
Lecture 2: Random Variables and Expectations

Random variables

Expectation

The argument from expectation
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PTCF: Discrete Random Variable

a

a

a

X(ω) 6= a

X(ω) 6= a a

Event X = a is {ω | X(ω) = a}

A random variable is a function X : Ω→ R
pX(a) = Prob[X = a] is called the probability mass function of X

PX(a) = Prob[X ≤ a] is called the (cumulative/probability)
distribution function of X
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PTCF: Expectation and its Linearity

The expected value of X is defined as

E[X] :=
∑
a

aProb[X = a].

For any set X1, . . . , Xn of random variables, and any constants
c1, . . . , cn

E[c1X1 + · · ·+ cnXn] = c1E[X1] + · · ·+ cnE[Xn]

This fact is called linearity of expectation
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PTCF: Indicator/Bernoulli Random Variable

X : Ω→ {0, 1}

p = Prob[X = 1]

X is called a Bernoulli random variable with parameter p

If X = 1 only for outcomes ω belonging to some event A, then X is called
an indicator variable for A

E[X] = p

Var [X] = p(1− p)
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The Argument from Expectation: Main Idea

X a random variable with E[X] = µ, then

There must exist a sample point ω with X(ω) ≥ µ
There must exist a sample point ω with X(ω) ≤ µ

X a random variable with E[X] ≤ µ, then

There must exist a sample point ω with X(ω) ≤ µ
X a random variable with E[X] ≥ µ, then

There must exist a sample point ω with X(ω) ≥ µ
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Example 1: Large Cuts in Graphs

Intuition & Question

Intuition: every graph must have a “sufficiently large” cut (A,B).
Question: How large?

Line of thought

On average, a random cut has size µ, hence there must exist a cut of size
≥ µ.

Put a vertex in either A or B with probability 1/2
Expected number of edges X with one end point in each is

E[X] = E

[∑
e

Xe

]
=
∑
e

Prob[Xe] = |E|/2

Theorem

For every graph G = (V,E), there must be a cut with ≥ |E|/2 edges
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Example 2: ±1 Linear Combinations of Unit Vectors

Theorem

Let v1, · · · ,vn be n unit vectors in Rn.
There exist α1, · · · , αn ∈ {−1, 1} such that

|α1v1 + · · ·+ αnvn| ≤
√
n

and, there exist α1, · · · , αn ∈ {−1, 1} such that

|α1v1 + · · ·+ αnvn| ≥
√
n

Specifically, choose αi ∈ {−1, 1} independently with prob. 1/2

E
[
|α1v1 + · · ·+ αnvn|2

]
=
∑
i,j

vi · vjE[αiαj ] =
∑
i

v2
i = n.
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Example 3: Max-E3SAT

An E3-CNF formula is a CNF formula ϕ in which each clause has
exactly 3 literals. E.g.,

ϕ = (x1 ∨ x̄2 ∨ x4)︸ ︷︷ ︸
Clause 1

∧ (x1 ∨ x3 ∨ x̄4)︸ ︷︷ ︸
Clause 2

∧ (x̄2 ∨ x̄3 ∨ x4)︸ ︷︷ ︸
Clause 3

Max-E3SAT Problem: given an E3-CNF formula ϕ, find a truth
assignment satisfying as many clauses as possible

A Randomized Approximation Algorithm for Max-E3SAT

Assign each variable to true/false with probability 1/2
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Analyzing the Randomized Approximation Algorithm

Let XC be the random variable indicating if clause C is satisfied

Then, Prob[XC = 1] = 7/8

Let Sϕ be the number of satisfied clauses. Then,

E[Sϕ] = E

[∑
C

XC

]
=
∑
C

E[XC ] = 7m/8 ≥ opt

8/7

(m is the number of clauses)

So this is a randomized approximation algorithm with ratio 8/7
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Example 4: Unbalancing Lights

Theorem

For 1 ≤ i, j ≤ n, we are given aij ∈ {−1, 1}. Then, there exist
αi, βj ∈ {−1, 1} such that

∑
i

∑
j

aijαiβj ≥

(√
2

π
+ o(1)

)
n3/2

Choose βj ∈ {−1, 1} independently with prob. 1/2.

Ri =
∑

j aijβj , then

E[|Ri|] = 2
n
(

n−1
b(n−1)/2c

)
2n

≈

(√
2

π
+ o(1)

)
n1/2

Choose αi with the same sign as Ri, for all i
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