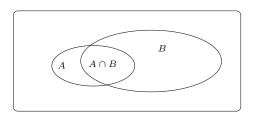
Lecture 2: Randomized Algorithms

- Independence & Conditional Probability
- Random Variables
- Expectation & Conditional Expectation
- Law of Total Probability
- Law of Total Expectation
- Derandomization Using Conditional Expectation

PTCF: Independence Events and Conditional Probabilities



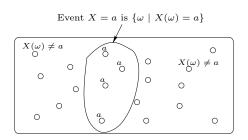
• The conditional probability of A given B is

$$\mathsf{Prob}[A \mid B] := \frac{\mathsf{Prob}[A \cap B]}{\mathsf{Prob}[B]}$$

- ullet A and B are independent if and only if $\operatorname{Prob}[A\mid B]=\operatorname{Prob}[A]$
- ullet Equivalently, A and B are independent if and only if

$$\mathsf{Prob}[A \cap B] = \mathsf{Prob}[A] \cdot \mathsf{Prob}[B]$$

PTCF: Discrete Random Variable



- A random variable is a function $X: \Omega \to \mathbb{R}$
- $p_X(a) = \text{Prob}[X = a]$ is called the probability mass function of X
- $P_X(a) = \operatorname{Prob}[X \leq a]$ is called the (cumulative/probability) distribution function of X

PTCF: Expectation and its Linearity

• The expected value of X is defined as

$$\mathsf{E}[X] := \sum_a a \operatorname{Prob}[X = a].$$

• For any set X_1, \ldots, X_n of random variables, and any constants c_1, \ldots, c_n

$$\mathsf{E}[c_1X_1 + \dots + c_nX_n] = c_1\mathsf{E}[X_1] + \dots + c_n\mathsf{E}[X_n]$$

This fact is called linearity of expectation

PTCF: Indicator/Bernoulli Random Variable

$$X:\Omega\to\{0,1\}$$

$$p=\operatorname{Prob}[X=1]$$

X is called a Bernoulli random variable with parameter p

If X=1 only for outcomes ω belonging to some event A, then X is called an indicator variable for A

$$\begin{array}{rcl} \mathsf{E}[X] & = & p \\ \mathsf{Var}\left[X\right] & = & p(1-p) \end{array}$$

PTCF: Law of Total Probabilities

• Let A_1, A_2, \ldots be any partition of Ω , then

$$\mathsf{Prob}[A] = \sum_{i \geq 1} \mathsf{Prob}[A \mid A_i] \, \mathsf{Prob}[A_i]$$

(Strictly speaking, we also need "and each A_i is measurable," but that always holds for finite Ω .)

Example 1: Randomized Quicksort

```
Randomized-Quicksort(A)
 1: n \leftarrow \mathsf{length}(A)
 2: if n = 1 then
       Return A
 4: else
       Pick i \in \{1, ..., n\} uniformly at random, A[i] is called the pivot
 6: L \leftarrow \text{elements} < A[i]
 7: R \leftarrow \text{elements} > A[i]
 8: // the above takes one pass through A
 9: L \leftarrow \text{Randomized-Quicksort}(L)
10:
       R \leftarrow \text{Randomized-Quicksort}(R)
       Return L \cdot A[i] \cdot R
11:
12: end if
```

Analysis of Randomized Quicksort (0)

- The running time is proportional to the number of comparisons
- Let $b_1 \leq b_2 \leq \cdots \leq b_n$ be A sorted non-decreasingly
- For each i < j, let X_{ij} be the indicator random variable indicating if b_i was ever compared with b_j
- The expected number of comparisons is

$$\mathsf{E}\left[\sum_{i < j} X_{ij}\right] = \sum_{i < j} \mathsf{E}[X_{ij}] = \sum_{i < j} \mathsf{Prob}[b_i \ \& \ b_j \ \mathsf{were} \ \mathsf{compared}]$$

- b_i was compared with b_j if and only if either b_i or b_j was chosen as a pivot before any other in the set $\{b_i, b_{i+1}, \ldots, b_j\}$. They have equal chance of being pivot first. Hence, $\operatorname{Prob}[b_i \ \& \ b_j \ \text{were compared}] = \frac{2}{j-i+1}$
- Thus, the expected running time is $\Theta(n \lg n)$

Analysis of Randomized Quicksort (1)

- Uncomfortable? What is the sample space?
- \bullet Build a binary tree T, pivot is root, recursively build the left branch with L and right branch with R
- ullet This process yields a random tree T built in n steps, t'th step picks tth pivot, pre-order traversal
- ullet Collection ${\mathcal T}$ of all such trees is the sample space
- $b_i \& b_j$ compared iff one is an ancestor of the other in the tree T
- For simplicity, assume $b_1 < \cdots < b_n$.
- Define $I = \{b_i, b_{i+1}, \cdots, b_j\}$
- ullet $A_t = ext{event that first member of } I ext{ picked as a pivot at step } t$

Analysis of Randomized Quicksort (2)

• From law of total probability

$$\mathsf{Prob}[b_i \text{ first pivot of } I] = \sum_t \mathsf{Prob}[b_i \text{ first pivot of } I \mid A_t] \, \mathsf{Prob}[A_t]$$

- \bullet At step t, all of I must belong to L or R of some subtree, say $I\subset L$
- ullet At step t, each member of L chosen with equal probability
- Hence, each member of I chosen with equal probability
- ullet Hence, conditioned on A_t , b_i chosen with probability

$$\frac{1}{|I|} = \frac{1}{j-i+1}.$$

Example 2: Randomized Min-Cut

Min-Cut Problem

Given a multigraph G, find a cut with minimum size.

RANDOMIZED MIN-CUT(G)

- 1: **for** i = 1 **to** n 2 **do**
- 2: Pick an edge e_i in G uniformly at random
- 3: Contract two end points of e_i (remove loops)
- 4: end for
- 5: // At this point, two vertices u, v left
- 6: Output all remaining edges between u and v

Analysis

- Let C be a minimum cut, k = |C|
- ullet If no edge in C is chosen by the algorithm, then C will be returned in the end, and vice versa
- For i=1..n-2, let A_i be the event that $e_i \notin C$ and B_i be the event that $\{e_1,\ldots,e_i\}\cap C=\emptyset$

```
Prob[C \text{ is returned}]
```

- $= \operatorname{\mathsf{Prob}}[B_{n-2}]$
- $= \operatorname{\mathsf{Prob}}[A_{n-2} \cap B_{n-3}]$
- $= \operatorname{\mathsf{Prob}}[A_{n-2} \mid B_{n-3}] \operatorname{\mathsf{Prob}}[B_{n-3}]$
- = ..
- $= \operatorname{\mathsf{Prob}}[A_{n-2} \mid B_{n-3}] \operatorname{\mathsf{Prob}}[A_{n-3} \mid B_{n-4}] \cdots \operatorname{\mathsf{Prob}}[A_2 \mid B_1] \operatorname{\mathsf{Prob}}[B_1]$

Analysis

- At step 1, G has min-degree $\geq k$, hence $\geq kn/2$ edges
- Thus,

$$\mathsf{Prob}[B_1] = \mathsf{Prob}[A_1] \ge 1 - \frac{k}{kn/2} = 1 - \frac{2}{n}$$

• At step 2, the min cut is still at least k, hence $\geq k(n-1)/2$ edges. Thus, similar to step 1

$$\mathsf{Prob}[A_2 \mid B_1] \ge 1 - \frac{2}{n-1}$$

• In general,

$$Prob[A_j \mid B_{j-1}] \ge 1 - \frac{2}{n-j+1}$$

Consequently,

$$\operatorname{Prob}[C \text{ is returned}] \geq \prod_{i=1}^{n-2} \left(1 - \frac{2}{n-i+1}\right) = \frac{2}{n(n-1)}$$

How to Reduce the Failure Probability

- The basic algorithm has failure probability at most $1 \frac{2}{n(n-1)}$
- How do we lower it?
- Run the algorithm multiple times, say $m \cdot n(n-1)/2$ times, return the smallest cut found
- The failure probability is at most

$$\left(1 - \frac{2}{n(n-1)}\right)^{m \cdot n(n-1)/2} < \frac{1}{e^m}.$$

PTCF: Mutually Independence and Independent Trials

• A set A_1,\ldots,A_n of events are said to be independent or mutually independent if and only if, for any $k\leq n$ and $\{i_1,\ldots,i_k\}\subseteq [n]$ we have

$$\mathsf{Prob}[A_{i_1}\cap \dots \cap A_{i_k}] = \mathsf{Prob}[A_{i_1}] \cdots \mathsf{Prob}[A_{i_k}].$$

• If n independent experiments (or trials) are performed in a row, with the ith being "successful" with probability p_i , then

Prob[all experiments are successful] = $p_1 \cdots p_n$.

(Question: what is the sample space?)

Las Vegas and Monte Carlo Algorithms

Las Vegas Algorithm

A randomized algorithm which always gives the correct solution is called a Las Vegas algorithm.

Its running time is a random variable.

Monte Carlo Algorithm

A randomized algorithm which may give incorrect answers (with certain probability) is called a Monte Carlo algorithm.

Its running time may or may not be a random variable.

Example 3: Primality Testing

- Efficient Primality Testing is an important (practical) problem
- In 2002, Agrawal-Kayal-Saxena design a deterministic algorithm;
 - \bullet best current running time $\tilde{O}(\log^6 n)$, too slow
 - $\log n \approx 1024$ for 1024-bit crypto systems
- Actually, generating (large) random primes is also fundamental (used in RSA, e.g.)

```
RANDOM-PRIME(n)
```

```
1: m \leftarrow \mathsf{RandInt}(n) // \mathsf{random} \ \mathsf{int} \leq n
```

- 2: **if** isPrime(m) **then**
- 3: Output m
- 4: else
- 5: Goto 1
- 6: end if

Expected Run-Time of Random-Prime

Theorem (Prime Number Theorem (Gauss, Legendre))

Let $\pi(n)$ be the number of primes $\leq n$, then

$$\lim_{n \to \infty} \frac{\pi(n)}{n/\ln n} = 1.$$

This means

$$\mathsf{Prob}[m \text{ is prime}] = \frac{\pi(n)}{n} \approx \frac{1}{\ln n}.$$

Expected number of calls to isPrime(m) is thus $\ln n$.

Simple Prime Test based on Fermat Little Theorem

Theorem (Fermat, 1640)

If n is prime then $a^{n-1} = 1 \mod n$, for all $a \in [n-1]$

SIMPLE-PRIME-TEST(n)

- 1: **if** $2^{n-1} \neq 1 \mod n$ **then**
- 2: Return COMPOSITE // correct!
- 3: **else**
- 4: Return PRIME // may fail, hopefully with small probability
- 5: **end if**
 - Can show failure probability goes to 0 as $n \to \infty$
 - ullet Probability that a 1024-bit composite marked as prime is $\leq 10^{41}$

Composite Witness

```
IS-a-A-WITNESS-FOR-n?(a, n)
 1: // note: a \in [n-1], and n is odd
 2: Let n - 1 = 2^t u. u is odd
 3: x_0 \leftarrow a^u \mod n, // use repeated squaring
 4: for i = 1 to t do
 5: x_i \leftarrow x_{i-1}^2 \mod n
 6: if x_i = 1 and x_{i-1} \neq \pm 1 \mod n then
 7: return TRUE
   end if
 9: end for
10: if x_t \neq 1 then
11: return TRUE
12: end if
13: return FALSE
```

Miller-Rabin Test

Theorem

If n is an odd composite then it has $\geq \frac{3}{4}(n-1)$ witnesses. If n is an odd prime then it has no witnesses.

Miller-Rabin-Test:

 \bullet return ${\tt COMPOSITE}$ if any of the r independent choices of a is a composite witness for n

Failure probability $\leq (1/4)^r$.

PTCF: Law of Total Expectation

The conditional expectation of X given A is defined by

$$\mathsf{E}[X\mid A] := \sum_a a \operatorname{Prob}[X=a\mid A].$$

• Let A_1, A_2, \ldots be any partition of Ω , then

$$\mathsf{E}[X] = \sum_{i \geq 1} \mathsf{E}[X \mid A_i] \, \mathsf{Prob}[A_i]$$

ullet In particular, let Y be any discrete random variable, then

$$\mathsf{E}[X] = \sum_y \mathsf{E}[X \mid Y = y] \, \mathsf{Prob}[Y = y]$$

We often write the above formula as

$$\mathsf{E}[X] = \mathsf{E}[\mathsf{E}[X \mid Y]].$$

Example 4: Max-E3SAT

• An E3-CNF formula is a CNF formula φ in which each clause has exactly 3 literals. E.g.,

$$\varphi = \underbrace{(x_1 \vee \bar{x}_2 \vee x_4)}_{\text{Clause } 1} \wedge \underbrace{(x_1 \vee x_3 \vee \bar{x}_4)}_{\text{Clause } 2} \wedge \underbrace{(\bar{x}_2 \vee \bar{x}_3 \vee x_4)}_{\text{Clause } 3}$$

• Max-E3SAT Problem: given an E3-CNF formula φ , find a truth assignment satisfying as many clauses as possible

A Randomized Approximation Algorithm for Max-E3SAT

ullet Assign each variable to <code>TRUE/FALSE</code> with probability 1/2

Analyzing the Randomized Approximation Algorithm

- Let X_C be the random variable indicating if clause C is satisfied
- Then, $Prob[X_C = 1] = 7/8$
- ullet Let S_{arphi} be the number of satisfied clauses. Then,

$$\mathsf{E}[S_\varphi] = \mathsf{E}\left[\sum_C X_C\right] = \sum_C \mathsf{E}[X_C] = 7m/8 \ge \frac{\mathsf{OPT}}{8/7}$$

(m is the number of clauses)

ullet So this is a randomized approximation algorithm with ratio 8/7

Derandomization with Conditional Expectation Method

- Derandomization is to turn a randomized algorithm into a deterministic algorithm
- By conditional expectation

$$\mathsf{E}[S_\varphi] = \frac{1}{2}\mathsf{E}[S_\varphi \mid x_1 = \text{ TRUE}] + \frac{1}{2}\mathsf{E}[S_\varphi \mid x_1 = \text{ FALSE}]$$

- Both E $[S_{arphi} \mid x_1 = \text{ TRUE}]$ and E $[S_{arphi} \mid x_1 = \text{ FALSE}]$ can be computed in polynomial time
- Suppose $\mathsf{E}[S_{arphi} \mid x_1 = \ \mathrm{TRUE}] \geq \mathsf{E}[S_{arphi} \mid x_1 = \ \mathrm{FALSE}]$, then $\mathsf{E}[S_{arphi} \mid x_1 = \ \mathrm{TRUE}] \geq \mathsf{E}[S_{arphi}] \geq 7m/8$
- Set $x_1 = \text{TRUE}$, let φ' be φ with c clauses containing x_1 removed, and all instances of x_1, \bar{x}_1 removed.
- Recursively find value for x_2

Some Key Ideas We've Learned

- To compute E[X], where X "counts" some combinatorial objects, try to "break" X into $X = X_1 + \cdots + X_n$ of indicator variables
- Then,

$$\mathsf{E}[X] = \sum_{i=1}^{n} \mathsf{E}[X_i] = \sum_{i=1}^{n} \mathsf{Prob}[X_i = 1]$$

• Also remember the law of total probability and conditional expectation