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Rademacher complexity and the uniform convergence theorem

1 Rademacher complexity

We have discussed the Vapnik-Chervonenkis uniform convergence theorem. The theorem bounds the gen-
eralization error of an arbitrary hypothesis in a class A using the empirical error, the VC dimension, and
the number of i.i.d. samples. The VC dimension is a measure of a function class’ “complexity” or “expres-
siveness.” In this lecture, we define and analyze a related complexity measure for function classes called
the Rademacher complexity. Then, we bound the generalization error using the empirical error and the
Rademacher complexity. We shall see that the Vapnik-Chervonenkis uniform convergence theorem is a con-
sequence of the bound using Rademacher complexity. The double sampling trick is applied again to prove
the new bound.

Let G be a family of functions from some domain Z to an interval [a, b] on the real line. (In our context,
often Z = Q x {0,1} or Z = Q x {—1,1}.) Let D be a probability distribution on Z. The distribution
D is implicit in most of the discussions in this lecture note and thus will be omitted whenever there is no
confusion.

Definition 1.1 (Empirical Rademacher complexity). Let .S be a set of m points from Z. Then, the empirical
Rademacher complexity of G (given S) is defined to be

Rs(G) =E sup—ZaZg (z) | S=A{z1,-.-,2m}

geg M
where 0 = (01,...,0p,) is a vector of independent Rademacher variables, i.e. o; = £1 with probability
1/2.
Intuitively, suppose G is a class of binary classifiers (from €2 to {—1, 1}), then the expression

sup z 7i9(2)

geg m

measures the performance of the best classifier in G with respect to the labels ¢; on z;. Thus, overall, 7@5(9 )
is the average performance of the best classifier in G over all random labellings of the points in S. If G
shatters S, then its empirical Rademacher complexity is 1.

Definition 1.2 (Rademacher complexity). The Rademacher complexity of G is the expected empirical Rademacher
complexity of G over the random choices of S:

Rm(@) = E [Rs(@))



We first make a few observations about the Rademacher complexity of a class of binary classifiers and
their corresponding 01-loss functions. Let  be a class of binary classifiers from 2 to {—1,1}. (From now
on we will use the range {—1, 1} instead of {0, 1} for technical convenience.) Let Z = Q x {—1,1}, and
D be a (unknown) distribution on Z. Elements of Z have the form (x,y) where x € Qandy € {—1,1}
which is referred to as a label of x.

Now, for every hypothesis h € H, define the loss function gj, : Z — [0,1] for h by gn(x,y) = 1p(x)£y-
Let G be the class of loss functions for H.

Exercise 1. Prove the following four relationships.

aiig(h) — ;igh(zi), forall h € H )
err(h) = ZDNE;[:gl;l(z)] forall h € H @)
Rs(G) = SRs(H) G
R(G) = SR(H). 4)

The objective is to prove the following uniform convergence theorem using Rademacher complexity
instead of the VC dimension of H.

Theorem 1.3. Let H be a class of functions from 2 to {—1,1}. Let D be an arbitrary distribution on
Z =Q x {-1,1}. Then, for any 6 > 0,

_ In(1/6)
— < ——= | >1-
s{ir%]% }slgg{err(h) err(h)} < Rp(H) + 5 ] >1-9,
and
_ ~ In(2/4)
— < ——= | >1-0.
SPNrgIZL lsgg{err(h) err(h)} < Rs(H)+ 3 5 ] >1-9

From Exercise 1, it follows that the Lemma stated in the next section implies the above theorem. Basi-
cally, we convert a statement about the function class 7{ into a statement about its loss function class G. We
will prove the lemma instead.

2 The main lemma

Lemma 2.1 (Koltchinskii-Panchenko, 2002 [?]). Let G be a class of functions from Z to [0, 1], and D be an
arbitrary distribution on Z. For notational convenience, we write

Elg] = E [9(2)]
z2€D
IES[Q] = % Zg(zi), where S = {z1,...,z2m }.
i=1



Then, for any 6 > 0,

N In(1/6
&b, [ZES{E[Q] ~Bslal} < 2Rn(G) + ) L ] >1-4, 5)
and
Prob |sup{Elg] — Bslg]} < 2Rs(G) + 3 ln(z/‘”] >1-4 ©)
SNDm geg m

Proof. The proof of this lemma is similar to the proof of the Vapnik-Chervonenkis uniform convergence
theorem. One of the main components of the proof is the double sampling trick. The other component is
the swapping each pair of “normal” sample and “ghost” sample. We prove (5) first. Intuitively, the proof
contains two main steps.

1. Define ®(S) = sup,eg{E[g] — Es[g]}. Then, ®(S) is a random variable (over the random choices of
S). We will show that
E[2(S)] < 2R (G).

2. Then, to show (5) we show that ®(,S) cannot be much more than its expected value with high proba-
bility using a concentration inequality called the McDiarmid inequality. The statement and a proof of
McDiarmid inequality can be found in Section 4.

Let us start with the first step. We will take m ghost samples S" = {z],..., 2], }. Also,leto = (01,...,0m)



denote m independent Rademacher variables.

E[®(S)] = E |sup{Elg] - Eslg]}
= E [sup{ E [Es[g]] — E [E
c |sup {E [Eols)] - £ S[QH}]
~ & |sup { i [Bo] - Bl }]
S |gcg |9
(Jensen ineq., sup is convex) < E sup {Egs/[g] — Eslg]} ]
S ’ 9€g
= E |sup{Es[g] — Eslg]}
5,5 | geg
1 m
= E su — Z’- — Zi
E geg{m;@( AR m}]
just swapping 2., z;) = su —g(z
(] pping z;, 2i) SS’aLeIg){ Zaz z))}]
1 m
< sup ag +supq — —0i9(zi
1 m
= su o + E [sup{ — 0:9(2;
& prfeEoe } 2 lp{a o]
= 2Rm(g).
We next show step 2. If we change S = (21, ..., zi,) by one point, say we replace z,, by 2/, then
1 m
®(S5) =supq Elg] — — > g(2)
9€9 { m ; '

can only change by at most 1/m. Hence, by McDiarmid’s inequality

Prob[®(S) — 2R, (G) > €] < Prob[®(S) — E[®(S)] > ] < e 2.

For e=2"™ < §, we can set € = A/ 1n(1/5) . This completes the proof of (5).

To prove (6), we apply (5) and Mcharmld s inequality one more time on the function ﬁs(g ). We leave
this as an exercise. 0

Exercise 2. Prove (6) by applying (5) and McDiarmid’s inequality one more time on the function ﬁs(g ).

3 Bounding Rademacher complexity by VC-dimension

The following bound shows that Theorem 1.3 implies Vapnik-Chervonenkis uniform convergence theorem.

4



Theorem 3.1. Let H be a class of functions from Q to {—1,1}. Let S be m arbitrary points from € x
{—1,1}. Then,

2log [TI3(9)]
N

Rs(H) <

In particular, if d = VCD(H) then we have

7QS(H)S\/21og|HH(m)|S\/2dlog(me/d)

m m

Y

and

Ron() = B[R ()] < 1 212 In(m] _  [2dlog(me/d)

m m

The theorem follows almost immediately from a lemma by Massart [?]. Using the notion of Gaussian
complexity, Bartlett and Mendelson [?] proved that Rg(#) = O(1/d/m). Hence, the bound can even be
better then what is stated in Theorem 3.1.

Lemma 3.2 (Massart [?]). Let A C R™ be a finite set. Let L = maxxe 4 ||x||2. Then,

sup — Z oz | < 7»210@14\.

‘7 xeAm m

Proof. First of all, there is 1/m on both sides which means we can just ignore the factor 1/m. We use
Bernstein’s trick. Let ¢ > 0 be any real number. Then, using the fact that the exponential function is convex,

Jensen’s inequality gives us
exp (t E )
g

exp | t-su ;T
supexp | t- O;T;
XEA ( Z ) ]
(Union bound and linearity of expectation) < Z IE exp (t Z azxz>]
xcA 7
= Z HE exp (to;x;)]

x€Ai=1

sup E 0%

xGA

(Jensenineq.) < E

g

= E

o

The above expression should look familiar to us. We used to deal with similar expressions in the Tail/Concentration
inequalities part of this course. However, the random variables were in [0, 1]. This time, o; ranges from —1
to 1. From Hoeffding’s lemma (Lemma 4.1), we get

E[exp(to;z;)] < exp(t?z?/2), forall i € [m).



Consequently, for any ¢ > 0 we have

exp (t E !supzamb <> JIexpx?/2) = > exp(|Ix|3t%/2) < |A] exp(L*#*/2).

7 |xeA x€Ai=1 xX€EA

Now, taking In on both sides we obtain

ln|A\
: [bupzazle < + 7

X€A
To minimize the upper bound, we choose t = 7V21LH|A| which completes the proof of the lemma. O

Exercise 3. Prove Theorem 3.1 from Lemma 3.2.

Exercise 4 (Lower Bound). TBD.

4 Hoeffding’s lemma and McDiarmid’s inequality

Lemma 4.1 (Hoeffding’s lemma ). Let X € [a, b] be a random variable with E[X] = 0. Then, for all s > 0

E[esX] < 632(b—a)2/8.

Proof. Note that E[X] = 0 implies < 0 and b > 0. The function e*¥ is convex in X . Hence,

esX< b_Xesa+X_aesb
~b—a b—a

Taking expectation on both sides, we get

b a
sX] < sa sb_
Ele**] < T .

To simplify notations, define p = ;=% > 0 and ¢t = s(b — a). We have

b sa a sb ) _ Yy .
ln<b_ae ot )— pt +1In(1 —p+ pe') =: f(1).

(Now, this form should look really familiar!) Then,

"ty = =—p+ P
F® P @ —pe
_ (A —p)pe’
(1 =p) + pe')?
It follows that f(0) = f’(0) = 0, and f”(¢) < 1/4,Vt. The second order Taylor’s expansion of f(¢) above
0 implies, for any ¢ > 0, there is some ¢ € [0, ¢] such that

Fr(t)

F(0) = 1) + 70 + 5 70) < 25



Putting everything together, we obtain the desired inequality:
E[GSX] < 6f(t) < et2/8 — 632(127(1)2/8.
U

McDiarmid [?] proved the following inequality. We can prove it by applying Azuma-Hoeffding’s in-
equality to a Doob martingale. Here we are taking a more direct approach.

Theorem 4.2 (McDiarmid’s inequality). Let X1, ..., X;, be m independent random variables on the do-
main X. Let f : X™ — R be a function which maps X1, ..., X, to a real number. Suppose changing a
single coordinate does not change f by much. Specifically, for every i € [m], 1, ..., Ty, z; € X, we have

If(x1, .. @iy ) — f(21, . @ o) < @)

where the c; are some given constants. Then, for any € > 0,

—2¢?
P}’Ob[f — ]E[f] Z 6] S exp <ZWLC2> .
=1 "1

Sketch. The proof conceptually is not hard, but it might be confusing if you are not used to conditional
expectations. The proof has the following steps.

1. Let X? denote the sequence of r.v. X1,...,X;

2. Define Z; = E[f(X) | X?]. (Technically, the sequence Z; forms a Doob martingale but we do not
need to know martingale theory here.)

3. Note that Zy = E[f] and Z,,, = f
4. Consider the random variable Z;, — Z;._1

5. Note that E[Z — Z_1 | X*¥1] =0

6. Define
By = sw{E[f | X", Xy = ) ELF | X4}
Ap = inf {E[f | X571 Xy = 4] — Ef | X’H]}
7. Then,
Ay < Zy—Zp 1< By
By —Ar < o

8. Thus, by Hoeffding’s lemma for any ¢ > 0, and any values assigned to X*~1,

E[et(Zk—Zk_l) |Xk—1] < €t2(Bk—Ak)2/8 < et%i/s'



9. Finally, we apply Bernstein’s trick and LIE again

Prob[f — E[f] > ¢] = Prob [eﬂfﬂﬁm) > eﬂ
(Markov) < e E _et(f—E[f])]}
(Telescoping) = e “E :etzzl—l(zkzkl)]
(LIE) = ¢ E E [etzz;(zk—zm | Xm_ln

— R 'etzgzl(zk_zk_l)E |:€t(Zm—Zm_1) | Xm—l”

IN

m—1
eteeti /8 [et POy (zkfzk,l)]

IN

IN

exp <—t6 + (£2/8) i ci)

k=1

10. Finally, we pick ¢ to minimize —te + (£2/8) >_jL, ¢4

- 4e
Dhe1 6
to finish the proof.
O

More details. The following spells out some of the details in the proof. We number the steps as in the
sketch.

1. This step is just a definition

2. What do we mean by Z; = E[f(X) | X%]? Let’s start with Zg. In this case, X is empty and thus
Zy = E[f]. Next,
Zy = E[f(X) | X'] = E[f(X) | X1].
This is a random variable which is a function of X;. More concretely, for any x; in the domain of
X1 we have Z1(z1) = E[f(X) | X1 = x1]. So, the expectation is over the conditional distribution

of Xo, ..., X,, given X;. However, since the X; are all independent, this is simply an expectation of
f(X) over Xo,...,X,, with X; fixed to be 1. Similarly,

Zy =E[f(X) | X" = E[f(X) | X1, ..., X4]

is a random variable which is a function of X, ..., X}, and the expectation is over Xy y1,..., Xm
given Xq,..., Xj.

3. This is obvious.

4. The random variable Z;, — Zj,_q is a function of X1, ..., X}.



5. Now, suppose we fixed X; = z; for i € [k —1]. Then, Z;_ is a number, no longer a random variable;
while Z;. is a random variable which is a function of X;. Hence,
ElZk — Zp1 | XM = E[Z | XM - E[Z | XFY
= E[E[f | XM X] [ XM - Rl | XM
(LIE) = E[f|X""-E[f[X*]
= 0.
(See section 5 for LIE.)

6. Note that Ay and By are actually functions of X1,..., Xj_1. So they are themselves random vari-
ables.

7. We claim that the inequalities hold for any values of X1, ..., X;_1. The factthat Ay < Zp, — Zp_1 <
By, is obvious. We check the second inequality. Fix arbitrary values of Xy, ..., Xg_1.

Bi—Ar = sup{E[f | X}, X; =]~ EIf | XN} —inf {BIf | X} X0 = o] - BIF | XA
— sup {EIf | X1, X, = a] - BIf | X X =y}
$7y
Now, fix an arbitrary pair x, 3 (and still fix arbitrary values for X*~1). Let f;(X, x) denote f(X) with

the first &k — 1 variables fixed to X*~1 and the kth variable fixed to be x. Then, because the variables
Xk+1, ..., X are independent from the variables X7, ..., X, we have

Bk_Ak = sup E [fk’(Xam) _fk(va)] < ¢
zy | Xet+15Xm

<cg

8. Self-evident
9. Self-evident
O

Exercise 5. In the above proof, we crucially made use of the fact that the X; are independent in step 7. If
the X; were not independent we might not have been able to combine the expectations into one because the
conditional distribution of the Xy 1, ..., X, given X}, = z and X, = y might be different. Using this idea,
find an example of non-independent random variables X, a function f satisfying (7), but By, — A > ¢, for
some k.

Exercise 6 (Hoeffding’s inequality from McDiarmid’s inequality). Prove the following inequality (Hoeffd-
ing’s inequality) using McDiarmid’s inequality. For i € [m], let X; € [a;, b;] be independent random
variables. Let S = L 3™ X;. Show that

—2¢2m

2
Prob[S — E[S] > €] < exp <W> :



5 Law of iterated expectation (LIE)

We have alluded to the following rule (the conditional expectation formula) a few times. Economists like to
call this rule a LIE. Let X, Y be any random variables, then

E[X] =E[E[X | Y]]

Let us make the expectations more precise:

E [X|Y]
X[y

EX]=E
X Y

The outer expectation is over the distribution of Y. The expression E x|y [X | Y] is a random variable which
is a function of Y, and the expectation is over the conditional distribution of X given Y. To technically
understand LIE, let us prove it for both continuous distributions and discrete distributions. The two cases
are basically identical.

In the discrete case, we can derive LIE as follows.

EEX |Y]] = Ig[XE (X [Y]
v
= D (E[X|Y =y))Prob[Y =y
= Z (Zx ‘Prob[X =z |Y = y]) ProblY” = y]

= ZZx-Prob[X:a:/\YZy]
Ty
= Y x) Prob[Y =y | X = 2| Prob[X = 1
= ZxProb[X:x]ZPrOb[Y:ZHX:‘T]
T Y

= ZxProb[X = x]

= E[X]

10



In the continuous case, we have

EEX Y] = E [X]Y]

XY
()

(X |Y =ylfy(y)dy
ooX\Y

([ atvtelitas) st

/ zfxy (zly) fy (y)dzdy

v
.
I
/.

= /Ooa: (/OO fxy(:c!y)fy(y)dy> dx
P e
[ ([ mxwinsstaan ) as
| st ( | frixtolord )

= /a:fx(x)dx

= E[X]

Exercise 7. Show that for any continuous variables X, Y, Z we have
EEX |Y,Z]| Z] =E[X | Z].

(This is why the rule is called the law of “iterated” expectation.)
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