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Sample complexity for finite hypothesis classes

We discuss the connection between the PAC model and the CM (consistent hypothesis) model. We prove
Valiant’s sample complexity theorem, and briefly discusses its implication to Occam’s Razor.

1 Valiant’s Theorem

The PAC-learners for Boolean Conjunctions and Axis-Aligned Rectangles that we presented simply tried
to find a hypothesis consistent with all the examples. It turns out that this is a general phenomenon: if
the learner can produce a hypothesis consistent with “many” examples, then it is a PAC-learner. We first
prove this simple fact for finite hypothesis classes. In particular, the following theorem was shown in the
original paper by Les Valiant [2] which formulated PAC-learning and started the entire area of computational
learning theory (COLT).

Theorem 1.1 (Valiant’s Theorem). If a learner can always produce a hypothesis consistent with

m ≥ 1

ε
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)
i.i.d. examples, then the learner is a PAC-learner.

Proof. Call a hypothesis h a “bad” hypothesis if errD(h) > ε. The learner needs to output a good hypothesis
with high confidence. Intuitively, a bad hypothesis is a hypothesis whose “disagreement region” with the
target concept c is large (larger than ε).

Consider a fixed bad hypothesis h. Let h∆c = {x ∈ Ω | h(x) 6= c(x)} denote the “disagreement
region” between c and h. Then, saying that h is bad is the same as saying that Probx←D [x ∈ h∆c] > ε.
Now, the crucial point to notice is this: if one of our examples belongs to the disagreement region, then
h will not be outputted because the output hypothesis is consistent with all examples. When we take m
samples, the probability that no sample hit the region h∆c is at most (1− ε)m. Thus, the probability that h
is outputted is less than (1− ε)m. By the union bound, the probability that a bad hypothesis is outputted is
at most |H|(1− ε)m ≤ |H|e−εm. This probability is at most δ if m ≥ 1

ε log(|H|/δ).

Intuitively, the theorem makes sense: if a hypothesis has large errD(h), then its “error region” is large
and so it is likely that some sample point will hit the error region and thus the hypothesis won’t be outputted.

Exercise 1. Show that PAC-learning BOOLEAN CONJUNCTIONS only need 1
ε (n log 3 + log(1/δ)) samples.

Corollary 1.2. If learner can produce a hypothesis h ∈ H consistent with m examples, then

Prob
[

errD(h) ≤ 1

m
log
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|H|
δ

)]
≥ 1− δ

The corollary can be intuitively interpreted as follows. First, errD(h) gets smaller when m gets larger,
because there’s more data to learn from. Second, errD(h) gets smaller when |H| gets smaller. The more we
know about the concept, the smaller the hypothesis class becomes, thus the better the learning error.
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2 Occam’s Razor

The so-called Occam’s Razor result was first observed in a short paper by Blumer et al. [1] in 1987. Al-
though we do not know what Father William of Ockham (c. 1288 – c. 1348) really meant, in modern
science Occam’s Razor principle roughly refers to the philosophical position that “all else equal, the simpler
hypothesis is the correct one.”

Blumer et al. observed that Valiant’s result can be used to give a mathematical justification to Occam’s
razor. More concretely, from Valiant’s theorem we can prove that if the learner can always produce a “short”
hypothesis consistent with the examples, then it is a PAC-learner. Here, we take the (information theoretic)
view that “short = simple”. Intuitively, the proof goes as follows: if the hypothesis is short, we can show
thatH is small, and thus the learner satisfies the theorem above. From now on, we will call a learner which
always produce a consistent hypothesis an Occam learner.

Theorem 2.1 (Occam’s Razor, Roughly stated). If a learner always produce a hypothesis h ∈ H with
|h| = O((n|c|)αmβ) for some fixed α (arbitrary) and 0 < β < 1, then it is an efficient PAC-learner.
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