Agenda

• The worst algorithm in the history of humanity

Asymptotic notations: Big-O, Big-Omega, Theta

An iterative solution

A better iterative solution

The repeated squaring trick

Fibonacci sequence

2

THE WORST ALGORITHM IN HISTORY

Fibonacci sequence

3)

• 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ...

- F[o] = o
- F[1] = 1
- F[2] = F[1] + F[0] = 1
- F[3] = F[2] + F[1] = 2
- F[4] = F[3] + F[2] = 3
- F[n] = F[n-1] + F[n-2]

Recursion – fib1()

4

```
/**
  *-----
  * the most straightforward algorithm to compute F[n]
  *-----
  */
unsigned long long fib1(unsigned long n) {
   if (n <= 1) return n;
   return fib1(n-1) + fib1(n-2);
}</pre>
```

Run time on my laptop

5

On large numbers

• Looks like the run time is doubled for each n++

 We won't be able to compute F[120] if the trend continues

• The age of the universe is 15 billion years < 260 sec

- The function looks ... exponential
 - o Is there a theoretical justification for this?

Functions

7

- Sometimes we mean a C++ function
- Sometimes we mean a mathematical function like F[n]
- A C++ function can be used to compute a mathematical function
 - But not always
- What we mean should be clear from context

Analysis of fib1()

8

GUESS AND INDUCT STRATEGY

THINKING ABOUT THE MAIN BODY

Guess and induct

- For n > 1, suppose it takes c mili-sec in fib1(n) not counting the recursive calls
- For n=0, 1, suppose it takes d mili-sec
- $T[n] = time fib_1(n) takes$
- T[o] = T[1] = d
- T[n] = c + T[n-1] + T[n-2] when n > 1
- To estimate T[n], we can
 - O Guess a formula for it
 - Prove by induction that it works

The guess

(10)

Bottom-up iteration

$$o T[o] = T[1] = d$$

$$oT[2] = c + 2d$$

$$\circ$$
 T[3] = 2c + 3d

$$\circ$$
 T[4] = 4c + 5d

$$\circ$$
 T[5] = 7c + 8d

$$\circ$$
 T[6] = 12c + 13d

Can you guess a formula for T[n]?

$$o$$
 T[n] = (F[n+1] - 1)c + F[n+1]d

The Proof

- The base cases: n=0,1
- The hypothesis: suppose
 - T[m] = (F[m+1] 1)c + F[m+1]d for all m < n
- The induction step:
 - T[n] = c + T[n-1] + T[n-2]= c + (F[n] - 1)c + F[n]d+ (F[n-1] - 1)c + F[n-1]d= (F[n+1] - 1)c + F[n]d

How does this help?

$$F[n] = \frac{\phi^n - (-1/\phi)^n}{\sqrt{5}}$$

$$\phi = \frac{1 + \sqrt{5}}{2} \approx 1.6$$

The golden ratio

So, there are constants C, D such that

$$C\phi^n \le T[n] \le D\phi^n$$

This explains the exponential-curve we saw

Asymptotic analysis

- BACK OF THE ENVELOPE TIME/SPACE ESTIMATION INDEPENDENT OF WHETHER OUR COMPUTER IS FAST - BIG-O, BIG-OMEGA, THETA

From intuition to formality

15

• If we ran fib1() on a computer with $C = 10^{-9}$:

$$10^{-9}(1.6)^{140} \ge 3.77 \cdot 10^{19} > 100 \cdot \text{age of univ.}$$

- We need a formal way to state that (1.6)ⁿ is the "correct" measure of fib1()'s runtime
 - How fast the target computer runs shouldn't concern us

Big-O

(16)

$$f, g: \mathbb{N} \to \mathbb{R}^+$$

$$f(n) = O(g(n))$$
 iff \exists constants $C, n_0 > 0$

such that
$$f(n) \leq Cg(n), \forall n \geq n_0$$

Intuition

in our case
$$T[n] = O(\phi^n)$$

In English

- f(n) = O(g(n)) means: for n sufficiently large, f(n) is bounded above by a constant scaling of g(n)
 - O Does the "English translation" make things worse?
- An algorithm with runtime f(n) is at least as good as an algorithm with runtime g(n), asymptotically

Examples

$$n^2 = O(n^2)$$

$$n^2 = O(n^2/10^6)$$

$$n = O(n^2)$$

Big-Omega

$$f,g:\mathbb{N}\to\mathbb{R}^+$$

$$f(n) = \Omega(g(n))$$
 iff \exists constants $C, n_0 > 0$

such that
$$f(n) \geq Cg(n), \forall n \geq n_0$$

In picture

Examples

$$n\log n = \Omega(n)$$

$$2^n/10^6 = \Omega(n^{100})$$

Equivalence

$$f(n) = O(g(n)) \Leftrightarrow g(n) = \Omega(f(n))$$

Theta

$$f(n) = \Theta(g(n)) \Leftrightarrow f(n) = O(g(n)) \text{ and } g(n) = O(f(n))$$

We say they "have the same growth rate"

in fib1() example:
$$T[n] = \Theta(\phi^n)$$

In picture

Better algorithms for F[n]

- A LINEAR TIME ALGORITHM USING VECTORS
- A LINEAR TIME ALGORITHM USING ARRAYS
- A LINEAR TIME ALGORITHM WITH CONSTANT SPACE

An algorithm using vector


```
unsigned long long fib2(unsigned long n) {
    // this is one implementation option
    if (n <= 1) return n;
    vector<unsigned long long> A;
    A.push_back(0); A.push_back(1);
    for (unsigned long i=2; i<=n; i++) {
        A.push_back(A[i-1]+A[i-2]);
    }
    return A[n];
}</pre>
```

Guess how large an n we can handle this time?

Data

n	10 ⁶	10 ⁷	108	10 ⁹
# seconds	1	1	9	Eats up all my CPU/ RAM

How about an array?


```
unsigned long long fib2(unsigned long n) {
   if (n <= 1) return n;
   unsigned long long* A = new unsigned long long[n];
   A[0] = 0; A[1] = 1;
   for (unsigned long i=2; i<=n; i++) {
        A[i] = A[i-1]+A[i-2];
   }
   unsigned long long ret = A[n];
   delete [] A;
   return ret;
}</pre>
```

Data

n	10 ⁶	10 ⁷	108	109
# seconds	1	1	1	Segmentation fault

Data structure matters a great deal!

Some assumptions we made are false if too much space is involved: computer has to use hard-drive as memory

Dynamic programming!

Data

n	108	10 ⁹	10 ¹⁰	1011
# seconds	1	3	35	359

The answers are incorrect because F[10⁸] is greater than the largest integer representable by unsigned long long

But that's ok. We want to know the runtime

An even faster algorithm

33

- THE REPEATED SQUARING TRICK

Math helps!

34)

We can re-formulate the problem a little:

$$\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} F[n-1] \\ F[n-2] \end{bmatrix} = \begin{bmatrix} F[n] \\ F[n-1] \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$$

$$\begin{bmatrix} F[n+1] \\ F[n] \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}^n \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

How to we compute An quickly?

35)

Want

$$\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}^m$$

• But can we even compute 3ⁿ quickly?

First algorithm


```
unsigned long long power1(unsigned long n) {
   unsigned long i;
   unsigned long ret=1;
   for (unsigned long i=0; i<n; i++)
      ret *= base;
   return ret;
}</pre>
```

When $n = 10^{10}$ it took 44 seconds

Second algorithm


```
unsigned long long power2(unsigned long n) {
   unsigned long long ret;
   if (n == 0) return 1;
   if (n % 2 == 0) {
      ret = power2(n/2);
      return ret * ret;
   } else {
      ret = power2((n-1)/2);
      return base * ret * ret;
   }
}
```

When $n = 10^{19}$ it took < 1 second Couldn't test $n = 10^{20}$ because that's > sizeof(unsigned long)

Runtime analysis

(38)

• First algorithm O(n)

Second algorithm O(log n)

 We can apply the second algorithm to the Fibonacci problem: fib4() has the following data

n	108	10 ⁹	10 ¹⁰	10 ¹⁹
# seconds	1	1	1	1