The worst algorithm in the history of humanity
Asymptotic notations: Big-O, Big-Omega, Theta
An iterative solution

A better iterative solution

The repeated squaring trick



Fibonacci sequence

THE WORST ALGORITHM IN HISTORY
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0,1,1,2,3,5,8,13, 21, 34, ...

ol=o0
1] =1
2] =F[1] + Flo] =1

3] =F[2] +F[1] =2
4] = F[3] + F[2] =3
n| = Fln-1] + F[n-2]
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Recursion — fib1()

*/

unsigned long long fibl(unsigned long n) {
if (n <= 1) return n;
return fibl(n-1) + fibl(n-2);
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Looks like the run time is doubled for each n++

We won’t be able to compute F[120] if the trend
continues

The age of the universe is 15 billion years < 2°° sec

The function looks ... exponential
Is there a theoretical justification for this?



Sometimes we mean a C++ function

Sometimes we mean a mathematical function like
F[n]

A C++ function can be used to compute a
mathematical function

But not always

What we mean should be clear from context



Analysis of fib1()

GUESS AND INDUCT STRATEGY

THINKING ABOUT THE MAIN BODY
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For n > 1, suppose it takes ¢ mili-sec in fib1(n) not
counting the recursive calls

For n=0, 1, suppose it takes d mili-sec
T[n] = time fib1(n) takes

Tlo] =T[1] =d

T[n] =c + T[n-1] + T[n-2] whenn > 1

To estimate T[n], we can

Guess a formula for it
Prove by induction that it works



The guess

10

* Bottom-up iteration

Tlo] =T[1] =d
T[2] =c + 2d
T[3] = 2¢ + 3d
Tl4] = 4c + 5d
T[5] = 7¢ + 8d
T[6] = 12¢ + 13d

» Can you guess a formula for T[n]?
T[n] = (F[n+1] — 1)c + F[n+1]d



The base cases: n=0,1

The hypothesis: suppose
Tlm] = (Flm+1] — 1)c + Flm+1]d forall m <n
The induction step:
T[n] = ¢ + T[n-1] + T[n-2]
=c¢ + (F[n] — 1)c + F[n]d
+ (F[n-1] — 1)c + F[n-1]d
= (F[n+1] — 1)c + F[n]d



How does this help?

_ 9" —(=1/9)"

>

The golden ratio




So, there are constants C, D such that

Co" <Tn] < Do"

This explains the exponential-curve we saw
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Asymptotic analysis

BACK OF THE ENVELOPE TIME/SPACE ESTIMATION
INDEPENDENT OF WHETHER OUR COMPUTER IS FAST
BIG-O, BIG-OMEGA, THETA
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If we ran fibi1() on a computer with C = 1079:

1077(1.6)*° > 3.77- 10" > 100 - age of univ.

We need a formal way to state that (1.6)" is the
“correct” measure of fib1()’s runtime

How fast the target computer runs shouldn’t concern us



Big-O

f,g: N = R"

f(n) = O(g(n)) iff 3 constants C,ng > 0

such that f(n) < Cg(n),Vn > ng
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Intuition

" f(n) = O(g(n))

cg(n)

(n)

in our case T'[n| = O(¢™)
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f(n) = O(g(n)) means: for n sufficiently large, f(n) is
bounded above by a constant scaling of g(n)
Does the “English translation” make things worse?

An algorithm with runtime f(n) is at least as good as
an algorithm with runtime g(n), asymptotically



Examples
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Big-Omega

f,g: N = R"

f(n) =Q(g(n)) iff 3 constants C,ng > 0

such thatf(n) > Cg(n),Vn > ng
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In picture

f(n)

cg(n)

"0 f(n) = Qg(m))
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Examples

nlogn = Q(n)

2" /10° = Q(n'")




Equivalence
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Theta

f(n) = 0O(g(n)) = f(n) = O(g(n) and g(n) = O(f(n))

We say they “have the same growth rate”

in fib1() example: T|n] = ©(¢")
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In picture

c, 8(n)
f(n)
¢, &(n)

|
n
0 f(n)=©O(g(n))




Better algorithms for F[n]

A LINEAR TIME ALGORITHM USING VECTORS

A LINEAR TIME ALGORITHM USING ARRAYS

A LINEAR TIME ALGORITHM WITH CONSTANT SPACE
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An algorithm using vector

unsigned long long fib2(unsigned long n) {

// this 1s one implementation option

if (n <= 1) return n;

vector<unsigned long long> A;

A.push_back(0); A.push_back(1);

for (unsigned long i=2; i<=n; i++) {
A.push_back(A[i-1]+A[i-2]);

I3

return A[n];

Guess how large an n we can handle this time?
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Data

# seconds 1 Eats up
all my
CPU/
RAM
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How about an array?

unsigned long long fib2(unsigned long n) {
if (n <= 1) return n;
unsigned long longx A = new unsigned long longl[n];
Alo] = 0; Al[1l] = 1;
for (unsigned long i=2; i<=n; i++) {
Ali]l = A[i-11+A[i-2];
Iy

unsigned long long ret = Alnl;
delete [] A;
return ret;
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Data

# seconds 1 Segmentatlon
fault

Data structure matters a great deal!

Some assumptions we made are false if too
much space is involved: computer has to use
hard-drive as memory
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Dynamic programming!

unsigned long long fib3(unsigned long n) {
if (n <= 1) return n;
unsigned long long a=0, b=1, temp;
unsigned long 1i;
for (unsigned long i=2; i<= n; i++) {
temp = a + b; // F[i] = F[i-2] + F[i-1]
= b; // a = F[i-1]
emp; // b = Flil

return temp;
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Data

___

# seconds 1

The answers are incorrect because F[108] is
greater than the largest integer representable

by unsigned long long

But that’s ok. We want to know the runtime
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An even faster algorithm

- THE REPEATED SQUARING TRICK
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We can re-formulate the problem a little:

-
O_

0

-
_1_
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_1_

1
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1| [F[n — 1]
0] | Fn — 2]
Fln+1]

Fin]




Want _ =

—
S =

But can we even compute 3" quickly?



First algorithm

unsigned long long powerl(unsigned long n) {
unsigned long 1i;
unsigned long long ret=1;
for (unsigned long i=0; i<n; i++)
ret x= base;
return ret;

When n = 10%° it took 44 seconds
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Second algorithm

unsigned long long power2(unsigned long n) Ao
unsigned long long ret;
if (n == 0) return 1;
if (n % 2 ==0) {
ret = power2(n/2);
return ret * ret;
} else {
ret = power2((n-1)/2);
return base *x ret * ret;

When n = 10" it took < 1 second
Couldn’t test n = 102° because that’s > sizeof(unsigned long)
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First algorithm O(n)
Second algorithm O(log n)

We can apply the second algorithm to the Fibonacci
problem: fib4() has the following data

# seconds 1 1 1 1



