Agenda

We've discussed

- C++ basics
- Some built-in data structures and their applications: stack, map, vector, array
- The Fibonacci example showing the importance of good algorithms and asymptotic analysis

Now

- Growth of functions
- Asymptotic notations
- Scare some people off

Next

- Recurrence relations & a way to solve them
- Binary search and some sorting algorithms to illustrate

 $lg n = log_2 n$ $log n = log_{10} n$ $ln n = log_e n$

Consider an Intel Core i7 Extreme Edition 980X (Hex core), 3.33GHz, top speed $<150\cdot10^9$ instructions per second (IPS). For simplicity, say it's 10^9 IPS.

	10	20	30	40	50	1000
lg lg n	1.7 ns	2.17 ns	2.29 ns	2.4 ns	2.49 ns	3.3 ns
lg n	3.3 ns	4.3 ns	4.9 ns	5.3 ns	5.6 ns	9.9 ns
n	10 ns	20 ns	3 ns	4 ns	5 ns	1 μs
n ²	0.1 μs	0.4 μs	0.9 μs	1.6 μs	2.5 μs	1 ms
n ³	1 μs	8 μs	27 μ s	64 μs	125 μs	1 sec
n ⁵	0.1 ms	3.2 ms	24.3 ms	0.1 sec	0.3 sec	277 h
2 ⁿ	1 μs	1 ms	1 s	18.3 m	312 h	3.4 · 10 ²⁸² Cent.
3 ⁿ	59 μs	3.5 s	57.2 h	386 y	227644 c	4.2 · 10 ⁴⁵⁸ Cent.
1 C100 making any rate of the construction (Decall C 1.1.())						

1.6¹⁰⁰ ns is approx. 82 centuries (Recall fib1()).

$$\lg 10^{10} = 33$$
, $\lg \lg 10^{10} = 4.9$

- The age of the universe \leq 13 G-Years = 13 \cdot 10⁷ centuries.
- $\Rightarrow\,$ Number of seconds since big-bang $\approx\,10^{18}.$
 - $4 * 10^{78} \le$ Number of atoms is the universe $\le 6 * 10^{79}$.
- The probability that a monkey can compose Hamlet is $\approx \frac{1}{10^{60}}$ so what's the philosophical implication of this?

Robert Wilensky, speech at a 1996 conference

We've heard that a million monkeys at a million keyboards could produce the complete works of Shakespeare; now, thanks to the Internet, we know that is not true. When *n* is sufficiently large, order the following functions:

$$f_{1}(n) = 2000n^{2} + 1,000,000n + 3$$

$$f_{2}(n) = 100n^{2}$$

$$f_{3}(n) = n^{5} + 10^{7}n$$

$$f_{4}(n) = 2^{n} + n^{10,000}$$

$$f_{5}(n) = 2^{n}$$

$$f_{6}(n) = \frac{3^{n}}{10^{6}}$$

(Only need to look at the dominating term)

We will only look at functions of the type

 $f:\mathbb{N}\to\mathbb{R}^+$

as they are used for time and space complexity estimation.

Behind comparing functions

• Mathematically, $f(n) \gg g(n)$ for "sufficiently large" *n* means

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=\infty.$$

We also say f(n) is asymptotically larger than g(n).

• They are comparable (or of the same order) if

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=c>0$$

• and f(n) is asymptotically smaller than g(n) when

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=0.$$

Question

Are there f(n) and g(n) not falling into one of the above cases?

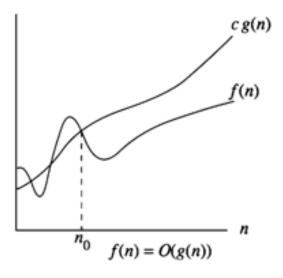
CHung Q. Ngo (SUNY at Buffalo)

$$\begin{array}{ll} f(n) = O(g(n)) & \text{iff} & \exists c > 0, n_0 > 0 : f(n) \leq cg(n), \text{ for } n \geq n_0 \\ f(n) = \Omega(g(n)) & \text{iff} & \exists c > 0, n_0 > 0 : f(n) \geq cg(n), \text{ for } n \geq n_0 \\ f(n) = \Theta(g(n)) & \text{iff} & f(n) = O(g(n)) \& f(n) = \Omega(g(n)) \\ f(n) = o(g(n)) & \text{iff} & \forall c > 0, \exists n_0 > 0 : f(n) \leq cg(n), \text{ for } n \geq n_0 \\ f(n) = \omega(g(n)) & \text{iff} & \forall c > 0, \exists n_0 > 0 : f(n) \geq cg(n), \text{ for } n \geq n_0 \end{array}$$

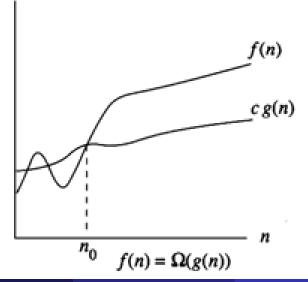
Note:

- we shall be concerned only with functions *f* of the form $f : \mathbb{N}^+ \to \mathbb{R}^+$, unless specified otherwise.
- *f*(*n*) = **x**(*g*(*n*)) isn't mathematically correct; *f*(*n*) ∈ **x**(*g*(*n*)) is, but not commonly used.

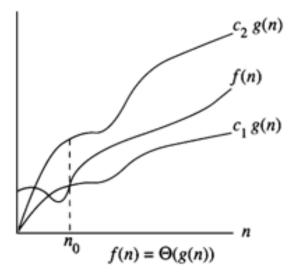
An illustration of big-O



An illustration of big- Ω



An illustration of Θ



$$\begin{array}{rcl} a(n) &=& \sqrt{n} \\ b(n) &=& n^5 + 10^7 n \\ c(n) &=& (1.3)^n \\ d(n) &=& (\lg n)^{100} \\ e(n) &=& \frac{3^n}{10^6} \\ f(n) &=& 3180 \\ g(n) &=& n^{0.0000001} \\ h(n) &=& (\lg n)^{\lg n} \end{array}$$

$$f(n) = o(g(n)) \quad \Rightarrow \quad f(n) = O(g(n)) \& f(n) \neq \Theta(g(n))$$
(1)

$$f(n) = \omega(g(n)) \quad \Rightarrow \quad f(n) = \Omega(g(n)) \& f(n) \neq \Theta(g(n))$$
(2)

$$f(n) = O(g(n)) \iff g(n) = \Omega(f(n))$$
 (3)

$$f(n) = \Theta(g(n)) \quad \Leftrightarrow \quad g(n) = \Theta(f(n)) \tag{4}$$

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = +\infty \quad \Leftrightarrow \quad f(n) = \omega(g(n)) \tag{5}$$

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = c > 0 \quad \Rightarrow \quad f(n) = \Theta(g(n)) \tag{6}$$

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0 \quad \Leftrightarrow \quad f(n) = o(g(n)) \tag{7}$$

Remember: we only consider functions from $\mathbb{N}^+ \to \mathbb{R}^+.$

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=\lim_{n\to\infty}\frac{f'(n)}{g'(n)}$$

if

 $\lim_{n\to\infty} f(n) \text{ and } \lim_{n\to\infty} g(n) \text{ are both 0 or both } \pm \infty$

Examples:

$$\lim_{n \to \infty} \frac{\lg n}{\sqrt{n}} = 0$$
(8)
$$\lim_{n \to \infty} \frac{(\lg n)^{\lg n}}{\sqrt{n}} = ?$$
(9)

Stirling's approximation

For all $n \ge 1$,

$$n! = \sqrt{2\pi n} \left(\frac{n}{e}\right)^n e^{\alpha_n},$$

where

$$\frac{1}{12n+1} < \alpha_n < \frac{1}{12n}.$$

It then follows that

$$n! = \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \left(1 + \Theta\left(\frac{1}{n}\right)\right).$$

The last formula is often referred to as the Stirling's approximation

$$\begin{array}{rcl} a(n) & = & \lfloor \lg n \rfloor ! \\ b(n) & = & n^5 + 10^7 n \\ c(n) & = & 2^{\sqrt{\lg n}} \\ d(n) & = & (\lg n)^{100} \\ e(n) & = & 3^n \\ f(n) & = & (\lg n)^{\lg \lg n} \\ g(n) & = & 2^{n^{0.001}} \\ h(n) & = & (\lg n)^{\lg n} \\ i(n) & = & n! \end{array}$$

Special functions

Some functions cannot be compared, e.g. $n^{1+\sin(n\frac{\pi}{2})}$ and n.

$$\lg^* n = \min\{i \ge 0 : \lg^{(i)} n \le 1\},\$$

where for any function $f : \mathbb{N}^+ \to \mathbb{R}^+$,

$$f^{(i)}(n) = \begin{cases} n & \text{if } i = 0\\ f(f^{(i-1)}(n)) & \text{if } i > 0 \end{cases}$$

Intuitively, compare

$$\begin{array}{rrrr} \lg^* n & \mathrm{vs} & \lg n \\ \lg^* n & \mathrm{vs} & (\lg n)^\epsilon, \ \epsilon > 0 \\ 2^n & \mathrm{vs} & n^n \\ \mathrm{g}^*(\lg n) & \mathrm{vs} & \lg(\lg^* n) \end{array}$$

How about rigorously?

©Hung Q. Ngo (SUNY at Buffalo)

$$5n^3 + 6n^2 + 3 = 5n^3 + \Theta(n^2)$$

means "the LHS is equal to $5n^3$ plus some function which is $\Theta(n^2)$."

$$o(n^6) + O(n^5) = o(n^6)$$

means "for any $f(n) = o(n^6)$, $g(n) = O(n^5)$, the function h(n) = f(n) + g(n) is equal to some function which is $o(n^6)$."

Be very careful!!

$$O(n^5) + \Omega(n^2) \stackrel{?}{=} \Omega(n^2)$$
$$O(n^5) + \Omega(n^2) \stackrel{?}{=} O(n^5)$$

 $n \log n = O(n^2)$ is not tight

 $n^2 = O(n^2)$ is tight

When comparing functions asymptotically

- Determine the dominating term
- Use intuition first
- Transform intuition into rigorous proof.