- Random variables
- Expectation
- The argument from expectation

PTCF: Discrete Random Variable



- A random variable is a function $X: \Omega \to \mathbb{R}$
- $p_X(a) = \operatorname{Prob}[X = a]$ is called the probability mass function of X
- P_X(a) = Prob[X ≤ a] is called the (cumulative/probability) distribution function of X

• The expected value of X is defined as

$$\mathsf{E}[X] := \sum_{a} a \operatorname{Prob}[X = a].$$

• For any set X_1, \ldots, X_n of random variables, and any constants c_1, \ldots, c_n

$$\mathsf{E}[c_1X_1 + \dots + c_nX_n] = c_1\mathsf{E}[X_1] + \dots + c_n\mathsf{E}[X_n]$$

This fact is called linearity of expectation

PTCF: Indicator/Bernoulli Random Variable

$$\begin{aligned} X: \Omega \to \{0,1\} \\ p = \mathsf{Prob}[X=1] \end{aligned}$$

X is called a Bernoulli random variable with parameter p

If X = 1 only for outcomes ω belonging to some event A, then X is called an indicator variable for A

$$\begin{aligned} \mathsf{E}[X] &= p \\ \mathsf{Var}\left[X\right] &= p(1-p) \end{aligned}$$

- X a random variable with $E[X] = \mu$, then
 - There must exist a sample point ω with $X(\omega) \geq \mu$
 - $\bullet\,$ There must exist a sample point ω with $X(\omega) \leq \mu$
- X a random variable with $E[X] \le \mu$, then
 - There must exist a sample point ω with $X(\omega) \leq \mu$
- X a random variable with $E[X] \ge \mu$, then
 - $\bullet\,$ There must exist a sample point ω with $X(\omega)\geq \mu$

Example 1: Large Cuts in Graphs

Intuition & Question

Intuition: every graph must have a "sufficiently large" cut $({\cal A},{\cal B}).$ Question: How large?

Line of thought

On average, a random cut has size $\mu,$ hence there must exist a cut of size $\geq \mu.$

- Put a vertex in either A or B with probability 1/2
- Expected number of edges X with one end point in each is

$$\mathsf{E}[X] = \mathsf{E}\left[\sum_e X_e\right] = \sum_e \mathsf{Prob}[X_e] = |E|/2$$

Theorem

For every graph G = (V, E), there must be a cut with $\geq |E|/2$ edges

Theorem

Let $\mathbf{v}_1, \dots, \mathbf{v}_n$ be n unit vectors in \mathbb{R}^n . There exist $\alpha_1, \dots, \alpha_n \in \{-1, 1\}$ such that

$$|\alpha_1 \mathbf{v}_1 + \dots + \alpha_n \mathbf{v}_n| \le \sqrt{n}$$

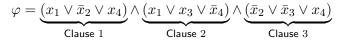
and, there exist $\alpha_1, \cdots, \alpha_n \in \{-1, 1\}$ such that

$$|\alpha_1 \mathbf{v}_1 + \dots + \alpha_n \mathbf{v}_n| \ge \sqrt{n}$$

Specifically, choose $\alpha_i \in \{-1,1\}$ independently with prob. 1/2

$$\mathsf{E}\left[|\alpha_1\mathbf{v}_1+\cdots+\alpha_n\mathbf{v}_n|^2\right] = \sum_{i,j} \mathbf{v}_i \cdot \mathbf{v}_j \mathsf{E}[\alpha_i\alpha_j] = \sum_i \mathbf{v}_i^2 = n.$$

• An E3-CNF formula is a CNF formula φ in which each clause has *exactly* 3 literals. E.g.,



- Max-E3SAT Problem: given an E3-CNF formula φ , find a truth assignment satisfying as many clauses as possible
- A Randomized Approximation Algorithm for Max-E3SAT
 - \bullet Assign each variable to ${\rm TRUE}/{\rm FALSE}$ with probability 1/2

- Let X_C be the random variable indicating if clause C is satisfied
- Then, $Prob[X_C = 1] = 7/8$
- $\bullet~{\rm Let}~S_{\varphi}$ be the number of satisfied clauses. Then,

$$\mathsf{E}[S_{\varphi}] = \mathsf{E}\left[\sum_{C} X_{C}\right] = \sum_{C} \mathsf{E}[X_{C}] = 7m/8 \ge \frac{\mathsf{OPT}}{8/7}$$

(m is the number of clauses)

• So this is a randomized approximation algorithm with ratio 8/7

Theorem

For $1 \le i, j \le n$, we are given $a_{ij} \in \{-1, 1\}$. Then, there exist $\alpha_i, \beta_j \in \{-1, 1\}$ such that

$$\sum_{i} \sum_{j} a_{ij} \alpha_i \beta_j \ge \left(\sqrt{\frac{2}{\pi}} + o(1)\right) n^{3/2}$$

• Choose $\beta_j \in \{-1, 1\}$ independently with prob. 1/2. • $R_i = \sum_j a_{ij}\beta_j$, then

$$\mathsf{E}[|R_i|] = 2\frac{n\binom{n-1}{\lfloor (n-1)/2 \rfloor}}{2^n} \approx \left(\sqrt{\frac{2}{\pi}} + o(1)\right) n^{1/2}$$

• Choose α_i with the same sign as R_i , for all i

→ Ξ →