Vapnik-Chervonenkis Theorem and the Double Sampling Trick

Lecturer: Hung Q. Ngo

Last update: October 18, 2011

Results in this lecture are from [1,2].

1 Sample complexity for infinite hypothesis classes

The next theorem is an analog of Valiant's theorem for infinite hypothesis classes.

Theorem 1.1 (Sample complexity for infinite hypothesis classes.). Suppose VCD $(\mathcal{H}) = d < \infty$. There is a universal constant c_0 such that, if a learner can always produce a hypothesis consistent with

$$m \ge \frac{c_0}{\epsilon} \left(\log \left(\frac{1}{\delta} \right) + d \log \left(\frac{1}{\epsilon} \right) \right)$$

i.i.d. examples, then the learner is a PAC-learner.

Proof. When the hypothesis class is (potentially) infinite, the union bound is useless. The VC proof resolves this problem by "projecting down" to a finite case.

Define

$$\Delta(c) = \{ h \Delta c : h \in \mathcal{H} \},\$$

and

$$\Delta_{\epsilon}(c) = \left\{ r \in \Delta(c) \ : \ \Pr_{x \leftarrow \mathcal{D}}[x \in r] > \epsilon \right\}.$$

In words, $\Delta_{\epsilon}(c)$ consists of all "error regions" r which are denser than ϵ . As in the proof of Valiant's theorem, if our sample set S "hits" all regions in $\Delta_{\epsilon}(c)$ and the learner outputs a hypothesis h_S consistent with S, then h_S is a good hypothesis. Such a sample set S is called an ϵ -net. In summary,

$$\begin{array}{ll} \operatorname{Prob}_S[h_S \text{ is a good hypothesis}] & \geq & \operatorname{Prob}_S[S \text{ is an } \epsilon\text{-net}] \\ & = & \operatorname{Prob}_S[S \text{ hits every region in } \Delta_\epsilon(c)]. \end{array}$$

So we will bound the probability that S forms an ϵ -net. Remember that S consists of m i.i.d. examples taken according to the (unknown) distribution \mathcal{D} . Here's a very important trick, called the *double sampling trick*. Suppose we take m more i.i.d. examples T. (These are examples taken for the analytical purposes, the learner does not take them in practice.)

- Let B be the event that S is not an ϵ -net, namely B is the event that S misses some region $r \in \Delta_{\epsilon}(c)$
- Let C be the event that S misses some region $r \in \Delta_{\epsilon}(c)$ but T hits that region r more than $\epsilon m/2$ times. To be a little more precise, C is the event that there exists some $r \in \Delta_{\epsilon}(c)$ for which S misses entirely and T hits $> \epsilon m/2$ times.

Since C cannot happen without B, we have

$$\begin{aligned} & \operatorname{Prob}[C] &= & \operatorname{Prob}[C|B] \operatorname{Prob}[B] + \operatorname{Prob}[C|\bar{B}] \operatorname{Prob}[\bar{B}] \\ &= & \operatorname{Prob}[C|B] \operatorname{Prob}[B] \\ &= & \operatorname{Prob}[C|B] \operatorname{Prob}[B] \\ &= & \operatorname{Prob}[C|B] \operatorname{Prob}[B]. \end{aligned}$$

We estimate $\operatorname{Prob}_{S,T}[C|B]$ first. Conditioned on B, let r be any region in $\Delta_{\epsilon}(c)$ that S misses. Then,

$$\mathop{\rm Prob}_{S,T}[C|B] \geq \mathop{\rm Prob}_T[T \text{ hits } r \text{ more than } \epsilon m/2 \text{ times}]$$

We know that the probability that an arbitrary sample in T hits r is more than ϵ . Hence, let X be the number of times T hits r, by Chernoff bound we have

$$\operatorname{Prob}_{S,T}[X \le \epsilon m/2] \le e^{-\epsilon m/8}.$$

For $m \ge 8/\epsilon$ the right hand side is at most 1/2. Thus, for $m \ge 8/\epsilon$ we conclude that $\operatorname{Prob}_{S,T}[C|B] \ge 1/2$, which means

$$\operatorname{Prob}_{S,T}[C] \geq \frac{1}{2}\operatorname{Prob}_{S}[B].$$

Thus, instead of trying to upper-bound $\operatorname{Prob}_S[B]$, we can try to upper-bound $\operatorname{Prob}_{S,T}[C]$. Why is upper-bounding $\operatorname{Prob}_{S,T}[C]$ any easier? Well, C is the event that there is some region $r \in \Pi_{\Delta_\epsilon(c)}(S \cup T)$ for which S misses entirely and T hits more than $\epsilon m/2$ times. Note now that the number of regions r in $\Pi_{\Delta_\epsilon(c)}(S \cup T)$ is *finite*. We can apply the union bound!

Now, suppose we take $S = \{s_1, \dots, s_m\}$, $T = \{t_1, \dots, t_m\}$, and then swap s_i, t_i with probability 1/2. Call the resulting pair S', T'. Then the probability that event C holds with respect to S', T' is the same as the probability that C holds with respect to S, T because all examples are i.i.d..

Fix a region $r \in \Pi_{\Delta_{\epsilon}(c)}(S \cup T)$ which $S \cup T$ hits $l \geq \epsilon m/2$ times and $|r \cap \{s_i, t_i\}| \leq 1$. Then, the probability that S' doesn't hit r and T' hits r l times is exactly $1/2^l \leq 1/2^{\epsilon m/2}$. Thus, by the union bound

$$\begin{split} & \underset{S',T'}{\operatorname{Prob}}[C] & \leq & |\Pi_{\Delta_{\epsilon}(c)}(S \cup T)| \frac{1}{2^{\epsilon m/2}} \\ & \leq & |\Pi_{\Delta(c)}(S \cup T)| \frac{1}{2^{\epsilon m/2}} \\ & = & |\Pi_{\mathcal{H}}(S \cup T)| \frac{1}{2^{\epsilon m/2}} \\ & \leq & |\Pi_{\mathcal{H}}(2m)| \frac{1}{2^{\epsilon m/2}} \\ & \leq & \left(\frac{2em}{d}\right)^d \frac{1}{2^{\epsilon m/2}} \end{split}$$

The equality follows because there is a bijection between $\Pi_{\mathcal{H}}(X)$ and $\Pi_{\Delta(c)}(X)$ for any $X \subseteq \Omega$: we map $h \cap X$ to $(h\Delta c) \cap X$ and vice versa. The last inequality follows from Sauer lemma. Overall, we need to pick m such that

$$\operatorname{Prob}[B] \leq 2\operatorname{Prob}[C] \leq 2\frac{(2em/d)^d}{2^{em/2}} \leq \delta,$$

which would be satisfied if we pick

$$m \ge \frac{c_0}{\epsilon} \left(\log \left(\frac{1}{\delta} \right) + d \log \left(\frac{1}{\epsilon} \right) \right)$$

for sufficiently large c_0 .

Exercise 1. Show that for any $X \subset \Omega$, $|\Pi_{\delta(c)}(X)| = |\Pi_{\mathcal{H}}(X)|$.

2 A lower bound on sample complexity

We will show that $m = \Omega(d/\epsilon)$ samples must be taken in order to PAC-learn a concept class \mathcal{C} with VC-dimension d, where ϵ is any given error parameter, and a constant confidence level $\delta \leq 1/16$. In order to illustrate the main idea, let us prove a slightly weaker result, leaving the general result as an exercise.

Theorem 2.1. For any sample space Ω and any concept class \mathcal{C} with $VCD(\mathcal{C}) = d$, there exist a distribution \mathcal{D} on Ω , and a concept $c^* \in \mathcal{C}$ such that, any learning algorithm which takes $\leq d/2$ samples is not a PAC-learner (of \mathcal{C} using \mathcal{C}) with parameters $\epsilon = 1/8, \delta = 1/8$.

Proof. Suppose $X \subseteq \Omega$ is shattered by \mathcal{C} , where |X| = d. Let \mathcal{D} be the uniform distribution on X, thus \mathcal{D} is 0 on $\Omega - X$. Without loss of generality, we can assume $\mathcal{C} = 2^X$.

Proof idea. We use the argument from expectation! Pick $c \in \mathcal{C}$ uniformly at random, we will show that the expected performance of the learner (over the random target concept c) is "bad," which implies that there exists a $c \in \mathcal{C}$ for which the performance is bad. Let S denote a random set of examples of $m \le d/2$ examples, let x denote a random sample, and h_S denote the hypothesis output by the learner if its examples are S. The proof has three steps.

- 1. Show that $E_c[E_S[err(h_S) \mid c]] > 1/4$.
- 2. By the argument from expectation, there exists a target concept c^* for which $E_S[err(h_S)] \ge 1/4$.
- 3. Then, by a simple application of Markov's inequality we conclude that $\operatorname{Prob}_S[\operatorname{err}(h_S) \leq 1/8] \leq 6/7 < 1 \delta$.

Let's implement the above ideas. Note that

$$\operatorname{Prob}_{c,S,x}[h_S(x) \neq c(x) \mid x \notin S] = \operatorname{E}_S\left[\operatorname{E}_x\left[\underbrace{\operatorname{Prob}_c[h_S(x) \neq c(x)]}_{\geq 1/2} \mid x \notin S\right] \mid S\right] \geq 1/2.$$

Hence, from the law of total probability and the fact that $|S| \leq d/2$ we have

$$\operatorname{Prob}_{c,S,x}[h_S(x) \neq c(x)] \geq \operatorname{Prob}_{c,S,x}[h_S(x) \neq c(x) \mid x \notin S] \operatorname{Prob}_{c,x,S}[x \notin S] \geq \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}.$$

Now, marginalizing over c we have

$$\text{Prob}_{c,S,x}[h_S(x) \neq c(x)] = \mathbb{E}_c \left[\text{Prob}_{S,x}[h_S(x) \neq c(x) \mid c] \right].$$

Thus, there exists a target concept $c^* \in \mathcal{C}$ such that $\operatorname{Prob}_{S,x}[h_S(x) \neq c^*(x)] \geq \frac{1}{4}$. Now, marginalizing over S, we obtain

$$\frac{1}{4} \le \text{Prob}_{S,x}[h_S(x) \ne c^*(x)] = \mathbb{E}_S \left[\text{Prob}_x[h_S(x) \ne c^*(x) \mid S] \right] = \mathbb{E}_S \left[\text{err}(h_S) \right].$$

Thus, by linearity of expectation

$$E_S[1 - err(h_S)] = 1 - E_S[err(h_S)] \le 3/4.$$

By Markov's inequality,

$$\operatorname{Prob}_{S}[1 - \operatorname{err}(h_{S}) \ge 7/8] \le \frac{\operatorname{E}_{S}[1 - \operatorname{err}(h_{S})]}{7/8} \le \frac{3/4}{7/8} = \frac{6}{7}.$$

Equivalently, $\operatorname{Prob}_S\left[\operatorname{err}(h_S) \leq \frac{1}{8}\right] \leq \frac{6}{7}$ as desired.

Exercise 2. In this exercise, we prove a more general lower bound: if the learner only takes $\Omega(d/\epsilon)$ i.i.d. examples then it can not PAC-learn a concept class \mathcal{C} with VC-dimension d and error parameter ϵ , confidence parameter $\delta=1/15$.

Fix a subset $X \subset \Omega$ of size |X| = d such that X is shattered by \mathcal{C} . Let $X = \{\omega_0, \omega_1, \dots, \omega_{d-1}\}$. Fix $\epsilon \in (0, 1/16)$ and $\delta = 1/15$. Define the distribution \mathcal{D} on X where \mathcal{D} assigns a mass of $1 - 16\epsilon$ to ω_0 and and a mass of $16\epsilon/(d-1)$ to each of $\omega_1, \dots, \omega_{d-1}$. Clearly \mathcal{D} is a distribution on X which is also a distribution on Ω . Without loss of genearlity, we can also assume that $\mathcal{C} = 2^X$.

We will show that there exists a target concept $c^* \in \mathcal{C}$ such that if a learner only takes $m = \frac{d-1}{64\epsilon}$ i.i.d. examples. then it cannot PAC-learn \mathcal{C} under the data distribution \mathcal{D} and parameters $\epsilon, \delta = 1/15$.

Let S denote the multiset of sample points taken from \mathcal{D} , where $|S|=m=\frac{d-1}{64\epsilon}$. Random concepts $c\in\mathcal{C}$ are taken uniformly. Let $X'=\{\omega_1,\ldots,\omega_{d-1}\}$.

(a) Prove that $\operatorname{Prob}_{x,S}[x \in X' \setminus S] \geq 4\epsilon$.

(**Hint:** Let T_S denote the number of times S hits X'. Observing the following:

$$\operatorname{Prob}_{x,S}[x \in X' \setminus S] = \operatorname{Prob}_{x,S}[x \in X' \setminus S \mid T_S \leq (d-1)/2]\operatorname{Prob}[T_S \leq (d-1)/2].$$

Use Markov's inequality to show that $Prob[T_S > (d-1)/2] \le 1/2$.)

(b) Let h_S denote the hypothesis the learner outputs given the examples S. Show that

$$\operatorname{Prob}_{x,S,c}[h_S(x) \neq c(x) \land x \in X'] \geq 2\epsilon.$$

(c) Define $\operatorname{err}'(h) = \operatorname{Prob}_x[h(x) \neq c(x) \land x \in X']$. Show that,

$$2\epsilon \leq E_S[err'(h_S)]$$

(d) By writing

$$E_S[err'(h_S)] = E_S[err'(h_S) \mid err'(h_S) > \epsilon] Prob[err'(h_S) > \epsilon] + E_S[err'(h_S) \mid err'(h_S) \leq \epsilon] Prob[err'(h_S) \leq \epsilon],$$
 prove that

$$2\epsilon \le 16\epsilon \text{Prob}[\text{err}'(h_S) > \epsilon] + \epsilon$$

from which we conclude that $Prob[err'(h_S) > \epsilon] \ge 1/15$.

(e) Finally, show that

$$Prob[err(h_S) > \epsilon] \ge Prob[err'(h_S) > \epsilon]$$

to finish the proof.

References

- [1] V. N. VAPNIK AND A. Y. CHERVONENKIS, On the uniform convergence of relative frequencies of events to their probabilities, Doklady Akademii Nauk USSR, 181 (1968).
- [2] ——, On the uniform convergence of relative frequencies of events to their probabilities, Theory of Probability and its Applications, 16 (1971), pp. 264–280.