What is it about?

- Probabilistic thinking!
- Administrative Stuff
 - 5 assignments (to be done individually)
 - 1 final presentation and report (I will assign papers and topic)

First few weeks

- Gentle introduction to concepts and techniques from probability theory
- Done via sample problems from many areas (networking, algorithms, combinatorics, coding, learning theory, etc.)
- PTCF = Probability Theory Concepts and Facts

• Discrete Probability Space, Events, Union Bound

• Application: "broadcast" to a group of legitimate users

- DVD or CD-ROM distribution of movies or softwares
- Pay-per-view subscriptions
- Online databases
- Some user might be traitor, giving his key(s) to a pirate
- Pirate sells decryption device on black market
- Problem: obtain device, identify the (single) traitor
- Two extremes, both do not work well
 - Single shared key: can't trace the traitor
 - Each person a key: cipher-text too large!

Traitor Tracing and Sperner Family

- Set of keys T, |T| = t
- n users, user i given a subset $F_i \subseteq T$ of keys

Claim

To be able to trace a traitor, $F_i \not\subseteq F_j$, for all $i \neq j$.

• A family ${\mathcal F}$ of sets where no member is contained in another is called a Sperner family

Main Questions

- Given n, find the smallest t for which a Sperner family of n sets on $[t]=\{1,\cdots,t\}$ exists
- Dually, given t find the maximum n for which a Sperner family of n sets on [t] exists

Theorem (Sperner, 1928)

The maximum size of a family \mathcal{F} of subsets of [t] whose members do not contain one another is $\binom{t}{\lfloor t/2 \rfloor}$.

- The collection of $\lfloor t/2 \rfloor$ -subsets of [t] is a Sperner family
- Thus, suffices to show that $|\mathcal{F}| \leq {t \choose |t/2|}$ for any Sperner family \mathcal{F}
- Pick a permutation π of [t] uniformly at random
- For $F \in \mathcal{F}$, let A_F be the event that F is a prefix of π

$$\mathsf{Prob}[A_F] = \frac{k!(t-k)!}{t!} = \frac{1}{\binom{t}{k}} \ge \frac{1}{\binom{t}{\lfloor t/2 \rfloor}}, \text{ where } k = |F|$$

• The A_F are mutually exclusive (why?), hence

$$1 \geq \operatorname{Prob}\left[\bigcup_{F \in \mathcal{F}} A_F\right] = \sum_{F \in \mathcal{F}} \operatorname{Prob}[A_F] \geq \frac{|\mathcal{F}|}{\binom{t}{\lfloor t/2 \rfloor}}$$

PTCF: Simple Probability Space

Sample Space Ω

- Ω is a finite set of all possible outcomes of some experiment
- Each outcome occurs equally likely
- A subset A of outcomes is an event
 - Think of it as a set of outcomes satisfying a certain property
- $\operatorname{Prob}[A] = \frac{|A|}{|\Omega|}$: the fraction of outcomes in A
- In most cases, not a good way to think about probability spaces

PTCF: Discrete Probability Space

Sample Space Ω

- Each $\omega \in \Omega$ is assigned a number $p_{\omega} \in [0, 1]$, such that $\sum_{\omega \in \Omega} p_{\omega} = 1$.
- For any event $A, \operatorname{Prob}[A] = \sum_{\omega \in A} p_{\omega}.$
- In the simple space, $p_{\omega} = \frac{1}{|\Omega|}, \forall \omega$
- Note: this is not the most general definition, but suffices for now.

- Could think of it as a mathematical function, like saying "give each outcome ω a number p_ω equal to $1/|\Omega|$ "
- That's not the probabilistic way of thinking!
- Probabilistic way of thinking:
 - An experiment is an *algorithm* whose outcome is not deterministic
 - For example, algorithms making use of a random source (like a bunch of "fair" coins)
 - $\bullet~\Omega$ is the set of all possible outputs of the algorithm
 - p_ω is the "likelihood" that ω is output

- Suppose we know there are $\leq d < n$ traitors out of n users
- User j gets key set $F_j,$ set system $\mathcal{F}=\{F_j\}_{j=1}^n$

Claim (Property \mathcal{F} must satisfy) For arbitrary $j_0, j_1, \dots, j_d \in [n]$, $F_{i_0} \not\subseteq F_{i_1} \cup \dots \cup F_{i_d}$.

- Such a family $\mathcal F$ is called a *d*-cover-free family
- d-cover-free family of size n on [t] is equivalent to d-disjunct matrix

- A $t \times n$ binary matrix **A** is called *d*-disjunct iff the union of any *d* columns does not contain another column
- Columns are codewords of superimposed codes
- Rate of the code is $R(\mathbf{A}) = \frac{\log n}{t}$
- $\bullet\,$ Want codes with high rates. But, as $n\to\infty$ and $d\to\infty$

$$\frac{1}{d^2\log e}(1+o(1)) \leq \limsup_{\mathbf{A}} R(\mathbf{A}) \leq \frac{2\log d}{d^2}(1+o(1))$$

(From Dyachkov, Rykov (1982), and Dyachkov, Rykov and Rashad (1989))

• We'll prove the lower bound

Want to prove that $t \times n$ *d*-disjunct matrix exists with small t Strategy:

- Fix t (which we'll choose later)
- Choose a $t \times n$ matrix \mathbf{A} at random, somehow
- Prove that, with t = t(d, n),

 $\mathsf{Prob}[\mathbf{A} \text{ is } d\text{-disjunct}] > 0.$

• Or, equivalently

 $\mathsf{Prob}[\mathbf{A} \text{ is not } d\text{-disjunct}] < 1.$

- Set a_{ij} to 1 with probability p
- Fix j_0 and a set $C = \{j_1, \cdots, j_d\} \subseteq [n]$, $j_0 \notin C$
- (j_0, C) is bad for A if column j_0 is contained in the union of columns in C
- Let $B_{j_0,C}$ be the event that (j_0,C) is bad
- A is not d-disjunct implies $\bigcup_{(j_0,C)} B_{j_0,C}$, thus

$$\mathsf{Prob}[A \text{ is not } d\text{-disjunct}] \leq \mathsf{Prob}\left[\bigcup_{j_0,C} B_{j_0,C}\right] \leq \underbrace{\cdots}_{how?} < 1$$

Lemma

Let B_1, B_2, \ldots be any finite or countably infinite sequence of events. Then,

$$\mathsf{Prob}\left[\bigcup_{i\geq 1}B_i
ight]\leq \sum_{i\geq 1}\mathsf{Prob}[B_i]$$

Note:

- this bound holds for any probability space (not just simple spaces).
- the bound is simple but extremely useful!

Existence of Good *d*-disjunct Matrix

$$\mathsf{Prob}\left[\bigcup_{j_0,C} B_{j_0,C}\right] \le \sum_{j_0,C} \mathsf{Prob}[B_{j_0,C}] = \sum_{j_0,C} \left[1 - p(1-p)^d\right]^t$$

• Set p = 1/(d+1), A is not d-disjunct with probability at most

$$(d+1)\binom{n}{d+1}\left[1-\frac{1}{d+1}(1-\frac{1}{d+1})^d\right]^t$$

- $f(x) = (1 1/(x + 1))^x$ is decreasing when $x \ge 1$, and $\lim_{x\to\infty} f(x) = 1/e$, hence $f(x) \ge 1/e$
- RHS is upper-bounded by

$$(d+1)\binom{n}{d+1} \left[1 - \frac{1}{e(d+1)}\right]^t \le (d+1)\left(\frac{ne}{d+1}\right)^{d+1} e^{-1/e(d+1)}$$

• This is < 1 as long as $t \ge 2e(d+1)^2 \ln (en/(d+1))$.

$$1 + x \le e^{-}, \quad \forall x \in \mathbb{R}$$

$$\sum_{i=0}^{d} \binom{n}{i} \le \left(\frac{ne}{d}\right)^{d}, \quad \forall d \le n$$
(1)

 $\sim m$

x

/

1 .

1

(1)

- To show the existence of some combinatorial object, set up some probability space and show that it exists with probability > 0
- The above is essentially a pigeonhole principle kind of proof, casted in probabilistic language
- We will see throughout the course that the probabilistic language is crucial!