
CSE 694 – Prob. Analysis and Randomized Algo.

What is it about?

Probabilistic thinking!

Administrative Stuff

5 assignments (to be done individually)

1 final presentation and report (I will assign papers and topic)

First few weeks

Gentle introduction to concepts and techniques from probability
theory

Done via sample problems from many areas (networking, algorithms,
combinatorics, coding, learning theory, etc.)

PTCF = Probability Theory Concepts and Facts
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Lecture 1: The Probabilistic Method

Discrete Probability Space

Events

The Probabilistic Method

The Union Bound
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Example 1: Tracing A Single Traitor

Application: “broadcast” to a group of legitimate users

DVD or CD-ROM distribution of movies or softwares
Pay-per-view subscriptions
Online databases

Some user might be traitor, giving his key(s) to a pirate

Pirate sells decryption device on black market

Problem: obtain device, identify the (single) traitor

Two extremes, both do not work well

Single shared key: can’t trace the traitor
Each person a key: cipher-text too large!
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Traitor Tracing and Sperner Family

Set of keys T , |T | = t

n users, user i given a subset Fi ⊆ T of keys

Claim

To be able to trace a traitor, Fi 6⊆ Fj , for all i 6= j.

A family F of sets where no member is contained in another is called
a Sperner family

Main Questions

Given n, find the smallest t for which a Sperner family of n sets on
[t] = {1, · · · , t} exists

Dually, given t find the maximum n for which a Sperner family of n
sets on [t] exists
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A Classic Theorem by Sperner

Theorem (Sperner, 1928)

The maximum size of a family F of subsets of [t] whose members do not
contain one another is

(
t
bt/2c

)
.

The collection of bt/2c-subsets of [t] is a Sperner family

Thus, suffices to show that |F| ≤
(

t
bt/2c

)
for any Sperner family F

Pick a permutation π of [t] uniformly at random

For F ∈ F , let AF be the event that F is a prefix of π

Prob[AF ] =
k!(t− k)!

t!
=

1(
t
k

) ≥ 1(
t
bt/2c

) , where k = |F |

The AF are mutually exclusive (why?), hence

1 ≥ Prob

[ ⋃
F∈F

AF

]
=
∑
F∈F

Prob[AF ] ≥ |F|(
t
bt/2c

)
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PTCF: Simple Probability Space

Event A

Sample Space Ω

Ω is a finite set of all possible outcomes of some experiment

Each outcome occurs equally likely
A subset A of outcomes is an event

Think of it as a set of outcomes satisfying a certain property

Prob[A] = |A|
|Ω| : the fraction of outcomes in A

In most cases, not the way to think about probability spaces
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PTCF: Discrete Probability Space

Event A

Sample Space Ω

pω

Each ω ∈ Ω is assigned a number pω ∈ [0, 1], such that
∑

ω∈Ω pω = 1.
For any event A, Prob[A] =

∑
ω∈A pω.

In the simple space, pω = 1
|Ω| , ∀ω

Note: this is not the most general definition, but suffices for now.
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PTCF: How do we “assign” the pω?

Could think of it as a mathematical function, like saying “give each
outcome ω a number pω equal to 1/|Ω|”
That’s not the probabilistic way of thinking!

Probabilistic way of thinking:

An experiment is an algorithm whose outcome is not deterministic
For example, algorithms making use of a random source (like a bunch
of “fair” coins)
Ω is the set of all possible outputs of the algorithm
pω is the “likelihood” that ω is output
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Example 2: Tracing a Group of Traitors

Suppose we know there are ≤ d < n traitors out of n users

User j gets key set Fj , set system F = {Fj}nj=1

Claim (Property F must satisfy)

For arbitrary j0, j1, · · · , jd ∈ [n],

Fj0 6⊆ Fj1 ∪ · · · ∪ Fjd .

Such a family F is called a d-cover-free family

d-cover-free family of size n on [t] is equivalent to d-disjunct matrix
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Non-Adaptive Group Testing

A t× n binary matrix A is called d-disjunct iff the union of any d
columns does not contain another column

Columns are codewords of superimposed codes

Rate of the code is R(A) = logn
t

Want codes with high rates. But, as n→∞ and d→∞

1
d2 log e

(1 + o(1)) ≤ lim sup
A

R(A) ≤ 2 log d
d2

(1 + o(1))

(From Dyachkov, Rykov (1982), and Dyachkov, Rykov and Rashad
(1989))

We’ll prove the lower bound
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The Probabilistic Method

Want to prove that t× n d-disjunct matrix exists with small t
Strategy:

Fix t (which we’ll choose later)

Choose a t× n matrix A at random, somehow

Prove that, with t = t(d, n),

Prob[A is d-disjunct] > 0.

Or, equivalently

Prob[A is not d-disjunct] < 1.
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Existence of Good d-disjunct Matrix

Set aij to 1 with probability p

Fix j0 and a set C = {j1, · · · , jd} ⊆ [n], j0 /∈ C
(j0, C) is bad for A if column j0 is contained in the union of columns
in C

Let Bj0,C be the event that (j0, C) is bad

A is not d-disjunct implies
⋃

(j0,C)Bj0,C , thus

Prob[A is not d-disjunct] ≤ Prob

⋃
j0,C

Bj0,C

 ≤ · · ·︸︷︷︸
how?

< 1
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PTCF: The Union Bound

Lemma

Let B1, B2, . . . be any finite or countably infinite sequence of events.
Then,

Prob

⋃
i≥1

Bi

 ≤∑
i≥1

Prob[Bi]

Note:

this bound holds for any probability space (not just simple spaces).

the bound is simple but extremely useful!
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Existence of Good d-disjunct Matrix

Prob

⋃
j0,C

Bj0,C

 ≤∑
j0,C

Prob[Bj0,C ] =
∑
j0,C

[
1− p(1− p)d

]t
Set p = 1/(d+ 1), A is not d-disjunct with probability at most

(d+ 1)
(

n

d+ 1

)[
1− 1

d+ 1

(
1− 1

d+ 1

)d]t
f(x) = (1− 1/(x+ 1))x is decreasing when x ≥ 1, and
limx→∞ f(x) = 1/e, hence f(x) ≥ 1/e
RHS is upper-bounded by

(d+ 1)
(

n

d+ 1

)[
1− 1

e(d+ 1)

]t
≤ (d+ 1)

(
ne

d+ 1

)d+1

e−1/e(d+1)

This is < 1 as long as t ≥ 2e(d+ 1)2 ln (en/(d+ 1)).
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PTCF: Two Very Useful Inequalities

1 + x ≤ ex, ∀x ∈ R (1)

d∑
i=0

(
n

i

)
≤
(ne
d

)d
, ∀d ≤ n (2)
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The Union Bound Technique

An extremely simpmle and useful technique

Should be the “first thing to try”

More on the Union Bound and the Probabilistic Method

Alon and Spencer, “The Probabilistic Method”

Bolobas, “Random Graphs”
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The Union Bound Technique: Main Idea

A: event our structure exists, want Prob[A] > 0 or Prob[Ā] < 1
Suppose Ā implies one of B1, · · · , Bn must hold

(Think of the Bi as the “bad events”)

Then, by the union bound

Prob
[
Ā
]
≤ Prob

[⋃
i

Bi

]
≤
∑
i

Prob[Bi]

Thus, as long as ∑
i

Prob[Bi] < 1

our structure exists!

We have seen this used in d-disjunct matrix examples.
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Example 3: Nice Tournaments

A tournament is an orientation G of Kn

Think of u→ v as “player u beats player v”

Fix integer k, G is nice if for every k-subset S of players there is
another v who beats all of S

Intuitively, nice tournaments may exist for large n
(Remember the theme: “Sufficiently large space contains locally nice
structures”)
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Existence of Nice Tournaments (Erdős, 1963)

For every {u, v}, let u→ v with probability 1/2
A: event that a random G is nice

Ā implies
⋃
|S|=k

BS where BS = “S is not beaten by any v /∈ S”

Prob[BS ] =
(

1− 1
2k

)n−k
Hence, nice tournaments exist as long as

(
n
k

) (
1− 1

2k

)n−k
< 1

What’s the order of n for which this holds?

use

(
n

k

)
≤
(ne
k

)k
and

(
1− 1

2k

)n−k
< e
−n−k

2k

Nice tournaments exist as long as
(
ne
k

)k
e
−n−k

2k < 1.

So, n = Ω
(
k2 · 2k

)
is large enough!
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Example 4: 2-coloring of uniform hypergraphs

Given a k-uniform hypergraph G = (V,E), i.e.

E is a collection of k-subsets of V

G is 2-colorable iff each vertex in V can be assigned with red or blue
such that there’s no monochromatic edge

Intuitively, if |E| is small then G is 2-colorable!

Question is: “how small?”

An answer may be obtained along the line: “for n small enough, a
random 2-coloring is good with positive probability”

Theorem (Erdős, 1963)

Every k-uniform hypergraph with < 2k−1 edges is 2-colorable!
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Example 5: Ramsey Numbers

The Ramsey number R(k, k) is the smallest integer n such that no
matter how we assign red or blue to each edge of Kn, there must
exist a monochromatic Kk.

Analogy: R(k, k) is the smallest n so that in any set of n people
there must be either k mutual acquaintances, or k mutual strangers

Erdős’ Quote

Imagine an alien force, vastly more powerful than us landing on Earth and
demanding the value of R(5, 5) or they will destroy our planet. In that
case, we should marshal all our computers and all our mathematicians and
attempt to find the value. But suppose, instead, that they asked for
R(6, 6), we should attempt to destroy the aliens.
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Notes

There are (much) more general Ramsey numbers. E.g., R(a, b) is the
smallest integer n such that no matter how we 2-color edges of Kn

with red and blue, there exists either a red Ka or a blue Kb.

Or multi-dimensional Ramsey numbers (the above is 2-dim)

The problem is a generalization of the pigeonhole principle

Intuition/interpretation:

when n is sufficiently large, there must be a monochromatic sub-clique
of a given size
i.e., in a sufficiency large “space,” local “patterns” must emerge. (this
theme is manifested in different ways in this course)
problem is to find/estimate the threshold
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Erdős’ Theorem (1947)

Theorem

(i) If
(
n
k

)
21−(k

2) < 1, then R(k, k) > n.

(ii) Consequently, R(k, k) > b2k/2c for all k ≥ 3.

To see (ii), let n = b2k/2c.
Then, (

n

k

)
21−(k

2) <
nk

k!
· 21+k/2

2k2/2
<

21+k/2

k!
· nk

2k2/2
< 1.

We will give two proofs of (i).
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Probabilistic Method Proof #1

Pick a coloring c ∈ Ω uniformly at random.

For any S ∈
([n]
k

)
, let BS be the “bad” event that S is

monochromatic, then

Prob[BS ] =
# colorings making S mono.

total # colorings
=

2× 2(n
2)−(k

2)

2(n
2)

= 21−(k
2)

The probability that some S ∈
([n]
k

)
is monochromatic is

Prob

[⋃
S

BS

]
≤
∑
S

Prob[BS ] =
(
n

k

)
21−(k

2) < 1

Thus, there must be some coloring for which no S is monochromatic!
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Probabilistic Method Proof #2 (much better than #1!)

Color each edge of Kn with either red or blue with probability 1/2

For any S ∈
([n]
k

)
, let BS be the “bad” event that S is

monochromatic, then

Prob[BS ] = Prob[S is blue] + Prob[S is red] = 2× 1

2(k
2)

= 21−(k
2)

The probability that some S ∈
([n]
k

)
is monochromatic is

Prob

[⋃
S

BS

]
≤
∑
S

Prob[BS ] =
(
n

k

)
21−(k

2) < 1

Thus, there must be some coloring for which no S is monochromatic!
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Example 6: Error-Correcting Codes

Message x ∈ {0, 1}k

Encoding f(x) ∈ {0, 1}n, n > k, f an injection

C = {f(x) | x ∈ {0, 1}k}: codewords

f(x) is sent over noisy channel, few bits altered

y is received instead of f(x)
Find codeword z “closest” to y in Hamming distance

Decoding x′ = f−1(z)
Measure of utilization: relative rate of C

R(C) =
log |C|
n

Measure of noise tolerance: relative distance of C

δ(C) =
minc1 6=c2∈C Dist(c1, c2)

n
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Linear Codes

For any x ∈ Fn2 , define

weight(x) = number of 1-coordinates of x

E.g., weight(1001110) = 4
If C is a k-dimensional subspace of Fn2 , then

|C| = 2k

δ(C) = min{weight(x) | x ∈ C}

Every such C can be defined by a parity check matrix A of dimension
(n− k)× n:

C = {x | Ax = 0}

Conversely, every (n− k)× n matrix A defines a code C of
dimension ≥ k
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A Communication Problem

Large rate and large distance are conflicting goals

Problem

Does there exist a family of codes Ck, |Ck| = 2k, for infinitely many k,
such that

R(Ck) ≥ R0 > 0

and
δ(Ck) ≥ δ0 > 0

(Yes, using “magical graphs.”)

Practicality

Design such a family explicitly, such that the codes are efficiently
encodable and decodable.

c©Hung Q. Ngo (SUNY at Buffalo) CSE 694 – A Fun Course 28 / 34



Magical Graph

(n, c, d, α, β)-graph
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n (1− c)n

degree d

|Γ(S)| ≥ β|S|
|S| ≤ αn

c, d, α, β are constants, n varies.

c©Hung Q. Ngo (SUNY at Buffalo) CSE 694 – A Fun Course 29 / 34



From Magical Graphs to Code Family

Suppose (n, c, d, α, β)-graphs exist for infinitely many n, and
constants c, d, α, β such that β > d/2
Consider such a G = (L ∪R,E), |L| = n, |R| = (1− c)n = m

Let A = (aij) be the m× n 01-matrix, column indexed by L, and
row-indexed by R, aij = 1 iff (i, j) ∈ E
Define a linear code with A as parity check:

C = {x | Ax = 0}

Then, dim(C) = n− rank(A) ≥ cn, and

|C| = 2dim(C) ≥ 2cn ⇒ R(C) ≥ c

For every x ∈ C, weight(x) ≥ αn, hence

δ(C) =
min{weight(x) | x ∈ C}

n
≥ α
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Existence of Magical Graph with β > d/2

Determine n, c, d, α, β later

Let L = [n], R = [(1− c)n].
Choose each of the d neighbors for u ∈ L uniformly at random

For 1 ≤ s ≤ αn, let Bs be the “bad” event that some subset S of
size s has |Γ(S)| < β|S|
For each S ⊂ L, T ⊂ R, |S| = s, |T | = βs, define

XS,T =

{
1 Γ(S) ⊆ T
0 Γ(S) 6⊆ T

Then,

Prob[Bs] ≤ Prob

∑
S,T

XS,T > 0

 ≤∑
S,T

Prob[XS,T = 1]
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Existence of Magical Graph with β > d/2

Prob[Bs] ≤
(
n

s

)(
(1− c)n
βs

)(
βs

(1− c)n

)sd
≤

(ne
s

)s((1− c)ne
βs

)βs( βs

(1− c)n

)sd
=

[( s
n

)d−β−1
(

β

1− c

)d−β
eβ+1

]s

≤

[(
αβ

1− c

)d−β
· e

β+1

α

]s
Choose α = 1/100, c = 1/10, d = 32, β = 17 > d/2,

Prob[Bs] ≤ 0.092s
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Existence of Magical Graph with β > d/2

The probability that such a randomly chosen graph is not an
(n, c, d, α, β)-graph is at most

αn∑
s=1

Prob[Bs] ≤
∞∑
s=1

0.092s =
0.092

1− 0.092
< 0.11

Not only such graphs exist, there are a lot of them!!!
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Some Key Ideas We’ve Learned

To show the existence of some combinatorial object, set up some
probability space and show that it exists with probability > 0
The above is essentially a pigeonhole principle kind of proof, casted in
probabilistic language

We will see throughout the course that the probabilistic language is
crucial!

Thinking about probabilities “locally” is better than “globally”

In a sufficiently large “space,” locally nice “patterns” often emerge
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