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Rademacher complexity and the uniform convergence theorem

1 Rademacher complexity

We have discussed the Vapnik-Chervonenkis uniform convergence theorem. The theorem bounds the gen-
eralization error of an arbitrary hypothesis in a class H using the empirical error, the VC dimension, and
the number of i.i.d. samples. The VC dimension is a measure of a function class’ “complexity” or “expres-
siveness.” In this lecture, we define and analyze a related complexity measure for function classes called
the Rademacher complexity. Then, we bound the generalization error using the empirical error and the
Rademacher complexity. We shall see that the Vapnik-Chervonenkis uniform convergence theorem is a con-
sequence of the bound using Rademacher complexity. The double sampling trick is applied again to prove
the new bound.

Let G be a family of functions from some domain Z to an interval [a, b] on the real line. (In our context,
often Z = Ω × {0, 1} or Z = Ω × {−1, 1}.) Let D be a probability distribution on Z . The distribution
D is implicit in most of the discussions in this lecture note and thus will be omitted whenever there is no
confusion.

Definition 1.1 (Empirical Rademacher complexity). Let S be a set ofm points from Z . Then, the empirical
Rademacher complexity of G (given S) is defined to be

R̂S(G) = E
σ

[
sup
g∈G

1

m

m∑
i=1

σig(zi) | S = {z1, . . . , zm}

]
,

where σ = (σ1, . . . , σm) is a vector of independent Rademacher variables, i.e. σi = ±1 with probability
1/2.

Intuitively, suppose G is a class of binary classifiers (from Ω to {−1, 1}), then the expression

sup
g∈G

1

m

m∑
i=1

σig(zi)

measures the performance of the best classifier in G with respect to the labels σi on zi. Thus, overall, R̂S(G)
is the average performance of the best classifier in G over all random labellings of the points in S. If G
shatters S, then its empirical Rademacher complexity is 1.

Definition 1.2 (Rademacher complexity). The Rademacher complexity of G is the expected empirical Rademacher
complexity of G over the random choices of S:

Rm(G) = E
S∼Dm

[R̂S(G)].
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We first make a few observations about the Rademacher complexity of a class of binary classifiers and
their corresponding 01-loss functions. Let H be a class of binary classifiers from Ω to {−1, 1}. (From now
on we will use the range {−1, 1} instead of {0, 1} for technical convenience.) Let Z = Ω × {−1, 1}, and
D be a (unknown) distribution on Z . Elements of Z have the form (x, y) where x ∈ Ω and y ∈ {−1, 1}
which is referred to as a label of x.

Now, for every hypothesis h ∈ H, define the loss function gh : Z → [0, 1] for h by gh(x, y) = 1h(x)6=y.
Let G be the class of loss functions forH.

Exercise 1. Prove the following four relationships.

êrrS(h) =
1

m

m∑
i=1

gh(zi), for all h ∈ H (1)

err(h) = E
z∼D

[gh(z)] for all h ∈ H (2)

R̂S(G) =
1

2
R̂S(H) (3)

R(G) =
1

2
R(H). (4)

The objective is to prove the following uniform convergence theorem using Rademacher complexity
instead of the VC dimension ofH.

Theorem 1.3. Let H be a class of functions from Ω to {−1, 1}. Let D be an arbitrary distribution on
Z = Ω× {−1, 1}. Then, for any δ > 0,

Prob
S∼Dm

[
sup
h∈H
{err(h)− êrr(h)} ≤ Rm(H) +

√
ln(1/δ)

2m

]
≥ 1− δ,

and

Prob
S∼Dm

[
sup
h∈H
{err(h)− êrr(h)} ≤ R̂S(H) + 3

√
ln(2/δ)

2m

]
≥ 1− δ.

From Exercise 1, it follows that the Lemma stated in the next section implies the above theorem. Basi-
cally, we convert a statement about the function classH into a statement about its loss function class G. We
will prove the lemma instead.

2 The main lemma

Lemma 2.1 (Koltchinskii-Panchenko, 2002 [?]). Let G be a class of functions from Z to [0, 1], and D be an
arbitrary distribution on Z . For notational convenience, we write

E[g] = E
z∈D

[g(z)]

ÊS [g] =
1

m

m∑
i=1

g(zi), where S = {z1, . . . , zm}.
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Then, for any δ > 0,

Prob
S∼Dm

[
sup
g∈G
{E[g]− ÊS [g]} ≤ 2Rm(G) +

√
ln(1/δ)

2m

]
≥ 1− δ, (5)

and

Prob
S∼Dm

[
sup
g∈G
{E[g]− ÊS [g]} ≤ 2R̂S(G) + 3

√
ln(2/δ)

2m

]
≥ 1− δ. (6)

Proof. The proof of this lemma is similar to the proof of the Vapnik-Chervonenkis uniform convergence
theorem. One of the main components of the proof is the double sampling trick. The other component is
the swapping each pair of “normal” sample and “ghost” sample. We prove (5) first. Intuitively, the proof
contains two main steps.

1. Define Φ(S) = supg∈G{E[g]− ÊS [g]}. Then, Φ(S) is a random variable (over the random choices of
S). We will show that

E
S

[Φ(S)] ≤ 2Rm(G).

2. Then, to show (5) we show that Φ(S) cannot be much more than its expected value with high proba-
bility using a concentration inequality called the McDiarmid inequality. The statement and a proof of
McDiarmid inequality can be found in Section 4.

Let us start with the first step. We will takem ghost samples S′ = {z′1, . . . , z′m}. Also, let σ = (σ1, . . . , σm)
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denote m independent Rademacher variables.

E
S

[Φ(S)] = E
S

[
sup
g∈G

{
E[g]− ÊS [g]

}]

= E
S

[
sup
g∈G

{
E
S′

[
ÊS′ [g]

]
− E
S′

[
ÊS [g]

]}]

= E
S

[
sup
g∈G

{
E
S′

[
ÊS′ [g]]− ÊS [g]

]}]

(Jensen ineq., sup is convex) ≤ E
S

[
E
S′

[
sup
g∈G

{
ÊS′ [g]− ÊS [g]

}]]

= E
S,S′

[
sup
g∈G

{
ÊS′ [g]− ÊS [g]

}]

= E
S,S′

[
sup
g∈G

{
1

m

m∑
i=1

(g(z′i)− g(zi))

}]

(just swapping z′i, zi) = E
S,S′,σ

[
sup
g∈G

{
1

m

m∑
i=1

σi(g(z′i)− g(zi))

}]

≤ E
S,S′,σ

[
sup
g∈G

{
1

m

m∑
i=1

σig(z′i)

}
+ sup

g∈G

{
1

m

m∑
i=1

−σig(zi))

}]

= E
S′,σ

[
sup
g∈G

{
1

m

m∑
i=1

σig(z′i)

}]
+ E
S,σ

[
sup
g∈G

{
1

m

m∑
i=1

σig(zi))

}]
= 2Rm(G).

We next show step 2. If we change S = (z1, . . . , zm) by one point, say we replace zm by z′m, then

Φ(S) = sup
g∈G

{
E[g]− 1

m

m∑
i=1

g(zi)

}

can only change by at most 1/m. Hence, by McDiarmid’s inequality

Prob[Φ(S)− 2Rm(G) ≥ ε] ≤ Prob[Φ(S)− E[Φ(S)] ≥ ε] ≤ e−2ε2m.

For e−2ε
2m ≤ δ, we can set ε =

√
ln(1/δ)
2m . This completes the proof of (5).

To prove (6), we apply (5) and McDiarmid’s inequality one more time on the function R̂S(G). We leave
this as an exercise.

Exercise 2. Prove (6) by applying (5) and McDiarmid’s inequality one more time on the function R̂S(G).

3 Bounding Rademacher complexity by VC-dimension

The following bound shows that Theorem 1.3 implies Vapnik-Chervonenkis uniform convergence theorem.
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Theorem 3.1. Let H be a class of functions from Ω to {−1, 1}. Let S be m arbitrary points from Ω ×
{−1, 1}. Then,

R̂S(H) ≤
√

2 log |ΠH(S)|
m

.

In particular, if d = VCD(H) then we have

R̂S(H) ≤
√

2 log |ΠH(m)|
m

≤
√

2d log(me/d)

m
,

and

Rm(H) = E
S

[R̂S(H)] ≤
√

2 log |ΠH(m)|
m

≤
√

2d log(me/d)

m
.

The theorem follows almost immediately from a lemma by Massart [?]. Using the notion of Gaussian
complexity, Bartlett and Mendelson [?] proved that R̂S(H) = O(

√
d/m). Hence, the bound can even be

better then what is stated in Theorem 3.1.

Lemma 3.2 (Massart [?]). Let A ⊂ Rm be a finite set. Let L = maxx∈A ‖x‖2. Then,

E
σ

[
sup
x∈A

1

m

m∑
i=1

σixi

]
≤
L
√

2 log |A|
m

.

Proof. First of all, there is 1/m on both sides which means we can just ignore the factor 1/m. We use
Bernstein’s trick. Let t > 0 be any real number. Then, using the fact that the exponential function is convex,
Jensen’s inequality gives us

exp

(
t · E

σ

[
sup
x∈A

m∑
i=1

σixi

])

(Jensen ineq.) ≤ E
σ

[
exp

(
t · sup

x∈A

m∑
i=1

σixi

)]

= E
σ

[
sup
x∈A

exp

(
t ·

m∑
i=1

σixi

)]

(Union bound and linearity of expectation) ≤
∑
x∈A

E
σ

[
exp

(
t

m∑
i=1

σixi

)]

=
∑
x∈A

m∏
i=1

E
σ

[exp (tσixi)]

The above expression should look familiar to us. We used to deal with similar expressions in the Tail/Concentration
inequalities part of this course. However, the random variables were in [0, 1]. This time, σi ranges from −1
to 1. From Hoeffding’s lemma (Lemma 4.1), we get

E[exp(tσixi)] ≤ exp(t2x2i /2), for all i ∈ [m].
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Consequently, for any t > 0 we have

exp

(
t · E

σ

[
sup
x∈A

m∑
i=1

σixi

])
≤
∑
x∈A

m∏
i=1

exp(t2x2i /2) =
∑
x∈A

exp(‖x‖22t2/2) ≤ |A| exp(L2t2/2).

Now, taking ln on both sides we obtain

E
σ

[
sup
x∈A

m∑
i=1

σixi

]
≤ ln |A|

t
+
L2t

2
.

To minimize the upper bound, we choose t =

√
2 ln |A|
L which completes the proof of the lemma.

Exercise 3. Prove Theorem 3.1 from Lemma 3.2.

Exercise 4 (Lower Bound). TBD.

4 Hoeffding’s lemma and McDiarmid’s inequality

Lemma 4.1 (Hoeffding’s lemma ). Let X ∈ [a, b] be a random variable with E[X] = 0. Then, for all s > 0

E[esX ] ≤ es2(b−a)2/8.

Proof. Note that E[X] = 0 implies a ≤ 0 and b ≥ 0. The function esX is convex in X . Hence,

esX ≤ b−X
b− a

esa +
X − a
b− a

esb.

Taking expectation on both sides, we get

E[esX ] ≤ b

b− a
esa − a

b− a
esb.

To simplify notations, define p = −a
b−a ≥ 0 and t = s(b− a). We have

ln

(
b

b− a
esa − a

b− a
esb
)

= −pt+ ln(1− p+ pet) =: f(t).

(Now, this form should look really familiar!) Then,

f ′(t) = = −p+
p

p+ (1− p)e−t

f ′′(t) = =
(1− p)pet

((1− p) + pet)2
.

It follows that f(0) = f ′(0) = 0, and f ′′(t) ≤ 1/4, ∀t. The second order Taylor’s expansion of f(t) above
0 implies, for any t > 0, there is some ζ ∈ [0, t] such that

f(t) = f(0) + tf ′(0) +
t2

2
f ′′(ζ) ≤ t2/8.
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Putting everything together, we obtain the desired inequality:

E[esX ] ≤ ef(t) ≤ et2/8 = es
2(b−a)2/8.

McDiarmid [?] proved the following inequality. We can prove it by applying Azuma-Hoeffding’s in-
equality to a Doob martingale. Here we are taking a more direct approach.

Theorem 4.2 (McDiarmid’s inequality). Let X1, . . . , Xm be m independent random variables on the do-
main X . Let f : X n → R be a function which maps X1, . . . , Xm to a real number. Suppose changing a
single coordinate does not change f by much. Specifically, for every i ∈ [m], x1, . . . , xm, x′i ∈ X , we have

|f(x1, . . . , xi, . . . , xm)− f(x1, . . . , x
′
i, . . . , xm)| ≤ ci (7)

where the ci are some given constants. Then, for any ε > 0,

Prob[f − E[f ] ≥ ε] ≤ exp

(
−2ε2∑m
i=1 c

2
i

)
.

Sketch. The proof conceptually is not hard, but it might be confusing if you are not used to conditional
expectations. The proof has the following steps.

1. Let Xi denote the sequence of r.v. X1, . . . , Xi

2. Define Zi = E[f(X) | Xi]. (Technically, the sequence Zi forms a Doob martingale but we do not
need to know martingale theory here.)

3. Note that Z0 = E[f ] and Zm = f

4. Consider the random variable Zk − Zk−1

5. Note that E[Zk − Zk−1 |Xk−1] = 0

6. Define

Bk = sup
xk

{
E[f |Xk−1, Xk = xk]− E[f |Xk−1]

}
Ak = inf

xk

{
E[f |Xk−1, Xk = xk]− E[f |Xk−1]

}

7. Then,

Ak ≤ Zk − Zk−1 ≤ Bk
Bk −Ak ≤ ck

8. Thus, by Hoeffding’s lemma for any t > 0, and any values assigned to Xk−1,

E[et(Zk−Zk−1) |Xk−1] ≤ et2(Bk−Ak)
2/8 ≤ et2c2k/8.
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9. Finally, we apply Bernstein’s trick and LIE again

Prob[f − E[f ] ≥ ε] = Prob
[
et(f−E[f ]) ≥ etε

]
(Markov) ≤ e−tε E

[
et(f−E[f ])]

]
(Telescoping) = e−tε E

[
et

∑m
k=1(Zk−Zk−1)

]
(LIE) = e−tε E

[
E
[
et

∑m
k=1(Zk−Zk−1) |Xm−1

]]
= e−tε E

[
et

∑m−1
k=1 (Zk−Zk−1) E

[
et(Zm−Zm−1) |Xm−1

]]
≤ e−tεet

2c2m/8 E
[
et

∑m−1
k=1 (Zk−Zk−1)

]
≤ · · ·

≤ exp

(
−tε+ (t2/8)

m∑
k=1

c2k

)

10. Finally, we pick t to minimize −tε+ (t2/8)
∑m

k=1 c
2
k

t =
4ε∑m
k=1 c

2
k

to finish the proof.

More details. The following spells out some of the details in the proof. We number the steps as in the
sketch.

1. This step is just a definition

2. What do we mean by Zi = E[f(X) | Xi]? Let’s start with Z0. In this case, X0 is empty and thus
Z0 = E[f ]. Next,

Z1 = E[f(X) |X1] = E[f(X) | X1].

This is a random variable which is a function of X1. More concretely, for any x1 in the domain of
X1 we have Z1(x1) = E[f(X) | X1 = x1]. So, the expectation is over the conditional distribution
of X2, . . . , Xm given X1. However, since the Xi are all independent, this is simply an expectation of
f(X) over X2, . . . , Xm with X1 fixed to be x1. Similarly,

Zk = E[f(X) |Xk] = E[f(X) | X1, . . . , Xk]

is a random variable which is a function of X1, . . . , Xk, and the expectation is over Xk+1, . . . , Xm

given X1, . . . , Xk.

3. This is obvious.

4. The random variable Zk − Zk−1 is a function of X1, . . . , Xk.

8



5. Now, suppose we fixedXi = xi for i ∈ [k−1]. Then, Zk−1 is a number, no longer a random variable;
while Zk is a random variable which is a function of Xk. Hence,

E[Zk − Zk−1 |Xk−1] = E[Zk |Xk−1]− E[Zk−1 |Xk−1]

= E[E[f |Xk−1, Xk] |Xk−1]− E[f |Xk−1]

(LIE) = E[f |Xk−1]− E[f |Xk−1]

= 0.

(See section 5 for LIE.)

6. Note that Ak and Bk are actually functions of X1, . . . , Xk−1. So they are themselves random vari-
ables.

7. We claim that the inequalities hold for any values of X1, . . . , Xk−1. The fact that Ak ≤ Zk−Zk−1 ≤
Bk is obvious. We check the second inequality. Fix arbitrary values of X1, . . . , Xk−1.

Bk −Ak = sup
x

{
E[f |Xk−1, Xk = x]− E[f |Xk−1]

}
− inf

y

{
E[f |Xk−1, Xk = y]− E[f |Xk−1]

}
= sup

x,y

{
E[f |Xk−1, Xk = x]− E[f |Xk−1, Xk = y]

}
Now, fix an arbitrary pair x, y (and still fix arbitrary values for Xk−1). Let fk(X, x) denote f(X) with
the first k − 1 variables fixed to Xk−1 and the kth variable fixed to be x. Then, because the variables
Xk+1, . . . , Xm are independent from the variables X1, . . . , Xk, we have

Bk −Ak = sup
x,y

 E
Xk+1,...,Xm

[fk(X, x)− fk(X, y)︸ ︷︷ ︸
≤ck

]

 ≤ ck.
8. Self-evident

9. Self-evident

Exercise 5. In the above proof, we crucially made use of the fact that the Xi are independent in step 7. If
the Xi were not independent we might not have been able to combine the expectations into one because the
conditional distribution of theXk+1, . . . , Xm givenXk = x andXk = y might be different. Using this idea,
find an example of non-independent random variables Xi, a function f satisfying (7), but Bk −Ak > ck for
some k.

Exercise 6 (Hoeffding’s inequality from McDiarmid’s inequality). Prove the following inequality (Hoeffd-
ing’s inequality) using McDiarmid’s inequality. For i ∈ [m], let Xi ∈ [ai, bi] be independent random
variables. Let S = 1

m

∑m
i=1Xi. Show that

Prob[S − E[S] ≥ ε] ≤ exp

(
−2ε2m2∑m
i=1(bi − ai)2

)
.
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5 Law of iterated expectation (LIE)

We have alluded to the following rule (the conditional expectation formula) a few times. Economists like to
call this rule a LIE. Let X,Y be any random variables, then

E[X] = E[E[X | Y ]].

Let us make the expectations more precise:

E
X

[X] = E
Y

[
E
X|Y

[X | Y ]

]
.

The outer expectation is over the distribution of Y . The expression EX|Y [X | Y ] is a random variable which
is a function of Y , and the expectation is over the conditional distribution of X given Y . To technically
understand LIE, let us prove it for both continuous distributions and discrete distributions. The two cases
are basically identical.

In the discrete case, we can derive LIE as follows.

E[E[X | Y ]] = E
Y

[
E
X|Y

[X | Y ]

]
=

∑
y

(E[X | Y = y]) Prob[Y = y]

=
∑
y

(∑
x

x · Prob[X = x | Y = y]

)
Prob[Y = y]

=
∑
x

∑
y

x · Prob[X = x ∧ Y = y]

=
∑
x

x
∑
y

Prob[Y = y | X = x] Prob[X = x]

=
∑
x

xProb[X = x]
∑
y

Prob[Y = y | X = x]

=
∑
x

xProb[X = x]

= E[X]
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In the continuous case, we have

E[E[X | Y ]] = E
Y

[
E
X|Y

[X | Y ]

]

=

∫ ∞
−∞

E
X|Y

[X | Y = y]fY (y)dy

=

∫ ∞
−∞

(∫ ∞
−∞

xfX|Y (x|y)dx

)
fY (y)dy

=

∫ ∞
−∞

∫ ∞
−∞

xfX|Y (x|y)fY (y)dxdy

=

∫ ∞
−∞

x

(∫ ∞
−∞

fX|Y (x|y)fY (y)dy

)
dx

=

∫ ∞
−∞

x

(∫ ∞
−∞

fX,Y (x, y)dy

)
dx

=

∫ ∞
−∞

x

(∫ ∞
−∞

fY |X(y|x)fX(x)dy

)
dx

=

∫ ∞
−∞

xfX(x)

(∫ ∞
−∞

fY |X(y|x)dy

)
︸ ︷︷ ︸

=1

dx

=

∫
xfX(x)dx

= E[X]

Exercise 7. Show that for any continuous variables X,Y, Z we have

E[E[X | Y,Z] | Z] = E[X | Z].

(This is why the rule is called the law of “iterated” expectation.)
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