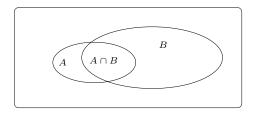
- Independence & Conditional Probability
- Expectation & Conditional Expectation
- Law of Total Probability
- Law of Total Expectation
- Derandomization Using Conditional Expectation

PTCF: Independence Events and Conditional Probabilities



• The conditional probability of A given B is

$$\mathsf{Prob}[A \mid B] := \frac{\mathsf{Prob}[A \cap B]}{\mathsf{Prob}[B]}$$

- A and B are independent if and only if $Prob[A \mid B] = Prob[A]$
- Equivalently, A and B are independent if and only if

$$\mathsf{Prob}[A \cap B] = \mathsf{Prob}[A] \cdot \mathsf{Prob}[B]$$

©Hung Q. Ngo (SUNY at Buffalo)

• Let A_1, A_2, \ldots be any partition of Ω , then

$$\mathsf{Prob}[A] = \sum_{i \ge 1} \mathsf{Prob}[A \mid A_i] \operatorname{Prob}[A_i]$$

(Strictly speaking, we also need "and each A_i is measurable," but that always holds for finite Ω .)

• A set A_1, \ldots, A_n of events are said to be independent or mutually independent if and only if, for any $k \leq n$ and $\{i_1, \ldots, i_k\} \subseteq [n]$ we have

$$\mathsf{Prob}[A_{i_1} \cap \cdots \cap A_{i_k}] = \mathsf{Prob}[A_{i_1}] \cdots \mathsf{Prob}[A_{i_k}].$$

• If n independent experiments (or trials) are performed in a row, with the *i*th being "successful" with probability p_i , then

Prob[all experiments are successful] = $p_1 \cdots p_n$.

(Question: what is the sample space?)

Min-Cut Problem

Given a multigraph G, find a cut with minimum size.

RANDOMIZED Min-Cut(G)

- 1: for i=1 to n-2 do
- 2: Pick an edge e_i in G uniformly at random
- 3: Contract two end points of e_i (remove loops)
- 4: end for
- 5: // At this point, two vertices u, v left
- 6: Output all remaining edges between \boldsymbol{u} and \boldsymbol{v}

Analysis

- Let C be a minimum cut, $k = \left| C \right|$
- If no edge in C is chosen by the algorithm, then C will be returned in the end, and vice versa
- For i = 1..n 2, let A_i be the event that $e_i \notin C$ and B_i be the event that $\{e_1, \ldots, e_i\} \cap C = \emptyset$

 $\mathsf{Prob}[C \text{ is returned}]$

- $= \operatorname{Prob}[B_{n-2}]$
- $= \operatorname{Prob}[A_{n-2} \cap B_{n-3}]$
- $= \operatorname{Prob}[A_{n-2} \mid B_{n-3}] \operatorname{Prob}[B_{n-3}]$
- = ...
- $= \operatorname{Prob}[A_{n-2} \mid B_{n-3}] \operatorname{Prob}[A_{n-3} \mid B_{n-4}] \cdots \operatorname{Prob}[A_2 \mid B_1] \operatorname{Prob}[B_1]$

(本部)と 本語 と 本語を

Analysis

• At step 1, G has min-degree $\geq k$, hence $\geq kn/2$ edges • Thus,

$$\mathsf{Prob}[B_1] = \mathsf{Prob}[A_1] \ge 1 - \frac{k}{kn/2} = 1 - \frac{2}{n}$$

• At step 2, the min cut is still at least k, hence $\geq k(n-1)/2$ edges. Thus, similar to step 1

$$\mathsf{Prob}[A_2 \mid B_1] \ge 1 - \frac{2}{n-1}$$

In general,

$$\mathsf{Prob}[A_j \mid B_{j-1}] \ge 1 - \frac{2}{n-j+1}$$

• Consequently,

$$\mathsf{Prob}[C \text{ is returned}] \geq \prod_{i=1}^{n-2} \left(1 - \frac{2}{n-i+1}\right) = \frac{2}{n(n-1)}$$

- The basic algorithm has failure probability at most $1 \frac{2}{n(n-1)}$
- How do we lower it?
- $\bullet\,$ Run the algorithm multiple times, say $m\cdot n(n-1)/2$ times, return the smallest cut found
- The failure probability is at most

$$\left(1 - \frac{2}{n(n-1)}\right)^{m \cdot n(n-1)/2} < \frac{1}{e^m}.$$

RANDOMIZED-QUICKSORT(A)

- $\texttt{1:} \ n \gets \mathsf{length}(A)$
- 2: if n = 1 then
- 3: Return A
- 4: **else**
- 5: Pick $i \in \{1, \dots, n\}$ uniformly at random, A[i] is called the *pivot*
- 6: $L \leftarrow \mathsf{elements} \leq A[i]$
- 7: $R \leftarrow \mathsf{elements} > A[i]$
- 8: // the above takes one pass through ${\cal A}$
- 9: $L \leftarrow \text{Randomized-Quicksort}(L)$
- 10: $R \leftarrow \text{Randomized-Quicksort}(R)$
- 11: Return $L \cdot A[i] \cdot R$
- 12: end if

Analysis of Randomized Quicksort (0)

- The running time is proportional to the number of comparisons
- Let $b_1 \leq b_2 \leq \cdots \leq b_n$ be A sorted non-decreasingly
- For each i < j, let X_{ij} be the indicator random variable indicating if b_i was ever compared with b_j
- The expected number of comparisons is

$$\mathsf{E}\left[\sum_{i < j} X_{ij}\right] = \sum_{i < j} \mathsf{E}[X_{ij}] = \sum_{i < j} \mathsf{Prob}[b_i \And b_j \text{ were compared}]$$

- b_i was compared with b_j if and only if either b_i or b_j was chosen as a pivot before any other in the set {b_i, b_{i+1},..., b_j}. They have equal chance of being pivot first. Hence,
 Prob[b_i & b_j were compared] = ²/_{j-i+1}
- $\bullet\,$ Thus, the expected running time is $\Theta(n\lg n)$

イロト イ理ト イヨト イヨト

- Uncomfortable? What is the sample space?
- Build a binary tree T, pivot is root, recursively build the left branch with L and right branch with R
- This process yields a random tree T built in n steps, t'th step picks tth pivot, pre-order traversal
- \bullet Collection ${\mathcal T}$ of all such trees is the sample space
- $b_i \& b_j$ compared iff one is an ancestor of the other in the tree T
- For simplicity, assume $b_1 < \cdots < b_n$.
- Define $I = \{b_i, b_{i+1}, \cdots, b_j\}$
- $A_t =$ event that first member of I picked as a pivot at step t

- 本間 と 本語 と 本語 と

• From law of total probability

 $\mathsf{Prob}[b_i \text{ first pivot of } I] = \sum_t \mathsf{Prob}[b_i \text{ first pivot of } I \mid A_t] \operatorname{Prob}[A_t]$

- At step t, all of I must belong to L or R of some subtree, say $I \subset L$
- At step t, each member of L chosen with equal probability
- Hence, each member of I chosen with equal probability
- Hence, conditioned on A_t , b_i chosen with probability

$$\frac{1}{|I|} = \frac{1}{j-i+1}.$$

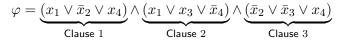
Las Vegas Algorithm

A randomized algorithm which always gives the correct solution is called a Las Vegas algorithm.

Its running time is a random variable.

Monte Carlo Algorithm

A randomized algorithm which may give incorrect answers (with certain probability) is called a Monte Carlo algorithm. Its running time may or may not be a random variable. • An E3-CNF formula is a CNF formula φ in which each clause has *exactly* 3 literals. E.g.,



- Max-E3SAT Problem: given an E3-CNF formula φ , find a truth assignment satisfying as many clauses as possible
- A Randomized Approximation Algorithm for Max-E3SAT
 - \bullet Assign each variable to ${\rm TRUE}/{\rm FALSE}$ with probability 1/2

- Let X_C be the random variable indicating if clause C is satisfied
- Then, $Prob[X_C = 1] = 7/8$
- $\bullet~{\rm Let}~S_{\varphi}$ be the number of satisfied clauses. Then,

$$\mathsf{E}[S_{\varphi}] = \mathsf{E}\left[\sum_{C} X_{C}\right] = \sum_{C} \mathsf{E}[X_{C}] = 7m/8 \ge \frac{\mathsf{OPT}}{8/7}$$

(m is the number of clauses)

• So this is a randomized approximation algorithm with ratio 8/7

Derandomization with Conditional Expectation Method

- Derandomization is to turn a randomized algorithm into a deterministic algorithm
- By conditional expectation

$$\mathsf{E}[S_{\varphi}] = \frac{1}{2}\mathsf{E}[S_{\varphi} \mid x_1 = \text{ true}] + \frac{1}{2}\mathsf{E}[S_{\varphi} \mid x_1 = \text{ false}]$$

- Both $E[S_{\varphi} \mid x_1 = TRUE]$ and $E[S_{\varphi} \mid x_1 = FALSE]$ can be computed in polynomial time
- Suppose $\mathsf{E}[S_{arphi} \mid x_1 = \ {}_{\mathrm{TRUE}}] \geq \mathsf{E}[S_{arphi} \mid x_1 = \ {}_{\mathrm{FALSE}}]$, then

$$\mathsf{E}[S_{\varphi} \mid x_1 = \text{ TRUE}] \ge \mathsf{E}[S_{\varphi}] \ge 7m/8$$

- Set $x_1 = \text{TRUE}$, let φ' be φ with c clauses containing x_1 removed, and all instances of x_1, \bar{x}_1 removed.
- Recursively find value for x_2