Lecture 3: (Conditional) Probabilities and Expectations

©Hung Q. Ngo (SUNY at Buffalo) CSE 694 — A Fun Course 1/17

Independence & Conditional Probability
Expectation & Conditional Expectation
Law of Total Probability
Law of Total Expectation

Derandomization Using Conditional Expectation

PTCF: Independence Events and Conditional Probabilities

A

@ The conditional probability of A given B is
Prob[A N B
Prob[B]

@ A and B are independent if and only if Prob[A | B] = Prob|[A]
@ Equivalently, A and B are independent if and only if

Prob[A | B] :=

Prob[A N B] = Prob[A] - Prob[B]

©Hung Q. Ngo (SUNY at Buffalo) CSE 694 — A Fun Course 2/17

PTCF: Law of Total Probabilities

o Let Ay, Ay, ... be any partition of €2, then

Prob[A] = " Prob[A | A;] Prob[A;]
i>1

(Strictly speaking, we also need “and each A; is measurable,” but
that always holds for finite €2.)

©Hung Q. Ngo (SUNY at Buffalo) CSE 694 — A Fun Course 3/17

PTCF: Mutually Independence and Independent Trials

o Aset Aq,..., A, of events are said to be independent or mutually
independent if and only if, for any k < n and {i1,...,ix} C [n] we
have

Prob[A;, N---N A;,] = Prob[A;,]-- - Prob[A;,].

e If n independent experiments (or trials) are performed in a row, with
the ith being “successful” with probability p;, then

Problall experiments are successful] = p1 - - - py,.

(Question: what is the sample space?)

©Hung Q. Ngo (SUNY at Buffalo) CSE 694 — A Fun Course 4 /17

Example 1: Randomized Min-Cut

Min-Cut Problem J

Given a multigraph G, find a cut with minimum size.

RANDOMIZED MIN-CUT(G)
1: fori=1ton—2do
2: Pick an edge ¢; in G uniformly at random
3: Contract two end points of e; (remove loops)
4: end for
5: // At this point, two vertices u, v left
6: Output all remaining edges between u and v

©Hung Q. Ngo (SUNY at Buffalo) CSE 694 — A Fun Course 5/17

e Let C' be a minimum cut, k = |C]|

@ If no edge in C is chosen by the algorithm, then C' will be returned in
the end, and vice versa

e Fori=1..n—2, let A; be the event that e¢; ¢ C' and B; be the event
that {61,...,6i}ﬂ02®

Prob[C' is returned]
= Prob[B,,_2]
= Prob[A4,,—2 N B;,_3]
= Prob[A4,,—2 | B,—3] Prob[B,,_3]

= Prob[A,,—2 | By—3] Prob[A,,_3 | By—_4]---Prob[Ay | Bi] Prob[B]

©Hung Q. Ngo (SUNY at Buffalo) CSE 694 — A Fun Course 6 /17

@ At step 1, G has min-degree > k, hence > kn/2 edges

@ Thus, "
2
Prob[By] = Prob[4;] >1— ——~ =1——
rob| 1] robl] 2 kn/2 n
o At step 2, the min cut is still at least k, hence > k(n — 1)/2 edges.
Thus, similar to step 1

2
>1 - —
Prob[As | B1] > 1 —

@ In general,
2

o Consequently,

n—2

2 2
Prob[C i >[I (1- N
rob[C' is returned] > 11 < n—i+ 1> n(n —1)

©Hung Q. Ngo (SUNY at Buffalo) CSE 694 — A Fun Course 7/17

How to Reduce the Failure Probability

2

@ The basic algorithm has failure probability at most 1 — w=T)

@ How do we lower it?

@ Run the algorithm multiple times, say m - n(n — 1)/2 times, return
the smallest cut found

@ The failure probability is at most

©Hung Q. Ngo (SUNY at Buffalo) CSE 694 — A Fun Course 8 /17

Example 2: Randomized Quicksort

RANDOMIZED-QUICKSORT(A)

1. n < length(A)

2: if n =1 then

3: Return A

4: else
Pick i € {1,...,n} uniformly at random, A[] is called the pivot
L + elements < A[i]
R < elements > AJi]
// the above takes one pass through A
L < RANDOMIZED-QUICKSORT(L)
100 R < RANDOMIZED-QUICKSORT(R)
11: Return L- A[i]- R
12: end if

© o N oo

©Hung Q. Ngo (SUNY at Buffalo) CSE 694 — A Fun Course 9 /17

Analysis of Randomized Quicksort (0)

@ The running time is proportional to the number of comparisons
o Let by < by <--- < by, be A sorted non-decreasingly

@ For each i < j, let X;; be the indicator random variable indicating if
b; was ever compared with b;

@ The expected number of comparisons is

E ZX,‘j = Z E[X;;] = Z Prob[b; & b; were compared)]

1<j 1<j 1<j

@ b; was compared with b; if and only if either b; or b; was chosen as a
pivot before any other in the set {b;,b;11,...,b;}. They have equal
chance of being pivot first. Hence,

Prob[b; & b; were compared] =]_Z%
@ Thus, the expected running time is ©(nlgn)

©Hung Q. Ngo (SUNY at Buffalo) CSE 694 — A Fun Course 10 / 17

Analysis of Randomized Quicksort (1)

©Hung Q. Ngo (SUNY at Buffalo) CSE 694 — A Fun Course 11 /17

Uncomfortable? What is the sample space?

Build a binary tree T, pivot is root, recursively build the left branch
with L and right branch with R

This process yields a random tree T" built in n steps, t'th step picks
tth pivot, pre-order traversal

Collection T of all such trees is the sample space

b; & bj compared iff one is an ancestor of the other in the tree T
For simplicity, assume by < --- < b,,.

Define I = {b;,bj1+1,--- ,b;}

A; = event that first member of I picked as a pivot at step ¢

Analysis of Randomized Quicksort (2)

From law of total probability
Probl[b; first pivot of I] = Z Prob[b; first pivot of I | A;] Prob[A,]
t
At step t, all of I must belong to L or R of some subtree, say I C L

At step ¢, each member of L chosen with equal probability

Hence, each member of I chosen with equal probability

Hence, conditioned on A;, b; chosen with probability

r_
Il i+l

©Hung Q. Ngo (SUNY at Buffalo) CSE 694 — A Fun Course 12 /17

Las Vegas and Monte Carlo Algorithms

Las Vegas Algorithm

A randomized algorithm which always gives the correct solution is called a
Las Vegas algorithm.
Its running time is a random variable.

Monte Carlo Algorithm

A randomized algorithm which may give incorrect answers (with certain
probability) is called a Monte Carlo algorithm.
Its running time may or may not be a random variable.

©Hung Q. Ngo (SUNY at Buffalo) CSE 694 — A Fun Course 13 /17

Example 3: Max-E3SAT

@ An E3-CNF formula is a CNF formula ¢ in which each clause has
exactly 3 literals. E.g.,

o= (x1VZ2Vaxg) AN(T1 VI3V ITg)N(T2V T3V x4)

Clause 1 Clause 2 Clause 3

o Max-E3SAT Problem: given an E3-CNF formula ¢, find a truth
assignment satisfying as many clauses as possible

A Randomized Approximation Algorithm for Max-E3SAT

@ Assign each variable to TRUE/FALSE with probability 1/2

©Hung Q. Ngo (SUNY at Buffalo) CSE 694 — A Fun Course 14 /17

Analyzing the Randomized Approximation Algorithm

@ Let X be the random variable indicating if clause C' is satisfied
@ Then, Prob[X¢c =1]=7/8

@ Let S, be the number of satisfied clauses. Then,
OPT
Syl =E X E[Xc|=Tm/8 > —
si-efp] g

(m is the number of clauses)
@ So this is a randomized approximation algorithm with ratio 8/7

©Hung Q. Ngo (SUNY at Buffalo) CSE 694 — A Fun Course

Derandomization with Conditional Expectation Method

@ Derandomization is to turn a randomized algorithm into a
deterministic algorithm

o By conditional expectation
1 1
E[S,] = §E[S¢ | x1 = TRUE] + §E[Sso | 1 = FALSE]

e Both E[S, | 1 = TRUE] and E[S, | 1 = FALSE] can be computed
in polynomial time
@ Suppose E[S,, | z1 = TRUE| > E[S,, | 1 = FALSE], then

E[S, | 1 = TRUE] > E[S,] > Tm/8

@ Set 7 =TRUE, let ¢’ be ¢ with ¢ clauses containing x1 removed, and
all instances of x1, 1 removed.

@ Recursively find value for x-

©Hung Q. Ngo (SUNY at Buffalo) CSE 694 — A Fun Course 16 / 17

