
Lecture 3: (Conditional) Probabilities and Expectations

Independence & Conditional Probability

Expectation & Conditional Expectation

Law of Total Probability

Law of Total Expectation

Derandomization Using Conditional Expectation

c©Hung Q. Ngo (SUNY at Buffalo) CSE 694 – A Fun Course 1 / 17

PTCF: Independence Events and Conditional Probabilities

A A ∩ B

B

The conditional probability of A given B is

Prob[A | B] :=
Prob[A ∩B]

Prob[B]

A and B are independent if and only if Prob[A | B] = Prob[A]

Equivalently, A and B are independent if and only if

Prob[A ∩B] = Prob[A] · Prob[B]

c©Hung Q. Ngo (SUNY at Buffalo) CSE 694 – A Fun Course 2 / 17

PTCF: Law of Total Probabilities

Let A1, A2, . . . be any partition of Ω, then

Prob[A] =
∑
i≥1

Prob[A | Ai] Prob[Ai]

(Strictly speaking, we also need “and each Ai is measurable,” but
that always holds for finite Ω.)

c©Hung Q. Ngo (SUNY at Buffalo) CSE 694 – A Fun Course 3 / 17

PTCF: Mutually Independence and Independent Trials

A set A1, . . . , An of events are said to be independent or mutually
independent if and only if, for any k ≤ n and {i1, . . . , ik} ⊆ [n] we
have

Prob[Ai1 ∩ · · · ∩Aik] = Prob[Ai1] · · ·Prob[Aik].

If n independent experiments (or trials) are performed in a row, with
the ith being “successful” with probability pi, then

Prob[all experiments are successful] = p1 · · · pn.

(Question: what is the sample space?)

c©Hung Q. Ngo (SUNY at Buffalo) CSE 694 – A Fun Course 4 / 17

Example 1: Randomized Min-Cut

Min-Cut Problem

Given a multigraph G, find a cut with minimum size.

Randomized Min-Cut(G)

1: for i = 1 to n− 2 do
2: Pick an edge ei in G uniformly at random
3: Contract two end points of ei (remove loops)
4: end for
5: // At this point, two vertices u, v left
6: Output all remaining edges between u and v

c©Hung Q. Ngo (SUNY at Buffalo) CSE 694 – A Fun Course 5 / 17

Analysis

Let C be a minimum cut, k = |C|
If no edge in C is chosen by the algorithm, then C will be returned in
the end, and vice versa

For i = 1..n− 2, let Ai be the event that ei /∈ C and Bi be the event
that {e1, . . . , ei} ∩ C = ∅

Prob[C is returned]

= Prob[Bn−2]

= Prob[An−2 ∩Bn−3]

= Prob[An−2 | Bn−3] Prob[Bn−3]

= . . .

= Prob[An−2 | Bn−3] Prob[An−3 | Bn−4] · · ·Prob[A2 | B1] Prob[B1]

c©Hung Q. Ngo (SUNY at Buffalo) CSE 694 – A Fun Course 6 / 17

Analysis

At step 1, G has min-degree ≥ k, hence ≥ kn/2 edges

Thus,

Prob[B1] = Prob[A1] ≥ 1− k

kn/2
= 1− 2

n

At step 2, the min cut is still at least k, hence ≥ k(n− 1)/2 edges.
Thus, similar to step 1

Prob[A2 | B1] ≥ 1− 2

n− 1

In general,

Prob[Aj | Bj−1] ≥ 1− 2

n− j + 1

Consequently,

Prob[C is returned] ≥
n−2∏
i=1

(
1− 2

n− i + 1

)
=

2

n(n− 1)

c©Hung Q. Ngo (SUNY at Buffalo) CSE 694 – A Fun Course 7 / 17

How to Reduce the Failure Probability

The basic algorithm has failure probability at most 1− 2
n(n−1)

How do we lower it?

Run the algorithm multiple times, say m · n(n− 1)/2 times, return
the smallest cut found

The failure probability is at most(
1− 2

n(n− 1)

)m·n(n−1)/2
<

1

em
.

c©Hung Q. Ngo (SUNY at Buffalo) CSE 694 – A Fun Course 8 / 17

Example 2: Randomized Quicksort

Randomized-Quicksort(A)

1: n← length(A)
2: if n = 1 then
3: Return A
4: else
5: Pick i ∈ {1, . . . , n} uniformly at random, A[i] is called the pivot
6: L← elements ≤ A[i]
7: R← elements > A[i]
8: // the above takes one pass through A
9: L← Randomized-Quicksort(L)

10: R← Randomized-Quicksort(R)
11: Return L ·A[i] ·R
12: end if

c©Hung Q. Ngo (SUNY at Buffalo) CSE 694 – A Fun Course 9 / 17

Analysis of Randomized Quicksort (0)

The running time is proportional to the number of comparisons

Let b1 ≤ b2 ≤ · · · ≤ bn be A sorted non-decreasingly

For each i < j, let Xij be the indicator random variable indicating if
bi was ever compared with bj

The expected number of comparisons is

E

∑
i<j

Xij

 =
∑
i<j

E[Xij] =
∑
i<j

Prob[bi & bj were compared]

bi was compared with bj if and only if either bi or bj was chosen as a
pivot before any other in the set {bi, bi+1, . . . , bj}. They have equal
chance of being pivot first. Hence,
Prob[bi & bj were compared] = 2

j−i+1

Thus, the expected running time is Θ(n lg n)

c©Hung Q. Ngo (SUNY at Buffalo) CSE 694 – A Fun Course 10 / 17

Analysis of Randomized Quicksort (1)

Uncomfortable? What is the sample space?

Build a binary tree T , pivot is root, recursively build the left branch
with L and right branch with R

This process yields a random tree T built in n steps, t’th step picks
tth pivot, pre-order traversal

Collection T of all such trees is the sample space

bi & bj compared iff one is an ancestor of the other in the tree T

For simplicity, assume b1 < · · · < bn.

Define I = {bi, bi+1, · · · , bj}
At = event that first member of I picked as a pivot at step t

c©Hung Q. Ngo (SUNY at Buffalo) CSE 694 – A Fun Course 11 / 17

Analysis of Randomized Quicksort (2)

From law of total probability

Prob[bi first pivot of I] =
∑
t

Prob[bi first pivot of I | At] Prob[At]

At step t, all of I must belong to L or R of some subtree, say I ⊂ L

At step t, each member of L chosen with equal probability

Hence, each member of I chosen with equal probability

Hence, conditioned on At, bi chosen with probability

1

|I|
=

1

j − i + 1
.

c©Hung Q. Ngo (SUNY at Buffalo) CSE 694 – A Fun Course 12 / 17

Las Vegas and Monte Carlo Algorithms

Las Vegas Algorithm

A randomized algorithm which always gives the correct solution is called a
Las Vegas algorithm.
Its running time is a random variable.

Monte Carlo Algorithm

A randomized algorithm which may give incorrect answers (with certain
probability) is called a Monte Carlo algorithm.
Its running time may or may not be a random variable.

c©Hung Q. Ngo (SUNY at Buffalo) CSE 694 – A Fun Course 13 / 17

Example 3: Max-E3SAT

An E3-CNF formula is a CNF formula ϕ in which each clause has
exactly 3 literals. E.g.,

ϕ = (x1 ∨ x̄2 ∨ x4)︸ ︷︷ ︸
Clause 1

∧ (x1 ∨ x3 ∨ x̄4)︸ ︷︷ ︸
Clause 2

∧ (x̄2 ∨ x̄3 ∨ x4)︸ ︷︷ ︸
Clause 3

Max-E3SAT Problem: given an E3-CNF formula ϕ, find a truth
assignment satisfying as many clauses as possible

A Randomized Approximation Algorithm for Max-E3SAT

Assign each variable to true/false with probability 1/2

c©Hung Q. Ngo (SUNY at Buffalo) CSE 694 – A Fun Course 14 / 17

Analyzing the Randomized Approximation Algorithm

Let XC be the random variable indicating if clause C is satisfied

Then, Prob[XC = 1] = 7/8

Let Sϕ be the number of satisfied clauses. Then,

E[Sϕ] = E

[∑
C

XC

]
=
∑
C

E[XC] = 7m/8 ≥ opt

8/7

(m is the number of clauses)

So this is a randomized approximation algorithm with ratio 8/7

c©Hung Q. Ngo (SUNY at Buffalo) CSE 694 – A Fun Course 15 / 17

Derandomization with Conditional Expectation Method

Derandomization is to turn a randomized algorithm into a
deterministic algorithm

By conditional expectation

E[Sϕ] =
1

2
E[Sϕ | x1 = true] +

1

2
E[Sϕ | x1 = false]

Both E[Sϕ | x1 = true] and E[Sϕ | x1 = false] can be computed
in polynomial time

Suppose E[Sϕ | x1 = true] ≥ E[Sϕ | x1 = false], then

E[Sϕ | x1 = true] ≥ E[Sϕ] ≥ 7m/8

Set x1 =true, let ϕ′ be ϕ with c clauses containing x1 removed, and
all instances of x1, x̄1 removed.

Recursively find value for x2

c©Hung Q. Ngo (SUNY at Buffalo) CSE 694 – A Fun Course 16 / 17

