Lecture 2: Randomized Algorithms

Independence & Conditional Probability
Random Variables

Expectation & Conditional Expectation
Law of Total Probability

Law of Total Expectation

Derandomization Using Conditional Expectation

©Hung Q. Ngo (SUNY at Buffalo) CSE 694 — A Fun Course 1/26

PTCEF: Independence Events and Conditional Probabilities

D

@ The conditional probability of A given B is

Prob[A N B

ProblA | B) = —p

e A and B are independent if and only if Prob[A | B] = Prob|[A]
o Equivalently, A and B are independent if and only if

Prob[A N B] = Prob[A] - Prob[B]

©Hung Q. Ngo (SUNY at Buffalo) CSE 694 — A Fun Course 2 /26

PTCF: Discrete Random Variable

Event X =ais {w | X(w) = a}

O
Xém);éu
O

6]
O

e A random variable is a function X : 2 — R
@ px(a) = Prob[X = a] is called the probability mass function of X

@ Px(a) = Prob[X < a] is called the (cumulative/probability)
distribution function of X

©Hung Q. Ngo (SUNY at Buffalo) CSE 694 — A Fun Course 3/26

PTCF: Expectation and its Linearity

@ The expected value of X is defined as

E[X]:=) aProb[X = al.

@ For any set X1,...,X,, of random variables, and any constants
Cly...,Cp

Ele1 X1 + -+ + cnXp] = c1E[Xa] + -+ - + cnE[X5)]

This fact is called linearity of expectation

©Hung Q. Ngo (SUNY at Buffalo) CSE 694 — A Fun Course 4 /26

PTCF: Indicator/Bernoulli Random Variable

X:Q—-{0,1}
p = Prob[X = 1]
X is called a Bernoulli random variable with parameter p

If X =1 only for outcomes w belonging to some event A, then X is called
an indicator variable for A

©Hung Q. Ngo (SUNY at Buffalo) CSE 694 — A Fun Course 5/ 26

PTCF: Law of Total Probabilities

o Let Ay, Ay, ... be any partition of €2, then

Prob[A] = " Prob[A | A;] Prob[A;]
i>1

(Strictly speaking, we also need “and each A; is measurable,” but
that always holds for finite €2.)

©Hung Q. Ngo (SUNY at Buffalo) CSE 694 — A Fun Course 6 /26

Example 1: Randomized Quicksort

RANDOMIZED-QUICKSORT(A)

1. n < length(A)

2: if n =1 then

3: Return A

4: else
Pick i € {1,...,n} uniformly at random, A[] is called the pivot
L — elements < A[i]
R «— elements > AJi]
// the above takes one pass through A
L — RANDOMIZED-QUICKSORT(L)
10 R < RANDOMIZED-QUICKSORT(R)
11: Return L- A[i]- R
12: end if

© o N oo

©Hung Q. Ngo (SUNY at Buffalo) CSE 694 — A Fun Course 7 /26

Analysis of Randomized Quicksort (0)

©Hung Q. Ngo (SUNY at Buffalo) CSE 694 — A Fun Course 8 /26

The running time is proportional to the number of comparisons
Let by < by < --- < b, be A sorted non-decreasingly

For each i < j, let Xj; be the indicator random variable indicating if
b; was ever compared with b;

The expected number of comparisons is

E ZXij = Z E[Xj] = Z Prob[b; & b; were compared)]

1<j 1<j 1<j

b; was compared with b; if and only if either b; or b; was chosen as a
pivot before any other in the set {b;, b;y1,...,b;}. They have equal
chance of being pivot first. Hence,

Prob[b; & b; were compared] = ﬁ%

Thus, the expected running time is ©(nlgn)

Analysis of Randomized Quicksort (1)

Uncomfortable? What is the sample space?

Build a binary tree T, pivot is root, recursively build the left branch
with L and right branch with R

This process yields a random tree T" built in n steps, t'th step picks
tth pivot, pre-order traversal

Collection 7 of all such trees is the sample space

b; & b; compared iff one is an ancestor of the other in the tree T
For simplicity, assume by < --- < b,,.

Define I = {b;,bj1+1,--- ,b;}

A; = event that first member of I picked as a pivot at step ¢

©Hung Q. Ngo (SUNY at Buffalo) CSE 694 — A Fun Course

9/ 26

Analysis of Randomized Quicksort (2)

From law of total probability

Probl[b; first pivot of] = Z Prob[b; first pivot of I | A;] Prob[A,]
t

At step t, all of I must belong to L or R of some subtree, say I C L
At step t, each member of L chosen with equal probability

Hence, each member of I chosen with equal probability

Hence, conditioned on A;, b; chosen with probability

I |
Il j—i+1

©Hung Q. Ngo (SUNY at Buffalo) CSE 694 — A Fun Course 10 / 26

Example 2: Randomized Min-Cut

Min-Cut Problem J

Given a multigraph G, find a cut with minimum size.

RANDOMIZED MIN-CUT(G)
1: fori=1ton—2do
2: Pick an edge ¢; in G uniformly at random
3: Contract two end points of e; (remove loops)
4: end for
5: // At this point, two vertices u, v left
6: Output all remaining edges between u and v

©Hung Q. Ngo (SUNY at Buffalo) CSE 694 — A Fun Course 11 /26

o Let C' be a minimum cut, k = |C]|

@ If no edge in C is chosen by the algorithm, then C' will be returned in
the end, and vice versa

e Fori=1..n—2, let A; be the event that e¢; ¢ C' and B; be the event
that {61,...,6i}ﬂ02®

Prob[C' is returned|
= Prob[B,_2]
= Prob[4,,—2 N B;,_3]
[An—2 | Bp—3] Prob[Bp,_s]

= Prob[A,,—3 | By—3] Prob[A,,_3 | By—_4]---Prob[Ay | Bi] Prob[B]

©Hung Q. Ngo (SUNY at Buffalo) CSE 694 — A Fun Course 12 /26

@ At step 1, G has min-degree > k, hence > kn/2 edges

@ Thus, "
2
PrOb[Bl] = Prob[Al] 1-— m =1- ﬁ

At step 2, the min cut is still at least k, hence > k(n — 1)/2 edges.
Thus, similar to step 1
2

Prob[As | B1] > 1 —
rob[dz | Bi] 21— ——

In general,
2

o Consequently,

n—2
2) 2
Prob[C is returned] > 1= -
ro[Clsreurne]_il_[l< n—i+1> n(n—1)

©Hung Q. Ngo (SUNY at Buffalo) CSE 694 — A Fun Course 13 /26

How to Reduce the Failure Probability

2

@ The basic algorithm has failure probability at most 1 — w=T)

@ How do we lower it?

@ Run the algorithm multiple times, say m - n(n — 1)/2 times, return
the smallest cut found

@ The failure probability is at most

- 9 m-n(n—1)/2 § i
n(n —1) em’

©Hung Q. Ngo (SUNY at Buffalo) CSE 694 — A Fun Course 14 / 26

PTCF: Mutually Independence and Independent Trials

@ Aset Aq,..., A, of events are said to be independent or mutually
independent if and only if, for any & < n and {iy,... it} C [n] we
have

F’I’Ob[z‘li1 n---N A’lk] = Prob[Ail] oo PI’Ob[Alk]
e If n independent experiments (or trials) are performed in a row, with
the ith being “successful” with probability p;, then
Probl[all experiments are successful] = py -+ - py,.

(Question: what is the sample space?)

©Hung Q. Ngo (SUNY at Buffalo) CSE 694 — A Fun Course

Las Vegas and Monte Carlo Algorithms

Las Vegas Algorithm

A randomized algorithm which always gives the correct solution is called a
Las Vegas algorithm.
Its running time is a random variable.

Monte Carlo Algorithm

A randomized algorithm which may give incorrect answers (with certain
probability) is called a Monte Carlo algorithm.
Its running time may or may not be a random variable.

©Hung Q. Ngo (SUNY at Buffalo) CSE 694 — A Fun Course 16 / 26

Example 3: Primality Testing

o Efficient Primality Testing is an important (practical) problem
@ In 2002, Agrawal-Kayal-Saxena design a deterministic algorithm;
e best current running time O(log6 n), too slow
e logn =~ 1024 for 1024-bit crypto systems
o Actually, generating (large) random primes is also fundamental (used
in RSA, e.g.)
RANDOM-PRIME(n)
m < RandInt(n) // random int < n
if isPrime(m) then
Output m
else
Goto 1
end if

A L

©Hung Q. Ngo (SUNY at Buffalo) CSE 694 — A Fun Course 17 / 26

Expected Run-Time of

Theorem (Prime Number Theorem (Gauss, Legendre))

Let m(n) be the number of primes < n, then

m(n)
m ———— =
n—ocon/lInn

This means

1
Prob[m is prime] = () N —.
n Inn
Expected number of calls to isPrime(m) is thus Inn.

©Hung Q. Ngo (SUNY at Buffalo) CSE 694 — A Fun Course 18 / 26

Simple Prime Test based on Fermat Little Theorem

Theorem (Fermat, 1640) }

If n is prime then a®~! = 1 mod n, for all a € [n — 1]

SIMPLE-PRIME-TEST(n)
if 27! £ 1 mod n then

=

2: Return COMPOSITE // correct!

3: else

4: Return PRIME // may fail, hopefully with small probability
5. end if

@ Can show failure probability goes to 0 as n —

@ Probability that a 1024-bit composite marked as prime is < 1041

©Hung Q. Ngo (SUNY at Buffalo) CSE 694 — A Fun Course 19 / 26

Composite Witness

IS-a-A-WITNESS-FOR-n7(a, n)

1:

[= S =S

© O N a R wN

// note: a € [n — 1], and n is odd
Let n — 1 = 2%u, u is odd
xo < a* mod n, // use repeated squaring
fori=1tot do
T; — 3312—1 mod n
if x; =1 and ;1 # +1 mod n then
return TRUE
end if
end for
if ©; # 1 then

return TRUE

:end if
. return FALSE

©Hung Q. Ngo (SUNY at Buffalo) CSE 694 — A Fun Course 20 / 26

Miller-Rabin Test

Theorem

If n is an odd composite then it has > 3(n — 1) witnesses. If n is an odd
prime then it has no witnesses.

Miller-Rabin-Test:

@ return COMPOSITE if any of the r independent choices of a is a
composite witness for n

Failure probability < (1/4)".

©Hung Q. Ngo (SUNY at Buffalo) CSE 694 — A Fun Course 21 /26

PTCF: Law of Total Expectation

@ The conditional expectation of X given A is defined by

E[X | 4] : ZaProb —a| A

o Let Ay, Ay, ... be any partition of €2, then

=) E[X | Aj] Prob[A|]

i>1

@ In particular, let Y be any discrete random variable, then

= E[X | Y =y]Prob[Y =y]
Y

@ We often write the above formula as
E[X] =E[E[X | Y]].

©Hung Q. Ngo (SUNY at Buffalo) CSE 694 — A Fun Course 22 /26

Example 4. Max-E3SAT

@ An E3-CNF formula is a CNF formula ¢ in which each clause has
exactly 3 literals. E.g.,

o= (x1VZ2Vaxg) AN(x1 VI3V ITY)NA(T2V T3V x4)

Clause 1 Clause 2 Clause 3

@ Max-E3SAT Problem: given an E3-CNF formula ¢, find a truth
assignment satisfying as many clauses as possible

A Randomized Approximation Algorithm for Max-E3SAT

@ Assign each variable to TRUE/FALSE with probability 1/2

©Hung Q. Ngo (SUNY at Buffalo) CSE 694 — A Fun Course 23 /26

Analyzing the Randomized Approximation Algorithm

@ Let X be the random variable indicating if clause C' is satisfied
@ Then, Prob[X¢c =1]=7/8

@ Let S, be the number of satisfied clauses. Then,

1S,] =E [zcj XC] S E[Xc] = Tm/8 > Z;’;

c

(m is the number of clauses)
@ So this is a randomized approximation algorithm with ratio 8/7

©Hung Q. Ngo (SUNY at Buffalo) CSE 694 — A Fun Course 24 / 26

Derandomization with Conditional Expectation Method

@ Derandomization is to turn a randomized algorithm into a
deterministic algorithm
@ By conditional expectation

1 1
E[S,] = §E[S¢ | 11 = TRUE] + §E[S¢ | 21 = FALSE]

e Both E[S, | 1 = TRUE] and E[S, | 21 = FALSE] can be computed
in polynomial time
@ Suppose E[S, | 1 = TRUE|] > E[S,, | 1 = FALSE], then

E[S, | 1 = TRUE] > E[S,] > Tm/8

@ Set ; =TRUE, let ¢’ be ¢ with ¢ clauses containing x; removed, and
all instances of x1,Z; removed.
@ Recursively find value for x-

©Hung Q. Ngo (SUNY at Buffalo) CSE 694 — A Fun Course 25/ 26

Some Key Ideas We've Learned

e To compute E[X], where X “counts” some combinatorial objects, try
to “break” X into X = X7 + --- + X, of indicator variables

@ Then,
E[X] =) E[X;] =) Prob[X; = 1]

@ Also remember the law of total probability and conditional expectation

©Hung Q. Ngo (SUNY at Buffalo) CSE 694 — A Fun Course

