Techniques

• Union bound

- Argument from expectation
- Alterations
- The second moment method
- The (Lovasz) Local Lemma

And much more

- Alon and Spencer, "The Probabilistic Method"
- Bolobas, "Random Graphs"

The Union Bound Technique: Main Idea

- A: event our structure exists, want Prob[A] > 0 or $Prob[\overline{A}] < 1$
- Suppose \bar{A} implies one of B_1, \cdots, B_n must hold
- (Think of the B_i as "bad" events)
- Then, by the union bound

$$\operatorname{Prob}\left[\bar{A}
ight] \leq \operatorname{Prob}\left[\bigcup_{i}B_{i}
ight] \leq \sum_{i}\operatorname{Prob}[B_{i}]$$

Thus, as long as

$$\sum_i \mathsf{Prob}[B_i] < 1$$

our structure exists!

We have seen this used in *d*-disjunct matrix examples.

- A tournament is an orientation G of K_n
- Think of $u \rightarrow v$ as "player u beats player v"
- Fix integer k, G is *nice* if for every k-subset S of players there is another v who beats all of S
- Intuitively, nice tournaments may exist for large n (Remember the theme? "Sufficiently large space contains locally nice structures")

Existence of Nice Tournaments (Erdős, 1963)

- For every $\{u,v\},$ let $u \to v$ with probability 1/2
- A: event that a random G is nice
- \bar{A} implies $\bigcup_{|S|=k} B_S$ where $B_S = "S$ is not beaten by any $v \notin S$ "

$$\mathsf{Prob}[B_S] = \left(1 - \frac{1}{2^k}\right)^{n-k}$$

Hence, nice tournaments exist as long as ⁽ⁿ⁾/_k (1 - ¹/_{2^k})^{n-k} < 1
What's the order of n for which this holds?

use
$$\binom{n}{k} \le \left(\frac{ne}{k}\right)^k$$
 and $\left(1 - \frac{1}{2^k}\right)^{n-k} < e^{-\frac{n-k}{2^k}}$

Nice tournaments exist as long as (^{ne}/_k)^k e^{-^{n-k}/_{2^k}} < 1.
So, n = Ω (k² · 2^k) is large enough!

Example 2: 2-coloring of uniform hypergraphs

- Given a k-uniform hypergraph G = (V, E), i.e.
 - E is a collection of k-subsets of V
- G is 2-colorable iff each vertex in V can be assigned with red or blue such that there's no monochromatic edge
- Intuitively, if |E| is small then G is 2-colorable!
- Question is: "how small?"
- An answer may be obtained along the line: "for *n* small enough, a random 2-coloring is good with positive probability"

Theorem (Erdős, 1963)

Every k-uniform hypergraph with $< 2^{k-1}$ edges is 2-colorable!

Example 3: Error-Correcting Codes

- Message $\mathbf{x} \in \{0,1\}^k$
- Encoding $f(\mathbf{x}) \in \{0,1\}^n$, n > k, f an injection
- $C = \{f(\mathbf{x}) \mid \mathbf{x} \in \{0,1\}^k\}$: codewords
- $f(\mathbf{x})$ is sent over noisy channel, few bits altered
- \mathbf{y} is received instead of $f(\mathbf{x})$
- \bullet Find codeword \mathbf{z} "closest" to \mathbf{y} in Hamming distance
- Decoding $\mathbf{x}' = f^{-1}(\mathbf{z})$
- Measure of utilization: relative rate of C

$$R(C) = \frac{\log |C|}{n}$$

• Measure of noise tolerance: relative distance of ${\boldsymbol C}$

$$\delta(C) = \frac{\min_{\mathbf{c}_1 \neq \mathbf{c}_2 \in C} \mathsf{Dist}(\mathbf{c}_1, \mathbf{c}_2)}{n}$$

Linear Codes

• For any $\mathbf{x} \in \mathbb{F}_2^n$, define

 ${}_{\rm WEIGHT}(\mathbf{x})=$ number of 1-coordinates of \mathbf{x}

• E.g., WEIGHT(1001110) = 4

1

• If C is a k-dimensional subspace of \mathbb{F}_2^n , then

$$|C| = 2^{k}$$

$$\delta(C) = \min\{\text{WEIGHT}(\mathbf{x}) \mid \mathbf{x} \in C\}$$

• Every such C can be defined by a parity check matrix A of dimension $(n-k) \times n$:

$$C = \{ \mathbf{x} \mid \mathbf{A}\mathbf{x} = \mathbf{0} \}$$

• Conversely, every $(n-k) \times n$ matrix ${\bf A}$ defines a code C of dimension $\geq k$

Large rate and large distance are conflicting goals

Problem

Does there exist a family of codes $C_k, \ |C_k| = 2^k,$ for infinitely many k, such that

$$R(C_k) \ge R_0 > 0$$

and

 $\delta(C_k) \ge \delta_0 > 0$

(Yes, using "magical graphs.")

Practicality

Design such a family explicitly, such that the codes are efficiently encodable and decodable.

Magical Graph

 $(n,c,d,\alpha,\beta)\text{-}\mathsf{graph}$

 c,d,α,β are constants, n varies.

From Magical Graphs to Code Family

- Suppose (n,c,d,α,β) -graphs exist for infinitely many n, and constants c,d,α,β such that $\beta>d/2$
- $\bullet~$ Consider such a $G=(L\cup R,E)$, |L|=n, |R|=(1-c)n=m
- Let $\mathbf{A} = (a_{ij})$ be the $m \times n$ 01-matrix, column indexed by L, and row-indexed by R, $a_{ij} = 1$ iff $(i, j) \in E$
- Define a linear code with A as parity check:

$$C = \{ \mathbf{x} \mid \mathbf{A}\mathbf{x} = \mathbf{0} \}$$

• Then, $\dim(C) = n - \operatorname{rank}(A) \ge cn$, and

$$|C| = 2^{\dim(C)} \ge 2^{cn} \implies R(C) \ge c$$

• For every $\mathbf{x} \in C$, WEIGHT $(\mathbf{x}) \geq \alpha n$, hence

$$\delta(C) = \frac{\min\{\text{WEIGHT}(\mathbf{x}) \mid \mathbf{x} \in C\}}{n} \ge \alpha$$

Existence of Magical Graph with $\beta > d/2$

• Determine n, c, d, α, β later

• Let
$$L = [n], R = [(1 - c)n].$$

- Choose each of the d neighbors for $u \in L$ uniformly at random
- For $1\leq s\leq \alpha n,$ let B_s be the "bad" event that some subset S of size s has $|\Gamma(S)|<\beta|S|$
- \bullet For each $S\subset L,\,T\subset R,\,|S|=s,|T|=\beta s,$ define

$$X_{S,T} = \begin{cases} 1 & \Gamma(S) \subseteq T \\ 0 & \Gamma(S) \not\subseteq T \end{cases}$$

Then,

$$\mathsf{Prob}[B_s] \le \mathsf{Prob}\left[\sum_{S,T} X_{S,T} > 0\right] \le \sum_{S,T} \mathsf{Prob}[X_{S,T} = 1]$$

Existence of Magical Graph with $\beta > d/2$

$$\begin{aligned} \mathsf{Prob}[B_s] &\leq \binom{n}{s} \binom{(1-c)n}{\beta s} \left(\frac{\beta s}{(1-c)n}\right)^{sd} \\ &\leq \left(\frac{ne}{s}\right)^s \left(\frac{(1-c)ne}{\beta s}\right)^{\beta s} \left(\frac{\beta s}{(1-c)n}\right)^{sd} \\ &= \left[\left(\frac{s}{n}\right)^{d-\beta-1} \left(\frac{\beta}{1-c}\right)^{d-\beta} e^{\beta+1}\right]^s \\ &\leq \left[\left(\frac{\alpha\beta}{1-c}\right)^{d-\beta} \cdot \frac{e^{\beta+1}}{\alpha}\right]^s \end{aligned}$$

Choose $\alpha=1/100\text{, }c=1/10\text{, }d=32\text{, }\beta=17>d/2\text{,}$

 $\mathsf{Prob}[B_s] \le 0.092^s$

The probability that such a randomly chosen graph is ${\bf not}$ an $(n,c,d,\alpha,\beta)\text{-}{\rm graph}$ is at most

$$\sum_{s=1}^{\alpha n} \operatorname{Prob}[B_s] \le \sum_{s=1}^{\infty} 0.092^s = \frac{0.092}{1 - 0.092} < 0.11$$

Not only such graphs exist, there are **a lot** of them!!!