The main body and cout
Fundamental data types
Declarations and definitions
Control structures

References, pass-by-value vs pass-by-references



The main body and cout

C++ IS AN OO EXTENSION OF C

C++ HAS BOTH PROCEDURAL FEATURES AND
OBJECT-ORIENTED FEATURES

CSE 250, Spring 2012, SUNY Buffalo 1/21/12




Every C++ program must have a main()

// hw.cpp
#include <iostream>

using namespace std;

int main () {
cout << "Hello world\n";
return 0;

CSE 250, Spring 2012, SUNY Buffalo 1/21/12




cout 1s pretty easy to use

#include <iostream>
using namespace std;

int main() {
string my name = "David Blaine";
string my text editor = "Emacs";
string my home os = "Windows";

cout << "My name 1s " << my name << endl
<< "I was able to install and test g++ and "
<< "the text editor " << my text editor << '\n'
<< "in my home computer/laptop, which runs "
<< my home os << endl;

return 0O;

CSE 250, Spring 2012, SUNY Buffalo 1/21/12




Fundamental data types

THEY ARE WHAT YOU EXPECT THEM TO BE,
SIMILAR TO THOSE IN JAVA

CSE 250, Spring 2012, SUNY Buffalo 1/21/12




bool : true or false

char : a character

int : an integer

float : a floating-point real number

And cout will output a variable with the appropriate
format for the above types



Cout is easy to use on basic types

#include <iostream>
using namespace std;

int main() {
string name = "David Blaine';
char c = 'H';
int 1 = 12345;

bool smart = true;
double avg = 3.5;

cout << "I am " << name << endl

<< "smart = " << smart << endl
<< "¢ = " << ¢ << endl

<< "] = " << 1 << endl

<< "avg = " << avg << endl;

return 0;

}

CSE 250, Spring 2012, SUNY Buffalo 1/21/12




Declarations and Definitions

EVERY NAME MUST BE DECLARED BEFORE USED

THERE MUST ALWAYS BE AT MOST ONE DEFINITION
FOR EACH NAMED ENTITY

THERE CAN BE MANY DECLARATIONS

MANY DECLARATIONS ARE ALSO DEFINITIONS

CSE 250, Spring 2012, SUNY Buffalo 1/21/12




Declarations

// variable declarations

string name; char c¢; int 1i;
bool smart; double avg;

// a type declaration (the type 1is a struct)
struct Date;

// a const bool declaration
const bool 1 _am smart = true;

// a function declaration
int foo(int) ;

CSE 250, Spring 2012, SUNY Buffalo 1/21/12




Definitions

// definition of function foo/()
int foo(int x) {
return X*X;

// definition of struct Date
struct Date {

int d;

int m;

int y;
I

CSE 250, Spring 2012, SUNY Buffalo 1/21/12




Many declarations are also definitions

// these declarations are *also* definitions
string name;

char c¢;

int 1i;

bool smart;

double avg;

// these declarations are *not* definitions
int foo(int);
struct Date;

extern int age;
typedef vector<int> Int Vector;

CSE 250, Spring 2012, SUNY Buffalo 1/21/12



Control structures

SIMILAR TO JAVA

THE ONES WE’LL OFTEN USE ARE
IF ELSE
WHILE LOOP
FOR LOOP
SWITCH STATEMENT
CONTINUE AND BREAK
EXIT(.) FUNCTION

CSE 250, Spring 2012, SUNY Buffalo 1/21/12




Let’s Reverse a String

» For each line the user types

o Prints a copy of the line with all characters in reversed order
o Prints a copy of the line with all words in reversed order

o Tllustrates

o0 Modularization
o Functions and loops

CSE 250, Spring 2012, SUNY Buffalo 1/21/12




Pointers, References, Arrays

- A POINTER IS AN ADDRESS
- A REFERENCE IS AN ALIAS FOR AN EXISTING OBJECT

- AN ARRAY NAME IS A CONST POINTER TO ITS FIRST
ELEMENT

CSE 250, Spring 2012, SUNY Buffalo 1/21/12




A reference is an alternative name for an object

int i = 1;

int& r = i; // a reference must always be initialized
int x =r; // x =1, which is 1

e = 2 // now both r and 1 are 2, but x 1is still 1

Once refering to an object, a reference can’t be
reassigned to refer to another object

Main question is, why would one wants to do this?
Pass-by-reference semantic
Return a reference (later)



Default argument passing semantic:
pass by value

void foo(int a, int b) {
a=a + 10;
b =Db+ 20;
cout << "In foo, a = " << a << " and b = " << b << endl;
// it prints In foo, a = 11 and b = 22

int main () {
int a=1, b = 2;

foo(a,b);
cout << "In main, a = " << a << " and b = " << b << endl;
// it prints in main, a = 1 and b = 2

return 0O;

CSE 250, Spring 2012, SUNY Buffalo 1/21/12




Swap() like this does not work

J*
* the intended swap does not work
*/
void swap(int a, int b) {
int temp;
temp = a; a = b; b = temp;
cout << "In foo, a = " << a << " and b = " << b << endl;

// it prints: In foo, a = 2 and b = 1
}

int main ()
int a =1, b = 2;
swap (a,b) ;

cout << "In main, a = " << a << " and b = " << b << endl;
// it prints: In main, a = 1 and b = 2
return 0;

CSE 250, Spring 2012, SUNY Buffalo 1/21/12




Swap() with pass-by-reference works!

// this 'swap' works as intended
void swap(inté& a, inté& b) {

int temp;
temp = a; a = b; b = temp;
cout << "In foo, a = " << a << " and b = " << b << endl;

// it prints: In foo, a = 2 and b = 1
}

int main () {
int a=1, b = 2;
swap (a,b) ;
cout << "In main, a = " << a << " and b = " << b << endl;
// it prints: In main, a = 2 and b = 1
return O;

CSE 250, Spring 2012, SUNY Buffalo 1/21/12




When to use references?

19

* When we want the function to modify the arguments

However, the name of the function has to give a very strong
hint that this is the intention! (swap is a good name, foo is not)

» When the arguments are large objects

Save space and time
But if no modification is intended, put a const in front



