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Vapnik-Chervonenkis Theorem and the Double Sampling Trick

Results in this lecture are from [1, 2].

1 Sample complexity for infinite hypothesis classes

The next theorem is an analog of Valiant’s theorem for infinite hypothesis classes.

Theorem 1.1 (Sample complexity for infinite hypothesis classes.). Suppose VCD (H) = d < oco. There is a
universal constant cy such that, if a learner can always produce a hypothesis consistent with

1 1
m > “« <log <> + dlog (>>
€ 1) €
i.i.d. examples, then the learner is a PAC-learner.

Proof. When the hypothesis class is (potentially) infinite, the union bound is useless. The VC proof resolves
this problem by “’projecting down” to a finite case.
Define
A(c) = {hAc : h e H},

and

Ac(e) = {7’ € Ac) : Prollg[:n er]> e} :
T
In words, A(c) consists of all “error regions” r which are denser than e. As in the proof of Valiant’s
theorem, if our sample set .S "hits” all regions in A.(c) and the learner outputs a hypothesis hg consistent
with S, then hg is a good hypothesis. Such a sample set S is called an e-net. In summary,

Prgb[hs is a good hypothesis| > Prgb[S is an e-net]

= Pré)b[S hits every region in A¢(c)].

So we will bound the probability that S forms an e-net. Remember that S consists of m i.i.d. examples
taken according to the (unknown) distribution D. Here’s a very important trick, called the double sampling
trick. Suppose we take m more i.i.d. examples 7. (These are examples taken for the analytical purposes,
the learner does not take them in practice.)

e Let B be the event that S is not an e-net, namely B is the event that S misses some region r € A.(c)

e Let C be the event that S misses some region 7 € A.(c) but 7" hits that region r more than em /2
times. To be a little more precise, C'is the event that there exists some r € A(c) for which S misses
entirely and 7" hits > em/2 times.



Since C' cannot happen without B, we have
Prob[C] = Prob|C|B]Prob[B] + Prob[C|B] Prob|B]
ST ST S,T S,T S,T
= Prob[C|B] Prob|B|
ST ST
= Prob[C|B]Prob[B].
S, T S

We estimate Probg [C|B] first. Conditioned on B, let 7 be any region in A(c) that S misses. Then,

PSr(C)Fb[C |B] > Pr:ﬁ)b [T hits 7 more than em/2 times]

We know that the probability that an arbitrary sample in 7" hits 7 is more than €. Hence, let X be the number
of times 7" hits r, by Chernoff bound we have

Prob[X < em/2] < e~™/8,
S, T

For m > 8/e the right hand side is at most 1/2. Thus, for m > 8/¢ we conclude that Probg 7[C|B] > 1/2,
which means

1
Prob[C] > = Prob[B].
1gPIC] = 5 PrgblB]

Thus, instead of trying to upper-bound Probg[B], we can try to upper-bound Probg [C]. Why is upper-
bounding Probs 7[C] any easier? Well, C'is the event that there is some region r € Il () (SUT') for which
S misses entirely and 7" hits more than em /2 times. Note now that the number of regions  in IT Ac(e)(SU T)
is finite. We can apply the union bound!

Now, suppose we take S = {s1, - ,sm}, T = {t1, - ,tm}, and then swap s;, t; with probability 1/2.
Call the resulting pair S’, 7. Then the probability that event C' holds with respect to S’, 7" is the same as
the probability that C' holds with respect to .S, T because all examples are i.i.d..

Fix a region r € Ia () (S UT) which S U T hits [ > em/2 times and |r N {s;,t;}| < 1. Then, the
probability that S’ doesn’t hit r and 7" hits 7 [ times is exactly 1/2! < 1/ 2¢m/2_ Thus, by the union bound

Prob[C] < \HAe@)(SUT)‘zm%
< \HA(C)(SUT)\QE%Q
= Mn(S VT
< Mw(@m)l s

< 2em\? 1

- d oem/2
The equality follows because there is a bijection between Iy, (X) and Iz (X) for any X C Q: we map
h N X to (hAc) N X and vice versa. The last inequality follows from Sauer lemma. Overall, we need to
pick m such that

(2em/d)? <5

Prob[B| < 2Prob[C] < 2 em/z =


http://www.cse.buffalo.edu/~hungngo/classes/2008/694/notes/handout3.pdf

which would be satisfied if we pick

s (3 ()

for sufficiently large cg. ]

Exercise 1. Show that for any X C €, [ILs5() (X)| = [T (X)].

2 A lower bound on sample complexity

We will show that m = Q(d/e¢) samples must be taken in order to PAC-learn a concept class C with VC-
dimension d, where € is any given error parameter, and a constant confidence level 6 < 1/16. In order to
illustrate the main idea, let us prove a slightly weaker result, leaving the general result as an exercise.

Theorem 2.1. For any sample space §) and any concept class C with VCD(C) = d, there exist a distribution
D on Q, and a concept ¢* € C such that, any learning algorithm which takes < d/2 samples is not a
PAC-learner (of C using C) with parameters e = 1/8,5 = 1/8.

Proof. Suppose X C  is shattered by C, where | X | = d. Let D be the uniform distribution on X, thus D
is 0 on Q — X. Without loss of generality, we can assume C = 2.

Proof idea. We use the argument from expectation! Pick ¢ € C uniformly at random, we will show
that the expected performance of the learner (over the random target concept c) is “bad,” which implies that
there exists a ¢ € C for which the performance is bad. Let S denote a random set of examples of m < d/2
examples, let z denote a random sample, and hg denote the hypothesis output by the learner if its examples
are .S. The proof has three steps.

1. Show that E. [Eglerr(hg) | c]] > 1/4.
2. By the argument from expectation, there exists a target concept ¢* for which Eglerr(hg)] > 1/4.

3. Then, by a simple application of Markov’s inequality we conclude that Probglerr(hg) < 1/8] <
6/7<1-—4.

Let’s implement the above ideas. Note that

Prob. 5, [hs(z) # c(x) | x ¢ S] = Eg |Ey |Prob.[hs(z) # c(x)] |z ¢ S| | S| >1/2.

>1/2

Hence, from the law of total probability and the fact that |.S| < d/2 we have
1

Prob, 5, [hs(z) # c(x)] > Prob. g, [hs(z) # c(x) | « ¢ S|Prob 5 5[ ¢ S| >

N
N =

Now, marginalizing over ¢ we have

Prob, s ;[hs(z) # c(x)] = Ec [Probg z[hs(z) # c(z) | ¢]] .



Thus, there exists a target concept ¢* € C such that Probg ;[hs(z) # ¢*(z)] > ;. Now, marginalizing over
S, we obtain

i < Probg ;[hs(x) # c*(x)] = Eg [Prob, [hs(x) # c*(x) | S]] = Eglerr(hg)].
Thus, by linearity of expectation
Eg[l —err(hg)] = 1 — Eglerr(hg)] < 3/4.
By Markov’s inequality,
Es(1 — err(hs)] 6
7/8 7
Equivalently, Probg [err(hs) < %] < % as desired. O

Probg([l — err(hg) > 7/8] < < “;)781 =

Exercise 2. In this exercise, we prove a more general lower bound: if the learner only takes 2(d/¢) i.i.d.
examples then it can not PAC-learn a concept class C with VC-dimension d and error parameter ¢, confidence
parameter 0 = 1/15.

Fix a subset X C 2 of size | X| = d such that X is shattered by C. Let X = {wp,w1,...,w4—1}. Fix
€ € (0,1/16) and 6 = 1/15. Define the distribution D on X where D assigns a mass of 1 — 16¢ to wp
and and a mass of 16¢/(d — 1) to each of wy,...,wq_1. Clearly D is a distribution on X which is also a
distribution on 2. Without loss of genearlity, we can also assume that C = 2.

We will show that there exists a target concept ¢* € C such that if a learner only takes m = % ii.d.
examples. then it cannot PAC-learn C under the data distribution D and parameters ¢, = 1/15.

Let S denote the multiset of sample points taken from D, where |S| = m = %261. Random concepts
¢ € C are taken uniformly. Let X' = {w1,...,w4—1}.

(a) Prove that Prob, s[z € X'\ S] > 4e.
(Hint: Let T's denote the number of times S hits X'. Observing the following:
Prob, s[z € X"\ S] = Prob, [z € X'\ S| Ts < (d — 1)/2]Prob[Ts < (d — 1)/2].
Use Markov’s inequality to show that Prob[Ts > (d — 1)/2] < 1/2.)

(b) Let hg denote the hypothesis the learner outputs given the examples .S. Show that
Prob, g.c[hs(z) # c(z) Az € X'| > 2e.

(c) Define er’(h) = Prob,[h(z) # ¢(z) A z € X']. Show that,
2¢ < Egler’(hg)]

(d) By writing

Eglerr’(hg)] = Eslert’(hg) | err’(hg) > €|Problert’ (hs) > €]+Eglerr’(hs) | ert’(hg) < €|Problerr’(hg) < €],

prove that

2¢ < 16€Problerr’(hs) > €] + ¢

from which we conclude that Proberr’(hg) > €] > 1/15.

(e) Finally, show that
Problerr(hg) > €] > Problerr’(hg) > ¢
to finish the proof.
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