The worst algorithm in the history of humanity
Asymptotic notations: Big-O, Big-Omega, Theta
An iterative solution

A better iterative solution

The repeated squaring trick

Fibonacci sequence

THE WORST ALGORITHM IN HISTORY

CSE 250, Spring 2012, SUNY Buffalo 2/8/12

0,1,1,2,3,5,8,13, 21, 34, ...

ol=o0
1] =1
2] =F[1] + Flo] =1

3] =F[2] +F[1] =2
4] = F[3] + F[2] =3
n| = Fln-1] + F[n-2]

] =T T | T T

Recursion — fib1()

*/

unsigned long long fibl(unsigned long n) {
if (n <= 1) return n;
return fibl(n-1) + fibl(n-2);

CSE 250, Spring 2012, SUNY Buffalo 2/8/12

Run time on my laptop

©

Fib1 run time

125

-

100

75

Time in
seconds

25

1 2 2

0

I
37 38 39 40 41 42 43 44 45 46 47
n

CSE 250, Spring 2012, SUNY Buffalo 2/8/12

Looks like the run time is doubled for each n++

We won’t be able to compute F[120] if the trend
continues

The age of the universe is 15 billion years < 2°° sec

The function looks ... exponential
Is there a theoretical justification for this?

Sometimes we mean a C++ function

Sometimes we mean a mathematical function like
F[n]

A C++ function can be used to compute a
mathematical function

But not always

What we mean should be clear from context

Analysis of fib1()

GUESS AND INDUCT STRATEGY

THINKING ABOUT THE MAIN BODY

CSE 250, Spring 2012, SUNY Buffalo 2/8/12

For n > 1, suppose it takes ¢ mili-sec in fib1(n) not
counting the recursive calls

For n=0, 1, suppose it takes d mili-sec
T[n] = time fib1(n) takes

Tlo] =T[1] =d

T[n] =c + T[n-1] + T[n-2] whenn > 1

To estimate T[n], we can

Guess a formula for it
Prove by induction that it works

The guess

10

* Bottom-up iteration

Tlo] =T[1] =d
T[2] =c + 2d
T[3] = 2¢ + 3d
Tl4] = 4c + 5d
T[5] = 7¢ + 8d
T[6] = 12¢ + 13d

» Can you guess a formula for T[n]?
T[n] = (F[n+1] — 1)c + F[n+1]d

The base cases: n=0,1

The hypothesis: suppose
Tlm] = (Flm+1] — 1)c + Flm+1]d forall m <n
The induction step:
T[n] = ¢ + T[n-1] + T[n-2]
=c¢ + (F[n] — 1)c + F[n]d
+ (F[n-1] — 1)c + F[n-1]d
= (F[n+1] — 1)c + F[n]d

How does this help?

_ 9" —(=1/9)"

>

The golden ratio

So, there are constants C, D such that

Co" <Tn] < Do"

This explains the exponential-curve we saw

CSE 250, Spring 2012, SUNY Buffalo 2/8/12

Asymptotic analysis

BACK OF THE ENVELOPE TIME/SPACE ESTIMATION
INDEPENDENT OF WHETHER OUR COMPUTER IS FAST
BIG-O, BIG-OMEGA, THETA

CSE 250, Spring 2012, SUNY Buffalo 2/8/12

If we ran fibi1() on a computer with C = 1079:

1077(1.6)*° > 3.77- 10" > 100 - age of univ.

We need a formal way to state that (1.6)" is the
“correct” measure of fib1()’s runtime

How fast the target computer runs shouldn’t concern us

Big-O

f,g: N = R"

f(n) = O(g(n)) iff 3 constants C,ng > 0

such that f(n) < Cg(n),Vn > ng

CSE 250, Spring 2012, SUNY Buffalo

Intuition

" f(n) = O(g(n))

cg(n)

(n)

in our case T'[n| = O(¢™)

CSE 250, Spring 2012, SUNY Buffalo

f(n) = O(g(n)) means: for n sufficiently large, f(n) is
bounded above by a constant scaling of g(n)
Does the “English translation” make things worse?

An algorithm with runtime f(n) is at least as good as
an algorithm with runtime g(n), asymptotically

Examples

CSE 250, Spring 2012

, SUNY Buffalo

Big-Omega

f,g: N = R"

f(n) =Q(g(n)) iff 3 constants C,ng > 0

such thatf(n) > Cg(n),Vn > ng

CSE 250, Spring 2012, SUNY Buffalo

In picture

f(n)

cg(n)

"0 f(n) = Qg(m))

CSE 250, Spring 2012, SUNY Buffalo

Examples

nlogn = Q(n)

2" /10° = Q(n'")

Equivalence

CSE 250, Spring 2012, SUNY Buffalo

Theta

f(n) = 0O(g(n)) = f(n) = O(g(n) and g(n) = O(f(n))

We say they “have the same growth rate”

in fib1() example: T|n] = ©(¢")

CSE 250, Spring 2012, SUNY Buffalo

In picture

c, 8(n)
f(n)
¢, &(n)

|
n
0 f(n)=©O(g(n))

Better algorithms for F[n]

A LINEAR TIME ALGORITHM USING VECTORS

A LINEAR TIME ALGORITHM USING ARRAYS

A LINEAR TIME ALGORITHM WITH CONSTANT SPACE

CSE 250, Spring 2012, SUNY Buffalo 2/8/12

An algorithm using vector

unsigned long long fib2(unsigned long n) {

// this 1s one implementation option

if (n <= 1) return n;

vector<unsigned long long> A;

A.push_back(0); A.push_back(1);

for (unsigned long i=2; i<=n; i++) {
A.push_back(A[i-1]+A[i-2]);

I3

return A[n];

Guess how large an n we can handle this time?

CSE 250, Spring 2012, SUNY Buffalo 2/8/12

Data

seconds 1 Eats up
all my
CPU/
RAM

CSE 250, Spring 2012, SUNY Buffalo 2/8/12

How about an array?

unsigned long long fib2(unsigned long n) {
if (n <= 1) return n;
unsigned long longx A = new unsigned long longl[n];
Alo] = 0; Al[1l] = 1;
for (unsigned long i=2; i<=n; i++) {
Ali]l = A[i-11+A[i-2];
Iy

unsigned long long ret = Alnl;
delete [] A;
return ret;

CSE 250, Spring 2012, SUNY Buffalo 2/8/12

Data

seconds 1 Segmentatlon
fault

Data structure matters a great deal!

Some assumptions we made are false if too
much space is involved: computer has to use
hard-drive as memory

CSE 250, Spring 2012, SUNY Buffalo 2/8/12

Dynamic programming!

unsigned long long fib3(unsigned long n) {
if (n <= 1) return n;
unsigned long long a=0, b=1, temp;
unsigned long 1i;
for (unsigned long i=2; i<= n; i++) {
temp = a + b; // F[i] = F[i-2] + F[i-1]
= b; // a = F[i-1]
emp; // b = Flil

return temp;

CSE 250, Spring 2012, SUNY Buffalo 2/8/12

Data

seconds 1

The answers are incorrect because F[108] is
greater than the largest integer representable

by unsigned long long

But that’s ok. We want to know the runtime

CSE 250, Spring 2012, SUNY Buffalo 2/8/12

An even faster algorithm

- THE REPEATED SQUARING TRICK

CSE 250, Spring 2012, SUNY Buffalo

We can re-formulate the problem a little:

-
O_

0

-
1
"
1

1

1

1| [F[n — 1]
0] | Fn — 2]
Fln+1]

Fin]

Want _ =

—
S =

But can we even compute 3" quickly?

First algorithm

unsigned long long powerl(unsigned long n) {
unsigned long 1i;
unsigned long long ret=1;
for (unsigned long i=0; i<n; i++)
ret x= base;
return ret;

When n = 10%° it took 44 seconds

CSE 250, Spring 2012, SUNY Buffalo 2/8/12

Second algorithm

unsigned long long power2(unsigned long n) Ao
unsigned long long ret;
if (n == 0) return 1;
if (n % 2 ==0) {
ret = power2(n/2);
return ret * ret;
} else {
ret = power2((n-1)/2);
return base *x ret * ret;

When n = 10" it took < 1 second
Couldn’t test n = 102° because that’s > sizeof(unsigned long)

CSE 250, Spring 2012, SUNY Buffalo 2/8/12

First algorithm O(n)
Second algorithm O(log n)

We can apply the second algorithm to the Fibonacci
problem: fib4() has the following data

seconds 1 1 1 1

