Lecture 2: Random Variables and Expectations

@ Random variables
o Expectation

@ The argument from expectation
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PTCF: Discrete Random Variable

Event X =a is {w | X(w) = a}

O
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@ A random variable is a function X : @ — R
@ px(a) = Prob[X = a] is called the probability mass function of X

@ Px(a) = Prob[X < a] is called the (cumulative/probability)
distribution function of X
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PTCF: Expectation and its Linearity

@ The expected value of X is defined as

E[X]:=) aProb[X = al.

@ For any set X,...,X,, of random variables, and any constants
Cly...,Cp

Ele1 X1 + -+ + cnXp] = c1E[Xa] + -+ - + cnE[X5)]

This fact is called linearity of expectation
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PTCF: Indicator/Bernoulli Random Variable

X:Q—{0,1}
p = Prob[X = 1]
X is called a Bernoulli random variable with parameter p

If X =1 only for outcomes w belonging to some event A, then X is called
an indicator variable for A
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The Argument from Expectation: Main Idea

e X a random variable with E[X] = p, then

e There must exist a sample point w with X (w) > p
o There must exist a sample point w with X(w) < pu

e X a random variable with E[X] < p, then

e There must exist a sample point w with X (w) < p
@ X a random variable with E[X] > p, then

o There must exist a sample point w with X (w) > pu
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Example 1: Large Cuts in Graphs

Intuition & Question

Intuition: every graph must have a “sufficiently large” cut (4, B).
Question: How large?

Line of thought

On average, a random cut has size p, hence there must exist a cut of size
s

e Put a vertex in either A or B with probability 1/2
@ Expected number of edges X with one end point in each is

> Xe] = Prob[X.] = |E|/2

Theorem J

E[X]=E

For every graph G = (V, E), there must be a cut with > |E|/2 edges
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Example 2: 41 Linear Combinations of Unit Vectors

Theorem
Let vq,--- ,vy, ben unit vectors in R".
There exist ay,- -+ ,apn € {—1,1} such that
laq vy + -+ anvin| < Vn
and, there exist oy, -+, € {—1,1} such that
la1vy + -+ anva| > Vi
v

Specifically, choose a; € {—1,1} independently with prob. 1/2

E Ualvl 4t oznvn]2] = Zvi -vE[aa;] = va =n.
4.J i
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Example 3: Max-E3SAT

@ An E3-CNF formula is a CNF formula ¢ in which each clause has
exactly 3 literals. E.g.,

o= (x1VZ2Vaxg) AN(T1 VI3V ITg)N(T2V T3V x4)

Clause 1 Clause 2 Clause 3

o Max-E3SAT Problem: given an E3-CNF formula ¢, find a truth
assignment satisfying as many clauses as possible

A Randomized Approximation Algorithm for Max-E3SAT

@ Assign each variable to TRUE/FALSE with probability 1/2
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Analyzing the Randomized Approximation Algorithm

@ Let X be the random variable indicating if clause C' is satisfied
@ Then, Prob[X¢c =1]=7/8

@ Let S, be the number of satisfied clauses. Then,

1S,] =E [zcj XC] S E[Xc] = Tm/8 > Z;’;

c

(m is the number of clauses)
@ So this is a randomized approximation algorithm with ratio 8/7
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Example 4: Unbalancing Lights

Theorem

For1 <i,j <mn, we are given a;; € {—1,1}. Then, there exist
Oéi,ﬁj € {—1, 1} such that

2
aijalﬂj > ( == O(l)) n3/2
T ¥z ({7

@ Choose f; € {—1,1} independently with prob. 1/2.
o R, = Zj aijﬂj, then

n—1
(| (1) /2)) 2
gl =2 L) ([ + 0<1>> i

@ Choose «; with the same sign as R;, for all i
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