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Don’t Have a Good Definition, Only Examples

Optical character recognition

Spam filtering

Document classification

(IP) Packet filtering/classification

Face detection

Medical diagnosis

Insider threat detection

Stock price prediction

Game playing (chess, go, etc.)
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Classification Problems

Input: set of labeled examples (spam and legitimate emails)

Output: prediction rule (is this newly received email a spam email?)

Training

Examples

Sample

Space

ML Algorithm Prediction Rule

New Example

Label of the New Example

Many examples on previous slide are classification problems.
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Objectives

Numerous, sometimes conflicting:

Accuracy

Little computational resources (time and space)

Small training set

General purpose

Simple prediction rule (Occam’s Razor)

Prediction rule “understandable” by human experts (avoid “black
box” behavior)

Perhaps ultimately leads to an understanding of human cognition and the
induction problem! (So far the reverse is “truer”)

Learning Model

In order to characterize these objectives mathematically, we need a
mathematical model for “learning.”
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What Do We Mean by a Learning Model?

Definition (Learning Model)

is a mathematical formulation of a learning problem (e.g. classification)

What do we want the model to behave?

Powerful (to capture REAL learning) and Simple (to be
mathematically feasible). Oxymoron? Maybe not!

By “powerful” we mean the model should capture, at the very least,
1 What is being learned?
2 Where/how do data come from?
3 How’s the data given to the learner? (offline, online, etc.)
4 Which objective(s) to achieve/optimize? Under which constraints?
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An Example: The Consistency Model

1 What is being learned?

Ω: a domain or instance space consisting of all possible examples
c : Ω→ {0, 1} is the target concept we want to learn

2 Where/how do data come from?

Data: a subset of m examples from Ω, along with their labels, i.e.

S = {(x1, c(x1)), · · · , (xm, c(xm))}

3 How’s the data given to the learner? (offline, online, etc.)

S given offline
C, a class of known concepts, containing the unknown concept c.

4 Which objective(s) to achieve/optimize? Under which constraints?

Output a hypothesis h ∈ C consistent with data,
or output no such concept
Algorithm runs in polynomial time
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Tricky Issues

|C| is usually very large, could be exponential in m, or even infinite!

How do we represent an element of C? h in particular?

A truth table is out of the question, since Ω is huge

For now, let’s say

We agree in advance a particular way to represent C
The representation of c in C has size |c| (number of bits representing c
Each example x ∈ Ω is of size |x| = O(n)
ML algorithm required to run in time poly(m,n, |c|).

c©Hung Q. Ngo (SUNY at Buffalo) CSE 694 – A Fun Course 9 / 35



Examples of CM-learnable and not CM-learnable concept
clases

CM-learnable concept classes

Monotone conjunctions

Monotone disjunctions

Boolean conjunctions

k-CNF

DNF

Axis-aligned rectangles

Separation hyperplanes

Concept classes which are NP-hard to learn

k-term DNF

Boolean threshold functions
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Example 1: monotone conjunctions is Learnable

C = set of formulae on n variables x1, . . . , xn of the form:

ϕ = xi1 ∧ xi2 · · · ∧ xiq , 1 ≤ q ≤ n

Data looks like this:

x1 x2 x3 x4 x5 c(x)
1 1 0 0 1 1
1 1 1 0 0 0
1 0 1 0 1 1
1 1 1 0 1 1
0 1 1 1 1 0

Output hypothesis h = x1 ∧ x5

x1 = “MS Word Running”,

x5 = “ActiveX Control On”,

c(x) = 1 means “System Down”
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Example 2: monotone disjunctions is Learnable

C = set of formulae on n variables x1, . . . , xn of the form:

ϕ = xi1 ∨ xi2 · · · ∨ xiq , 1 ≤ q ≤ n

Data looks like this:

x1 x2 x3 x4 x5 c(x)
1 1 0 0 1 1
0 0 1 0 0 0
1 0 1 0 1 1
1 1 1 0 1 1
0 0 1 1 1 0

Output hypothesis h = x1 ∨ x2
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Example 3: Boolean conjunctions is Learnable

C = set of formulae on n variables x1, . . . , xn of the form:

ϕ = xi1 ∧ x̄i2 ∧ x̄i3 ∧ · · · ∧ xiq , 1 ≤ q ≤ n

Data looks like this:

x1 x2 x3 x4 x5 c(x)
1 1 0 0 1 1
1 0 1 0 0 0
1 1 0 0 1 1
1 1 0 0 1 1
0 1 1 1 1 0

Output hypothesis h = x2 ∧ x̄3
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Example 4: k-CNF is Learnable

C = set of formulae on n variables x1, . . . , xn of the form:

ϕ = (• ∨ · · · ∨ •)︸ ︷︷ ︸
≤ k literals

∧ (• ∨ · · · ∨ •)︸ ︷︷ ︸
≤ k literals

∧ · · · ∧ (• ∨ · · · ∨ •)︸ ︷︷ ︸
≤ k literals

Data looks like this:

x1 x2 x3 x4 x5 c(x)
1 0 0 0 1 1
1 0 1 0 0 0
1 0 1 1 1 1
1 0 0 0 1 1
0 1 1 1 1 0

Output hypothesis h = (x̄2 ∨ x5) ∧ (x̄3 ∨ x4)
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Example 5: DNF is Learnable

C = set of formulae on n variables x1, . . . , xn of the form:

ϕ = (• ∧ · · · ∧ •) ∨ (• ∧ · · · ∧ •) ∨ · · · ∨ (• ∧ · · · ∧ •)

Data looks like this:

x1 x2 x3 x4 x5 c(x)
1 0 0 0 1 1
1 0 1 1 1 1
1 0 1 0 0 0

Output hypothesis trivially is:

h = (x1 ∧ x̄2 ∧ x̄3 ∧ x̄4 ∧ x5) ∨ (x1 ∧ x̄2 ∧ x3 ∧ x4 ∧ x5)
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Example 6: axis-aligned rectangles is Learnable

C is the set of all axis-parallel rectangles

target concept

x

x
x

x

x

x

x

x

x
hypothesis
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Example 7: separation hyperplanes is Learnable

C is the set of all hyperplanes on Rn

Solvable with an LP-solver (a kind of algorithmic Farkas lemma)

c©Hung Q. Ngo (SUNY at Buffalo) CSE 694 – A Fun Course 17 / 35



Example 8: k-term DNF is Not Learnable, ∀k ≥ 2

C = set of formulae on n variables x1, . . . , xn of the form:

ϕ = (• ∧ · · · ∧ •)︸ ︷︷ ︸
term 1

∨ (• ∧ · · · ∧ •)︸ ︷︷ ︸
term 2

∨ · · · ∨ (• ∧ · · · ∧ •)︸ ︷︷ ︸
term k

Theorem

The problem of finding a k-term DNF formula consistent with given data
S is NP-hard, for any k ≥ 2.

Proof.

Reduce 3-coloring to this problem.
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Example 9: threshold boolean functions is Not
Learnable

Each concept is represented by c ∈ {0, 1}n and b ∈ N

An example x ∈ {0, 1}n is positive if

c1x1 + · · ·+ cnxn ≥ b.
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Problems with the Consistency Model

Does not take into account generalization (prediction performance)

No noise involved (examples are never perfect)

DNF is learnable but k-DNF is not?

Strict consistency often means over-fitting
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The PAC Model Informally

1 What to learn? Domain Ω, concept c : Ω→ {0, 1}
2 Where/how do data come from?

Data: S = {(x1, c(x1)), · · · , (xm, c(xm)}
Each xi drawn from Ω according to some fixed but unknown
distribution D

3 How’s the data given to the learner? (offline, online, etc.)

S given offline
Concept class C (3 c) along with an implicit representation

4 Which objective(s) to achieve/optimize? Under which constraints?
Efficiently output a hypothesis h ∈ C so that the generalization error

errD(h) := Prob
x∈D

[h(x) 6= c(x)]

is small with high probability.
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The PAC Model: Preliminary Definition

Definition (PAC Learnability)

A concept class C is PAC learnable if there’s an algorithm A (could be
randomized) satisfying the following:

for any 0 < ε < 1/2, 0 < δ < 1/2
for any distribution D on Ω
A draws m examples from D, along with their labels

A outputs a hypothesis h ∈ C such that

Prob [errD(h) ≤ ε] ≥ 1− δ

Definition (Efficiently PAC Learnability)

If A also runs in time poly(1/ε, 1/δ, n, |c|), then C is efficiently PAC
learnable.

m must be poly(1/ε, 1/δ, n, |c|) for C to be efficiently PAC learnable.
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Some Initial Thoughts on the Model

Still no explicit involvement of noise

However, intuitively if (example,label) error is relatively small, then the
learner can deal with noise by reducing ε, δ.

The requirement that the learner works for any D seems quite strong.

It’s quite amazing that non-trivial concepts are learnable

Can we do better for some problem if D is known in advance? Is
there a theorem to this effect?

The i.i.d. assumption (on the samples) is also somewhat too strong.
This paper
David Aldous, Umesh V. Vazirani: A Markovian Extension of
Valiant’s Learning Model, Inf. Comput. 117(2): 181-186 (1995)
shows that the i.i.d. assumption can be relaxed a little.
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Some examples

Efficiently PAC-learnable classes

Boolean conjunctions

Axis-aligned rectangles

k-CNF

k-DL (decision list, homework!)

Not PAC-learnable classes

k-term DNF (that nasty guy again!)

Boolean threshold functions

Union of k half-spaces, k ≥ 3
DNF

k-juntas
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1) Boolean conjunctions is Efficiently PAC-Learnable

Need to produce h = l1 ∧ l2 ∧ · · · ∧ lk, (li are literals)
Start with h = x1 ∧ x̄1 ∧ · · · ∧ xn ∧ x̄n

For each example (a, c(a) = 1) taken from D, remove from h all
literals contradicting the example
E.g., if example is (x1 = 0, x2 = 1, x3 = 0, x4 = 0, x5 = 1, c(x) = 1),
then we remove literals x1, x̄2, x3, x4, x̄5 from h (if they haven’t been
removed before)

h always contain all literals of c, thus c(a) = 0⇒ h(a) = 0, ∀a ∈ Ω
h(a) 6= c(a) iff c(a) = 1 and ∃ a literal l ∈ h− c s.t. a(l) = 0.

errD(h) = Prob
a∈D

[h(a) 6= c(a)]

= Prob
a∈D

[c(a) = 1 ∧ a(l) = 0 for some l ∈ h− c]

≤
∑
l∈h−c

Prob
a∈D

[c(a) = 1 ∧ a(l) = 0]︸ ︷︷ ︸
p(l)
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1) Boolean conjunctions is Efficiently PAC-Learnable

So, if p(l) ≤ ε/2n,∀l ∈ h− c then we’re OK!

How many samples from D must we take to ensure all
p(l) ≤ ε/2n, ∀l ∈ h− c with probability ≥ 1− δ?

Consider an l ∈ h− c for which p(l) > ε/2n, call it a bad literal

l will be removed with probability p(l)
l survives m samples with probability at most
(1− p(l))m < (1− ε/2n)m

Some bad literal survives with probability at most

2n (1− ε/2n)m ≤ 2ne−εm/2n ≤ δ

if

m ≥ 2n
ε

(ln(2n) + ln(1/δ))
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2) k-CNF is Efficiently PAC-Learnable

Say k = 3
We can reduce learning 3-CNF to learning (monotone)
conjunctions

For every triple of literals u, v, w, create a new variable yu,v,w, for a
total of O(n3) variables

Basic idea:
(u ∨ v ∨ w) ⇔ yu,v,w

Each example from 3-CNF can be transformed into an example for
the conjunctions problem under variables yu,v,w

A hypothesis h′ for conjunctions can be transformed back easily.
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3) axis parallel rectangles is Efficiently
PAC-Learnable

The algorithm is like in the consistency model

Error is the area-difference between target rectangle c and hypothesis
rectangle h

“Area” is measured in density according to D
Hence, even with area ε, the probability that all m samples misses the
area is (1− ε)m

Only need m ≥ (1/ε) ln(1/δ)
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4) k-term DNF is Not Efficiently PAC-Learnable
(k ≥ 2)

Pitt and Valiant in
Leonard Pitt and Leslie G. Valiant. Computational limitations on learning

from examples. Journal of the ACM, 35(4):965-984, October 1988

showed that k-term DNF is not efficiently learnable unless
RP = NP
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The PAC Model: Informal Revision

Troubling: k-term DNF ⊆ k-CNF but the latter is learnable and
the former is not.

Representation matters a great deal!

We should allow the algorithm to output a hypothesis represented
differently from C
Particular, let H be a hypothesis class which is “more expressive”
than C
(“more expressive” = every c can be represented by some h)

C is PAC-learnable using H if blah blah blah and allow output h ∈ H
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The PAC Model: Final Revision

Definition (PAC Learnability)

A concept class C is PAC learnable using a hypothesis class H if there’s an
algorithm A (could be randomized) satisfying the following:

for any 0 < ε < 1/2, 0 < δ < 1/2
for any distribution D on Ω
A draws m examples from D, along with their labels

A outputs a hypothesis h ∈ H such that

Prob [errD(h) ≤ ε] ≥ 1− δ

If A also runs in time poly(1/ε, 1/δ, n, size(c)), then C is efficiently PAC
learnable.

We also want each h ∈ H to be efficiently evaluatable. This is implicit!
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Let’s Summarize

1-term DNF (i.e. conjunctions) is efficiently PAC-learnable
using 1-term DNF

k-term DNF is not efficiently PAC-learnable using k-term DNF,
for any k ≥ 2
k-term DNF is efficiently PAC-learnable using k-CNF, for any
k ≥ 2
k-CNF is efficiently PAC-learnable using k-CNF, for any k ≥ 2
axis parallel rectangles (natural representation) is efficiently
PAC-learnable
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More Hardness Results

Blum and Rivest (Neural Networks, 1989): 3-node neural
networks is NP-hard to PAC-learn

Alekhnovich et al. (FOCS 04): some classes of Boolean functions and
decision trees are hard to PAC-learn

Feldman (STOC 06): DNF is not learnable, even with membership
querying

Guruswami and Raghavendra (FOCS 06): learning half-spaces
(perceptron) with noise is hard

Main reason: we made no assumption about D, hence these are worst case
results.
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Contrast with the Baysian View

It should not be surprising that some concept classes are not learnable,
because computational learning theory, like other areas taking the
computational viewpoint, are based on worst-case complexity.

The Baysian viewpoint imposes a prior distribution over the concept
class
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