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Discrete Time Markov Chains

1 Examples

Discrete Time Markov Chain (DTMC) is an extremely pervasive probability model [1]. In this
lecture we shall briefly overview the basic theoretical foundation of DTMC. Let us first look at a
few examples which can be naturally modelled by a DTMC.

Example 1.1 (Gambler Ruin Problem). A gambler has $100. He bets $1 each game, and wins
with probability 1/2. He stops playing he gets broke or wins $1000. Natural questions include:
what’s the probability that he gets broke? On average how many games are played? This problem
is a special case of the so-called Gambler Ruin problem, which can be modelled using a Markov
chain as follows. We will be a hand-wavy before rigorously defining what a DTMC is. Imagine
we have 1001 “states” as shown in Figure 1.1, each state i is indexed by the number of dollars the
gambler is having. Before playing each game, the gambler has an equal probability of move up to
state i+ 1 or down to state i.
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Figure 1: DTMC for the Gambler Ruin Problem

Example 1.2 (Single Server Queue). At each time slot, an Internet router’s buffer gets an addi-
tional packet with probability p, or releases one packet with probability q, or remains the same with
probability r. Starting from an empty buffer, what is the distribution of the number of packets
after n slots? As n→∞, will the buffer be overflowed? As n→∞, what’s the typical buffer size?
These are the types of questions that can be answered with DTMC analysis.

2 Basic definitions and properties

A stochastic process is a collection of random variables (on some probability space) indexed by some
set T : {Xt, t ∈ T}. When T ⊆ R, we can think of T as set of points in time, and Xt as the “state”
of the process at time t. The state space, denoted by I, is the set of all possible values of the Xt.
When T is countable we have a discrete-time stochastic process. When T is an interval of the real
line we have a continuous-time stochastic process.
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Example 2.1 (Bernoulli process). A sequence {X0, X1, X2, . . . } of independent Bernoulli random
variables with parameter p is called a Bernoulli process. It is not hard to compute the expectations
and the variances of the following statistics related to the Bernoulli process.

Sn = X1 + · · ·+Xn

Tn = number of slots from the (n− 1)th 1 to the nth 1
Yn = T1 + · · ·+ Tn

Most useful stochastic processes are not that simple, however. We often see processes whose
variables are correlated, such as stock prices, exchange rates, signals (speech, audio and video),
daily temperatures, Brownian motion or random walks, etc.

A discrete time Markov chain (DTMC) is a discrete-time stochastic process {Xn}n≥0 satisfying
the following:

• the state space I is countable (often labeled with a subset of N).

• For all states i, j there is a given probability pij such that

P
[
Xn+1 = j | Xn = i,Xn−1 = in−1, . . . X0 = i0

]
= pij ,

for all i0, . . . , in−1 ∈ I and all n ≥ 0. Implicitly, the pij satisfy the following

pij ≥ 0, ∀i, j ∈ I,∑
j∈I

pij = 1, ∀i ≥ 0.

The (could be infinite) matrix P = (pij) is called the transition probability matrix of the chain.
Given a DTMC P with state space I, let A ⊂ I be some subset of states. We often want to

answer many types of questions about the chain. For example, starting from X0 = i /∈ A

• what’s the probability A is ever “hit”?

• what’s the probability Xn ∈ A for a given n?

• what’s the expected number of steps until A is hit

• what’s the probability we’ll come back to i?

• what’s the expected number of steps until we come back?

• what’s the expected number of steps until all states are visited?

• as n→∞, what’s the distribution of where we are? Does the “limit distribution” even exist?
If it does, how fast is the convergence rate?

Now, instead of starting from a specific state, it is common to encounter situations where the initial
distribution X0 is given and we want to repeat the above questions. There are many more questions
we can ask about the chain.
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Before we move on, let’s fix several other basic notions and terminologies. A measure on the
state space I is a vector λ where λi ≥ 0, for all i ∈ I. A measure is called a distribution if∑

i∈I λi = 1. For any event F , define

Probi[F ] = Prob[F | X0 = i]

For any random variable Z, define

Ei[Z] = E[Z | X0 = i]

If we know λ is the distribution of X0, then we also write

(Xn)n≥0 = Markov(P, λ).

3 Multistep transition probabilities and matrices

Define
p
(n)
ij = Probi[Xn = j],

which is the probability of going from i to j in n steps. Also define the n-step transition probability
matrix

P(n) = (p(n)
ij ).

The following lemma is a straightforward application of the law of total probabilities

Lemma 3.1 (Chapman-Kolmogorov Equations).

p
(m+n)
ij =

∑
k∈I

p
(n)
ik p

(m)
kj , ∀n,m ≥ 0, i, j ∈ I.

It follows that
P(n) = Pn

Corollary 3.2. If λ (a row vector) is the distribution of X0, then λPn is the distribution of Xn

Exercise 1. Prove the above Lemma and Corollary.

4 Classification of States

A state j is said to be reachable from state i if p(n)
ij > 0 for some n ≥ 0. In that case, we write

i ; j. Two states i and j are said to communicate if i ; j and j ; i, in which case we write
i↔ j.

Exercise 2. Show that communication is an equivalence relation, namely it satisfies three properties

• (Reflexive) i↔ i, for all i ∈ I

• (Transitive) i↔ j and j ↔ k imply i↔ k.

• (Symmetric) i↔ j implies j ↔ i
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The fact that communication is an equivalence relation means the relation partitions the state
space I into equivalent classes called communication classes. A chain is said to be irreducible if
there is only one class

We can visualize a transition graph representing the chain. The graph has a directed edge from
i to j iff pij > 0. The communication classes are strongly connected components of this graph. See
Figure 2 for an illustration of communication classes.

A closed class C is a class where i ∈ C and i ; j imply j ∈ C (i.e., there no escape!). A state
i is absorbing if {i} is a closed class.

Figure 2: Communication classes

For any state i, define the first passage time to be Ti = inf{n ≥ 1 | Xn = i}. (Thus, X0 = i
doesn’t count!) Also define the first passage probabilities

f
(n)
ij = Probi[Xn = j ∧ Xs 6= j,∀s = 1, .., n− 1] = Probi[Tj = n]

fij =
∞∑

n=1

f
(n)
ij = Probi[Tj <∞]

Definition 4.1 (Recurrence and transience). State i is said to be recurrent (also called persistent)
if fii = Probi[Ti <∞] = 1. State i is transient if fii = Probi[Ti <∞] < 1.

Let Vi be the number of visits to i, namely

Vi :=
∞∑

n=0

1{Xn=i}.

The following two theorems characterizes recurrent and transient states.

Theorem 4.2. Given a DTMC P and a state i, the following are equivalent

1. i is recurrent

2. fii = Probi[Ti <∞] = 1
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3. Probi[Xn = i for infinitely many n] = 1

4. Ei[Vi] =∞

5.
∑

n≥0 p
(n)
ii =∞

Theorem 4.3. Given a DTMC P and a state i, the following are equivalent

1. i is transient

2. fii = Probi[Ti <∞] < 1

3. Probi[Xn = i for infinitely many n] = 0

4. Ei[Vi] <∞

5.
∑

n≥0 p
(n)
ii <∞

To prove the last two theorems, we need something called the strong Markovian property. A
random variable T taking values in N is called a stopping time of a DTMC (Xn)n≥0 if the event
{T = n} can be determined by looking only at X0, · · · , Xn (We need measure theory to be more
rigorous on this definition.) For example, the first passage time Ti = inf{n ≥ 1 : Xn = i} is a
stopping time, while the last exit time LA = sup{n : Xn ∈ A} is not a stopping time.

Theorem 4.4 (Strong Markov Property). Suppose T is a stopping time of a DTMC (Xn)n≥0.
Then, conditioned on T <∞ and XT = i, the sequence (XT+n)n≥0 behaves exactly like the Markov
chain with initial state i.

Proof of the previous two theorems. By strong Markovian:

Ei[Vi] =
∞∑

n=1

nfn−1
ii (1− fii) =

1
1− fii

.

On the other hand,

Ei[Vi] = Ei

[ ∞∑
n=0

1{Xn=i}

]
=
∞∑

n=0

Ei[1{Xn=i}] =
∞∑

n=0

p
(n)
ii .

Theorem 4.5. Recurrence and transience are class properties, i.e. in a communication class C
either all states are recurrent or all states are transient.

Intuitively, suppose i and j belong to the same class. If i is recurrent and j is transient, each
time the process returns to i there’s a positive chance of going to j. Thus, the process cannot avoid
j forever.

Theorem 4.6. Let P be a DTMC, then

(i) Every recurrent class is closed

(ii) Every finite, closed class is positive recurrent
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Intuitively, if the class is not closed, there’s an escape route, and thus the class cannot be
recurrent. In a finite and closed class, it cannot be the case that every state is visited a finite
number of times. So, the chain is recurrent.

Infinite closed class could be transient or recurrent. Consider a random walk on Z, where
pi,i+1 = p and pi+1,i = 1− p, for all i ∈ Z, 0 < p < 1 The chain is an infinite and closed class. For
any state i, we have

p
(2n+1)
ii = 0

p
(2n)
ii =

(
2n
n

)
pn(1− p)n

Hence,
∞∑

n=0

p
(2n)
ii =

∞∑
n=0

(
2n
n

)
pn(1− p)n

≈
∑
n≥n0

√
4πn(2n/e)2n(1 + o(1))
2πn(n/e)2n(1 + o(1))

pn(1− p)n

≈
∑
n≥n0

1√
πn

(4p(1− p))n(1 + o(1)).

which is ∞ if p = 1/2 and finite if p 6= 1/2.

Theorem 4.7. In an irreducible and recurrent chain, fij = 1 for all i, j

This is true due to the following reasoning. If fij < 1, there’s a non-zero chance of the chain
starting from j, getting to i, and never come back to j. However, j is recurrent!

Example 4.8 (Birth-and-Death Chain). Consider a DTMC on state space N where

• pi,i+1 = ai, pi,i−1 = bi, pii = ci

• ai + bi + ci = 1, ∀i ∈ N, and implicitly b0 = 0

• ai, bi > 0 for all i, except for b0

The chain is called a birth-and-death chain.

The question is, when is this chain transient/recurrent? To answer this question, we need some
results about computing hitting probabilities

Let P be a DTMC on I. Let A ⊆ I. The hitting time HA is defined to be

HA := inf{n ≥ 0 : Xn ∈ A}.

The probability of hitting A starting from i is

hA
i := Probi[HA <∞].

If A is a closed class, the hA
i are called the absorption probabilities. The mean hitting time µA

i is
defined by

µA
i := Ei[HA] =

∑
n<∞

nProb[HA = n] +∞Prob[HA =∞].
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Theorem 4.9. The vector (hA
i : i ∈ I) is the minimal non-negative solution to the following system

hA
i = 1 for i ∈ A
hA

i =
∑
j∈I

pijh
A
j for i /∈ A

Here, “minimal” means if x is another non-negative solution then xi ≥ hA
i for all i.

Theorem 4.10. The vector (µA
i : i ∈ I) is the minimal non-negative solution to the following

system 
µA

i = 0 for i ∈ A
µA

i = 1 +
∑
j /∈A

pijµ
A
j for i /∈ A

Back to the Birth-and-Death Chain, we can use the above theorem to derive whether the chain
is transient or recurrent. Note that

f00 = c0 + a0h
{0}
1 = 1− a0(1− h{0}1 ).

The system of equations is {
h
{0}
0 = 1
h
{0}
i = aih

{0}
i+1 + cih

{0}
i + bih

{0}
i−1 for i ≥ 1

Define dn := b1...bn
a1...an

, n ≥ 1, and d0 = 1

When
∑∞

n=0 dn =∞, h{0}i = 1,∀i is the solution.
When

∑∞
n=0 dn <∞, we have the following solutionh

{0}
0 = 1

h
{0}
i =

P∞
j=i djP∞
j=0 dj

< 1 for i ≥ 1

Thus,

• the birth-and-death chain is recurrent (f00 = 1) when
∑∞

j=0 dj =∞

• the birth-and-death chain is transient (f00 < 1) when
∑∞

j=0 dj <∞

To briefly summarize,

• We often only need to look at closed classes (that’s where the chain will eventually end up).
Thus, we can then consider irreducible chains instead.

• Let P be an irreducible chain. Then,

1. If P is finite, then P is recurrent.

2. If P is infinite, then P could be either transient or recurrent.
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5 Stationary Distributions

We will later examine the behavior of DMTCs “in the limit,” i.e. after we run it for a long time.
A distribution λ is a stationary (also equilibrium or invariant) distribution if λP = λ.

Theorem 5.1. Let P be a DTMC,

(i) Let (Xn)n≥0 = Markov(P, λ), where λ is stationary, then (Xn+m)n≥0 = Markov(P, λ) for
any fixed m.

(ii) In a finite DTMC, suppose for some i ∈ I we have

lim
n→∞

p
(n)
ij = πj , ∀j ∈ I,

then π = (πj : j ∈ I) is an invariant distribution.

In an infinite DTMC, it is possible that lim
n→∞

p
(n)
ij exists for all i, j, producing a vector π for

each i, yet π is not a distribution. For example, consider the DTMC with state space Z and

pi,i+1 = p = 1− q = 1− pi,i−1, ∀i ∈ Z.

(This is called a random walk on Z.) Then,

lim
n→∞

p
(n)
ij = 0,∀i, j.

We often want to know when an irreduciable DTMC has a stationary distribution. The following
concepts are needed to answer this question. Define

µij =
∞∑

n=1

nf
(n)
ij = Ei[Tj ]

Definition 5.2 (Positive and null recurrence). A recurrent state i is positive recurrent if µii <∞.
A recurrent state i is null recurrent if µii =∞.

Example 5.3 (Positive recurrence). Consider the following chain

P =
[

p 1− p
1− p p

]
, for 0 < p < 1.

Let the states be 0 and 1, then

f
(1)
00 = f

(1)
11 = p

f
(n)
00 = f

(n)
11 = (1− p)2pn−2, n ≥ 2

Both states are recurrent. Moreover,

µ00 = µ11 = p+
∞∑

n=2

n(1− p)2pn−2 = 2.

Hence, both states are positive recurrent.
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Example 5.4 (Null recurrence). Consider another Markov chain with I = N where p01 = 1, and

Pm,m+1 =
m

m+ 1
, ∀m ≥ 1

Pm,0 =
1

m+ 1
, ∀m ≥ 1.

Then,

f
(1)
00 = 0

f
(n)
00 =

1
n(n− 1)

f00 =
∞∑

n=1

f
(n)
00 = 1

µ00 =
∞∑

n=1

nf
(n)
00 =

∞∑
n=1

1
n

=∞.

Consequently, 0 is a null recurrent state.

Theorem 5.5. Positive and null recurrence are class properties, i.e. in a recurrent communication
class either all states are positive recurrent or all states are null recurrent.

Why is it true? Suppose i and j belong to the same class. If i is recurrent and j is transient,
each time the process returns to i there’s a positive chance of going to j. Thus, the process cannot
avoid j forever.

Theorem 5.6 (Existence of a Stationary Distribution). An irreducible DTMC P has a stationary
distribution if and only if one of its states is positive recurrent. Moreover, if P has a stationary
distribution π, then

πi = 1/µii

.

The line of proof is as follows. Every irreducible and recurrent P basically has a unique invariant
measure (unique up to rescaling). Due to positive recurrence, the measure can be normalized to be
come an invariant distribution. This strategy is manifested in the next lemma.

Define the expected time spent in i between visits to k

γ
(k)
i = Ek

[
Tk−1∑
n=0

1Xn=i

]
Lemma 5.7. If P is irreducible and recurrent, then

(i) γ
(k)
k = 1

(ii) the vector γ(k) = (γ(k)
i | i ∈ I) is an invariant measure, namely

γ(k)P = γ(k)

(iii) 0 < γ
(k)
i <∞ for all i ∈ I

Conversely, if P is irreducible and λ is an invariant measure with λk = 1, then λ ≥ γ(k). Moreover,
if P is also recurrent, then λ = γ(k)

9



6 Limit Behavior

For a state i ∈ I, let period(i) = gcd{n ≥ 1 : p(n)
ii > 0}. When period(i) ≥ 2, state i is said to be

periodic with period period(i). When period(i) = 1, state i is aperiodic. A DTMC is periodic if it
has a periodic state. Otherwise, the chain is aperiodic. i

Exercise 3. If i↔ j, then period(i) = period(j).

Exercise 4. If i is aperiodic, then ∃n0 : p(n)
ii > 0, ∀n ≥ n0.

Exercise 5. If P is irreducible and has an aperiodic state i, then Pn has all strictly positive entries
for sufficiently large n.

An ergodic state is an aperiodic and positive recurrent state. Roughly (not technically correct
but close), positive recurrence implies the existence of a unique stationary distribution, and aperi-
odicity ensures that the chain tends to the stationary distribution in the limit. An ergodic Markov
chain is a Markov chain in which all states are ergodic. (Basically, a “well-behaved” chain.)

Theorem 6.1 (Convergence to equilibrium). Suppose P is irreducible and ergodic. Then, it has
an invariant distribution π. Moreover,

1
µjj

= πj = lim
n→∞

p
(n)
ij , ∀j ∈ I.

Thus, π is the unique invariant distribution of P.

Remark 6.2. There is a generalized version of this theorem for irreducible chains with period
d ≥ 2. (And the chain is not even required to be positive recurrent.)

Exercise 6. Prove that if a DTMC is irreducible then it has at most one stationary distribution.

Let

Vi(n) =
n−1∑
k=0

1{Xk=i}.

Theorem 6.3 (Ergodic Theorem). Let P be an irreducible DTMC. Then

Prob
[

lim
n→∞

Vi(n)
n

=
1
µii

]
= 1

Moreover, if P is positive recurrent with (unique) invariant distribution π, then for any bounded
function f : I → R

Prob

[
lim

n→∞

1
n

n−1∑
k=0

f(Xk) =
∑
i∈I

πifi

]
= 1,
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