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Vapnik-Chervonenkis Theorem and the Double Sampling Trick

Results in this lecture are from [1, 2].

1 Sample complexity for infinite hypothesis classes

The next theorem is an analog of Valiant’s theorem for infinite hypothesis classes.

Theorem 1.1 (Sample complexity for infinite hypothesis classes.). Suppose VCD (H) = d <∞. There is a
universal constant c0 such that, if a learner can always produce a hypothesis consistent with

m ≥ c0

ε

(
log
(

1
δ

)
+ d log

(
1
ε

))
i.i.d. examples, then the learner is a PAC-learner.

Proof. When the hypothesis class is (potentially) infinite, the union bound is useless. The VC proof resolves
this problem by ”projecting down” to a finite case.

Define
∆(c) = {h∆c : h ∈ H},

and

∆ε(c) =
{
r ∈ ∆(c) : Prob

x←D
[x ∈ r] > ε

}
.

In words, ∆ε(c) consists of all ”error regions” r which are denser than ε. As in the proof of Valiant’s
theorem, if our sample set S ”hits” all regions in ∆ε(c) and the learner outputs a hypothesis hS consistent
with S, then hS is a good hypothesis. Such a sample set S is called an ε-net. In summary,

Prob
S

[hS is a good hypothesis] ≥ Prob
S

[S is an ε-net]

= Prob
S

[S hits every region in ∆ε(c)].

So we will bound the probability that S forms an ε-net. Remember that S consists of m i.i.d. examples
taken according to the (unknown) distribution D. Here’s a very important trick, called the double sampling
trick. Suppose we take m more i.i.d. examples T . (These are examples taken for the analytical purposes,
the learner does not take them in practice.)

• Let B be the event that S is not an ε-net, namely B is the event that S misses some region r ∈ ∆ε(c)

• Let C be the event that S misses some region r ∈ ∆ε(c) but T hits that region r more than εm/2
times. To be a little more precise, C is the event that there exists some r ∈ ∆ε(c) for which S misses
entirely and T hits > εm/2 times.
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Since C cannot happen without B, we have

Prob
S,T

[C] = Prob
S,T

[C|B] Prob
S,T

[B] + Prob
S,T

[C|B̄] Prob
S,T

[B̄]

= Prob
S,T

[C|B] Prob
S,T

[B]

= Prob
S,T

[C|B] Prob
S

[B].

We estimate ProbS,T [C|B] first. Conditioned on B, let r be any region in ∆ε(c) that S misses. Then,

Prob
S,T

[C|B] ≥ Prob
T

[T hits r more than εm/2 times]

We know that the probability that an arbitrary sample in T hits r is more than ε. Hence, let X be the number
of times T hits r, by Chernoff bound we have

Prob
S,T

[X ≤ εm/2] ≤ e−εm/8.

For m ≥ 8/ε the right hand side is at most 1/2. Thus, for m ≥ 8/ε we conclude that ProbS,T [C|B] ≥ 1/2,
which means

Prob
S,T

[C] ≥ 1
2

Prob
S

[B].

Thus, instead of trying to upper-bound ProbS [B], we can try to upper-bound ProbS,T [C]. Why is upper-
bounding ProbS,T [C] any easier? Well, C is the event that there is some region r ∈ Π∆ε(c)(S∪T ) for which
S misses entirely and T hits more than εm/2 times. Note now that the number of regions r in Π∆ε(c)(S∪T )
is finite. We can apply the union bound!

Now, suppose we take S = {s1, · · · , sm}, T = {t1, · · · , tm}, and then swap si, ti with probability 1/2.
Call the resulting pair S′, T ′. Then the probability that event C holds with respect to S′, T ′ is the same as
the probability that C holds with respect to S, T because all examples are i.i.d..

Fix a region r ∈ Π∆ε(c)(S ∪ T ) which S ∪ T hits l ≥ εm/2 times and |r ∩ {si, ti}| ≤ 1. Then, the
probability that S′ doesn’t hit r and T ′ hits r l times is exactly 1/2l ≤ 1/2εm/2. Thus, by the union bound

Prob
S′,T ′

[C] ≤ |Π∆ε(c)(S ∪ T )| 1
2εm/2

≤ |Π∆(c)(S ∪ T )| 1
2εm/2

= |ΠH(S ∪ T )| 1
2εm/2

≤ |ΠH(2m)| 1
2εm/2

≤
(

2em
d

)d 1
2εm/2

The equality follows because there is a bijection between ΠH(X) and Π∆(c)(X) for any X ⊆ Ω: we map
h ∩ X to (h∆c) ∩ X and vice versa. The last inequality follows from Sauer lemma. Overall, we need to
pick m such that

Prob[B] ≤ 2Prob[C] ≤ 2
(2em/d)d

2εm/2
≤ δ,
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which would be satisfied if we pick

m ≥ c0

ε

(
log
(

1
δ

)
+ d log

(
1
ε

))
for sufficiently large c0.

Exercise 1. Show that for any X ⊂ Ω, |Πδ(c)(X)| = |ΠH(X)|.

2 A lower bound on sample complexity

We will show that m = Ω(d/ε) samples must be taken in order to PAC-learn a concept class C with VC-
dimension d, where ε is any given error parameter, and a constant confidence level δ ≤ 1/16. In order to
illustrate the main idea, let us prove a slightly weaker result, leaving the general result as an exercise.

Theorem 2.1. For any sample space Ω and any concept class C with VCD(C) = d, there exist a distribution
D on Ω, and a concept c∗ ∈ C such that, any learning algorithm which takes ≤ d/2 samples is not a
PAC-learner (of C using C) with parameters ε = 1/8, δ = 1/8.

Proof. Suppose X ⊆ Ω is shattered by C, where |X| = d. Let D be the uniform distribution on X , thus D
is 0 on Ω−X . Without loss of generality, we can assume C = 2X .

Proof idea. We use the argument from expectation! Pick c ∈ C uniformly at random, we will show
that the expected performance of the learner (over the random target concept c) is “bad,” which implies that
there exists a c ∈ C for which the performance is bad. Let S denote a random set of examples of m ≤ d/2
examples, let x denote a random sample, and hS denote the hypothesis output by the learner if its examples
are S. The proof has three steps.

1. Show that Ec [ES [err(hS) | c]] ≥ 1/4.

2. By the argument from expectation, there exists a target concept c∗ for which ES [err(hS)] ≥ 1/4.

3. Then, by a simple application of Markov’s inequality we conclude that ProbS [err(hS) ≤ 1/8] ≤
6/7 < 1− δ.

Let’s implement the above ideas. Note that

Probc,S,x[hS(x) 6= c(x) | x /∈ S] = ES

Ex

Probc[hS(x) 6= c(x)]︸ ︷︷ ︸
≥1/2

| x /∈ S

 | S
 ≥ 1/2.

Hence, from the law of total probability and the fact that |S| ≤ d/2 we have

Probc,S,x[hS(x) 6= c(x)] ≥ Probc,S,x[hS(x) 6= c(x) | x /∈ S]Probc,x,S [x /∈ S] ≥ 1
2
· 1

2
=

1
4
.

Now, marginalizing over c we have

Probc,S,x[hS(x) 6= c(x)] = Ec [ProbS,x[hS(x) 6= c(x) | c]] .
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Thus, there exists a target concept c∗ ∈ C such that ProbS,x[hS(x) 6= c∗(x)] ≥ 1
4 . Now, marginalizing over

S, we obtain
1
4
≤ ProbS,x[hS(x) 6= c∗(x)] = ES [Probx[hS(x) 6= c∗(x) | S]] = ES [err(hS)].

Thus, by linearity of expectation

ES [1− err(hS)] = 1− ES [err(hS)] ≤ 3/4.

By Markov’s inequality,

ProbS [1− err(hS) ≥ 7/8] ≤ ES [1− err(hS)]
7/8

≤ 3/4
7/8

=
6
7
.

Equivalently, ProbS
[
err(hS) ≤ 1

8

]
≤ 6

7 as desired.

Exercise 2. In this exercise, we prove a more general lower bound: if the learner only takes Ω(d/ε) i.i.d.
examples then it can not PAC-learn a concept class C with VC-dimension d and error parameter ε, confidence
parameter δ = 1/15.

Fix a subset X ⊂ Ω of size |X| = d such that X is shattered by C. Let X = {ω0, ω1, . . . , ωd−1}. Fix
ε ∈ (0, 1/16) and δ = 1/15. Define the distribution D on X where D assigns a mass of 1 − 16ε to ω0

and and a mass of 16ε/(d − 1) to each of ω1, . . . , ωd−1. Clearly D is a distribution on X which is also a
distribution on Ω. Without loss of genearlity, we can also assume that C = 2X .

We will show that there exists a target concept c∗ ∈ C such that if a learner only takes m = d−1
64ε i.i.d.

examples. then it cannot PAC-learn C under the data distribution D and parameters ε, δ = 1/15.
Let S denote the multiset of sample points taken from D, where |S| = m = d−1

64ε . Random concepts
c ∈ C are taken uniformly. Let X ′ = {ω1, . . . , ωd−1}.

(a) Prove that Probx,S [x ∈ X ′ \ S] ≥ 4ε.

(Hint: Let TS denote the number of times S hits X ′. Observing the following:

Probx,S [x ∈ X ′ \ S] = Probx,S [x ∈ X ′ \ S | TS ≤ (d− 1)/2]Prob[TS ≤ (d− 1)/2].

Use Markov’s inequality to show that Prob[TS > (d− 1)/2] ≤ 1/2.)

(b) Let hS denote the hypothesis the learner outputs given the examples S. Show that

Probx,S,c[hS(x) 6= c(x) ∧ x ∈ X ′] ≥ 2ε.

(c) Define err′(h) = Probx[h(x) 6= c(x) ∧ x ∈ X ′]. Show that,

2ε ≤ ES [err′(hS)]

(d) By writing

ES [err′(hS)] = ES [err′(hS) | err′(hS) > ε]Prob[err′(hS) > ε]+ES [err′(hS) | err′(hS) ≤ ε]Prob[err′(hS) ≤ ε],

prove that
2ε ≤ 16εProb[err′(hS) > ε] + ε

from which we conclude that Prob[err′(hS) > ε] ≥ 1/15.

(e) Finally, show that
Prob[err(hS) > ε] ≥ Prob[err′(hS) > ε]

to finish the proof.
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