lemmas.

Proof of Theorem 4.1. Let F be the family of real-valued functions given in Theorem 4.1. Suppose func-
tions in F are from Ω to R for some domain Ω. Define Z = Ω× {−1, 1}. Define a new class of functions
F̃ which consists of one function f̃ : Z → R for each f ∈ F . The function f̃ is defined by

f̃(z) = f̃(x, y) = yf(x).
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(Roughly, f̃ measures the “margin/confidence” of f . If f was a hard classifier then f̃ tells us whether f was
right or wrong on the point (x, y).)

Next, define a function ϕρ : R→ [0, 1] as follows.

ϕρ(x) =


1 x ≤ 0
1− x/ρ 0 < x ≤ ρ
0 x > ρ

Then obviously λρ(y′, y) = ϕρ(y′y) and ϕρ is a (1/ρ)-Lipschitz function. Now, define another function
class

G = {ϕρ ◦ f̃ | f̃ ∈ F̃ .}.
Thus functions in G measures the margin loss of functions in f . Now, we apply Koltchinskii-Panchenko’s
lemma on G. Let S = {z1, . . . , zm} be m points from Z and D be an arbitrary distribution on Z . We have,
with probability at least 1− δ, the following holds for all g ∈ G (we are proving both statements in parallel)

E
z∼D

[g(z)] ≤ 1
m

m∑
i=1

g(zi) + 2Rm(G) +

√
log(1/δ)

2m

E
z∼D

[g(z)] ≤ 1
m

m∑
i=1

g(zi) + 2R̂S(G) + 3

√
log(2/δ)

2m
.

Now, to convert the above statements in to statements about F , note the following

• We can bound the 01-loss of f by g. Let z = (x, y), then

λ(f(x), y) = 1f(x)y≤0 ≤ ϕρ(f(x)y) = ϕρ(f̃(z)) = g(z).

Hence,
L01(f) = E[λ(f(x), y)] ≤ E[g(z)].

• Next, it is obvious that
1
m

m∑
i=1

g(zi) = L̂ρ(f).

• Finally, we bound the Rademacher complexity of G by the Rademacher complexity of F :

R̂S(G) = R̂S(ϕρ ◦ F̃)

(Rade. comp. invariant under a constant shift) = R̂S((ϕρ − 1) ◦ F̃)

(Talagrand’s lemma) ≤ 1
ρ
R̂S(F̃)

=
1
ρ

E
σ

[
sup

1
m

m∑
i=1

σiyif(xi) | S

]

=
1
ρ

E
σ

[
sup

1
m

m∑
i=1

σiyif(xi) | S

]

(yi ∈ {−1, 1}) =
1
ρ

E
σ

[
sup

1
m

m∑
i=1

σif(xi) | S

]
= R̂S(F)
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From that,Rm(G) = E[R̂S(G)] ≤ E[R̂S(F)] = Rm(F) and the proof is completed.

We next prove Talagrand’s contraction lemma.

Proof of Lemma 4.3. We start with the left-hand-side.

R̂S(ϕ ◦ F) = E
σ

[
sup
f∈F

1
m

m∑
i=1

σi(ϕ ◦ f)(zi)

]

= E
σ1,...,σm−1

[
E
σm

[
sup
f∈F

1
m

m∑
i=1

σi(ϕ ◦ f)(zi)

]]

= E
σ1,...,σm−1

[
E
σm

[
sup
f∈F

1
m
um(f)

]]
,

where to simplify notations we have defined

uk(f) :=
k∑
i=1

σi(ϕ ◦ f)(zk).

Next, we bound the inner expectation:

E
σm

[
sup
f∈F

1
m
um(f)

]
=

1
2

sup
f∈F

{
1
m
um−1(f) +

1
m

(ϕ ◦ f)(zm)
}

+
1
2

sup
f∈F

{
1
m
um−1(f)− 1

m
(ϕ ◦ f)(zm)

}
From the definition of sup, for every ε > 0 there are two functions f1, f2 ∈ F such that

E
σm

[
sup
f∈F

1
m
um(f)

]
≤ 1

2

[
1
m
um−1(f1) +

1
m

(ϕ ◦ f1)(zm)
]

+
1
2

[
1
m
um−1(f2)− 1

m
(ϕ ◦ f2)(zm)

]
+ ε

≤ 1
2

[
1
m
um−1(f1) +

1
m
um−1(f2) +

1
m

(ϕ(f1(zm))− ϕ(f2(zm))
]

+ ε

(σ̄ ∈ {−1, 1}) ≤ 1
2

[
1
m
um−1(f1) +

1
m
um−1(f2) +

L

m
σ̄(f1(zm)− f2(zm)

]
+ ε

=
1
2

[
1
m
um−1(f1) +

L

m
σ̄f1(zm)

]
+

1
2

[
1
m
um−1(f2)− L

m
σ̄f2(zm)

]
+ ε

≤ E
σm

[
sup
f∈F

{
1
m
um−1(f) + σmLf(zm)

}]
+ ε

Since the inequality is true for any ε > 0, it must hold that

E
σm

[
sup
f∈F

1
m
um(f)

]
≤ E

σm

[
sup
f∈F

{
1
m
um−1(f) + σmLf(zm)

}]
.

Keep doing the same trick m− 1 more times and we obtain the desired inequality.
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4.2 Empirical margin loss for AdaBoost

The next task is to show that L̂ρ(f) tends to 0 for some range of ρ. We actually will bound an upper bound
of L̂ρ(f). Note that

L̂ρ(f) ≤ L̂01
ρ (f) = Prob[f(x)y ≤ ρ].

We already had an analysis of AdaBoost which bounds Prob[f(x)y ≤ 0]. This analysis will be similar, and
thus we leave it as an exercise.

Exercise 4. Recall the definition of εt in (1). Prove that if εt ≤ 1/2 − γt for some γt > 0 in each round
t ∈ [T ] of the AdaBoost algorithm, then

L̂ρ(f) ≤ L̂01
ρ (f) ≤

T∏
t=1

(1− 2γt)
1−ρ
2 (1 + 2γt)

1+ρ
2 .

From the exercise, if ρ < γt for all t then the factor (1 − 2γt)
1−ρ
2 (1 + 2γt)

1+ρ
2 is strictly less than 1.

(Why?) Thus, when T →∞ the empirical 01-margin loss goes to 0. In particular, the empirical margin loss
goes to 0.

4.3 Rademacher complexities of the convex hull of classifiers

LetH be a class of functions from Ω to R. The convex hull ofH is defined by

CONVT (H) :=

{
T∑
t=1

µTht | µt ≥ 0,
∑
t

µt ≤ 1, ht ∈ H

}
.

The soft classifier f output by the AdaBoost algorithm has the form f =
∑

t αtht. Since we are only
interested in the sign of f , we can change f to be

∑
t

αt
‖α‖1ht. In this case the coefficients µt = αt

‖α‖1 sums
to 1 and thus f ∈ CONVT (H).

Theorem 4.4. LetH be any class of functions from Ω to R. Let S be any set of m points xi from Ω. Then

R̂S(CONVT (H)) = R̂S(H),

and thus
Rm(CONVT (H)) = Rm(H).

Proof. From definition,

R̂S(CONVT (H)) =
1
m

E
σ

[
sup

µ≥0,‖µ‖1≤1,ht∈H

m∑
i=1

σi

T∑
t=1

µtht(xi)

]

=
1
m

E
σ

[
sup
ht∈H

sup
µ≥0,‖µ‖1≤1

T∑
t=1

µt

(
m∑
i=1

σiht(xi)

)]

=
1
m

E
σ

[
sup
ht∈H

max
t∈[T ]

(
m∑
i=1

σiht(xi)

)]

=
1
m

E
σ

[
sup
h∈H

m∑
i=1

σih(xi)

]
= R̂S(H).

12



4.4 Conclusions

Combining everything, let H be the function class of the base classifiers, from Theorem 4.1 we are able to
bound (with probability at least 1− δ)

err(H) = L01(f) ≤ L̂01
ρ (f) +

2
ρ
Rm(H) +

√
log(1/δ)

2m

and

err(H) = L01(f) ≤ L̂01
ρ (f) +

2
ρ
R̂S(H) + 3

√
log(2/δ)

2m
.

The second bound is data-dependent. Hence, we might be able to use it for model selection (beyond the
scope of this course). But in any case, since the Rademacher complexities are bounded by aboutO(

√
d/m),

the last two terms of the upper bound will tend to 0 as m→∞.
The first term is exactly Prob[f(x)y ≤ ρ] and it goes to 0 if ρ < γ. Hence, overall we will need

γ � 1/
√
m which depends on how good the base classifiers are.

The expression Prob[f(x)y ≤ ρ] suggests that AdaBoost should try to maximize the margin (the con-
fidence) of its composite hypothesis. AdaBoost does not explicitly attempt to do so, and indeed it was
shown in 2004 that AdaBoost does always converge to a composite hypothesis with maximum possible
margin [12]. However, it was also shown that under certain conditions AdaBoost can achieve half of the
maximum possible margin [11]. There are many other boosting algorithms which explicitly aim to maximize
the margin: AdaBoost* [11], arg-gv [3], Coordinate Ascent Boosting and Approximate Coordinate Ascent
Boosting [13], linear programming-based boosting algorithms such as LP-AdaBoost [7] and LPBoost [5].
However, in practice AdaBoost still performs very well and in some experiments yield better margins than
the other algorithms [4, 7].

Support Vector Machines do try to explicitly maximize the margin. SVM is our next subject.
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