
Agenda

We’ve done
Growth of functions
Asymptotic Notations (O,o,Ω, ω,Θ)

Now
Binary search as an example
Recurrence relations, solving them

c©Hung Q. Ngo (SUNY at Buffalo) CSE 250 – Data Structures in C++ 1 / 21

Searching in an array/vector

Example (The most basic search problem)
Given vector<int> myvec of n distinct integers, and an integer k , is
k one of the n integers in myvec?

c©Hung Q. Ngo (SUNY at Buffalo) CSE 250 – Data Structures in C++ 3 / 21

If myvec is not sorted

bool l i n e a r s e a r c h (vector<int> vec , i n t k) {
for (s i z e t i =0; i<vec . s ize () ; i ++) }

i f (k == vec [i]) return t r ue ;
}
return f a l s e ;

}

Takes O(n)-time. Too slow, especially when there are many searches
into the same vector/array.

c©Hung Q. Ngo (SUNY at Buffalo) CSE 250 – Data Structures in C++ 4 / 21

If myvec is not sorted

bool b inary search (vector<int> vec , i n t k) {
for (s i z e t i =0; i<vec . s ize () ; i ++) }

i f (k == vec [i]) return t r ue ;
}
return f a l s e ;

}

Takes O(n)-time. Too slow, especially when there are many searches
into the same vector/array.

c©Hung Q. Ngo (SUNY at Buffalo) CSE 250 – Data Structures in C++ 5 / 21

If myvec is sorted

/ / not c o r r e c t yet , but i n t u i t i v e l y OK;
/ / assume l e f t / r i g h t are i n range
bool b inary search (vector<int> sor ted vec , i n t key ,

s i z e t l e f t , s i z e t r i g h t) {
while (l e f t <= r i g h t) {

s i z e t mid = (l e f t + r i g h t) / 2 ; / / p rob lemat ic !
i f (key > sor ted vec [mid])

l e f t = mid +1;
else i f (key < sor ted vec [mid])

r i g h t = mid−1;
else return t r ue ;

}
return f a l s e ;

}

Takes O(log n)-time (we’ll see later why). Extremely fast!

c©Hung Q. Ngo (SUNY at Buffalo) CSE 250 – Data Structures in C++ 6 / 21

Fixing the code for binary search

b inary search (vector<int> sor ted vec , i n t key ,
s i z e t l e f t , s i z e t r i g h t) {

while (l e f t <= r i g h t) {
/ / c o r r e c t ! doesn ’ t over f low
s i z e t mid = l e f t + (r i g h t− l e f t) / 2 ;
i f (key > sor ted vec [mid])

l e f t = mid +1;
else i f (key < sor ted vec [mid])

r i g h t = mid−1;
else return t r ue ;

}
return f a l s e ;

}

c©Hung Q. Ngo (SUNY at Buffalo) CSE 250 – Data Structures in C++ 7 / 21

Examples of recurrence relations

fib1()
T (n) = T (n − 1) + T (n − 2) + Θ(1)

Binary search
T (n) ≤ T (dn/2e) + Θ(1)

Merge sort (we’ll discuss next lecture)

T (n) = T (bn/2c) + T (dn/2e) + Θ(n) (1)

and many others

T (n) = 4T (n/2) + n2 lg n
T (n) = 3T (n/4) + lg n
T (n) = T (n/a) + T (a)

Recall the way to interpret (1): “T (n) is T (bn/2c) + T (dn/2e) plus
some function f (n) which is Θ(n)”

c©Hung Q. Ngo (SUNY at Buffalo) CSE 250 – Data Structures in C++ 9 / 21

Methods of solving recurrent relations

Guess and induct (we only discuss this method!)
Master Theorem (take CSE331 or CSE431)
Generating functions (read Enumerative Combinatorics books)

c©Hung Q. Ngo (SUNY at Buffalo) CSE 250 – Data Structures in C++ 11 / 21

Guess and induct

Guess a solution
Guess by substitution
Guess by drawing a recurrence tree

Use induction to show that the guess is correct

c©Hung Q. Ngo (SUNY at Buffalo) CSE 250 – Data Structures in C++ 12 / 21

Guess by substitution - Example 1

Example (The fib1() algorithm)

T (n) =

{
d if n ≤ 1
T (n − 1) + T (n − 2) + c if n ≥ 2

Guess by iterating the recurrence a few times:
T (0) = d , T (1) = c
T (2) = 2d + 1c
T (3) = 3d + 2c
T (4) = 5d + 4c
T (5) = 8d + 7c
...

So, what’s T (n)?

c©Hung Q. Ngo (SUNY at Buffalo) CSE 250 – Data Structures in C++ 13 / 21

Guess by substitution - Example 1

The guess
T (n) = (c + d)Fn+1 − c (2)

Fn =
1√
5

(
1 +
√

5
2

)n

− 1√
5

(
1−
√

5
2

)n

= Θ(φn), (3)

where Fn is the nth Fibonacci number, φ is the golden ratio
Conclude with

T (n) = Θ(φn) (4)

We have shown (2), (3) & (4) by induction.

c©Hung Q. Ngo (SUNY at Buffalo) CSE 250 – Data Structures in C++ 14 / 21

Guess by substitution – Example 2

Example (Merge Sort)

T (1) = Θ(1)

T (n) = T (bn/2c) + T (dn/2e) + Θ(n)

Clean up the recurrence before guessing
It is often safe to ignore the issue of integrality:

T (n) ≈ T (n/2) + T (n/2) + cn = 2T (n/2) + cn.

c©Hung Q. Ngo (SUNY at Buffalo) CSE 250 – Data Structures in C++ 15 / 21

Guess by substitution – Example 2

T (n) = 2T (n/2) + cn

= 2
(

2T (n/4) + c
n
2

)
+ cn

= 4T (n/4) + 2cn

= 4
(

2T (n/8) + c
n
4

)
+ 2cn

= 8T (n/8) + 3cn
= . . .

= 2kT (n/2k) + kcn
= ...

= 2lg nT (n/2lg n) + cn lg n
= Θ(n lg n)

c©Hung Q. Ngo (SUNY at Buffalo) CSE 250 – Data Structures in C++ 16 / 21

Guess by substitution – Example 2

Rigorously, we have

T (1) = c0

T (n) ≥ T (bn/2c) + T (dn/2e) + c1n
T (n) ≤ T (bn/2c) + T (dn/2e) + c2n

Guess: T (n) = Θ(n lg n).
By induction, show that there are constants a,b > 0 such that

an lg n ≤ T (n) ≤ bn lg n.

Now try
T (n) = T (bn/2c) + T (dn/2e) + 1

c©Hung Q. Ngo (SUNY at Buffalo) CSE 250 – Data Structures in C++ 17 / 21

Notes

To (sort of) see why integrality isn’t important, consider

T (n) = 2T (bn/2c+ 17) + cn.

Approximate this by ignoring both the integrality issue and the
annoying constant 17

T (n) = 2T (n/2) + cn.

The guess is then T (n) = O(n lg n). (You should prove it.)

Common mistake

T (n) ≤ 2cbn/2c+ n ≤ cn + n = O(n)

c©Hung Q. Ngo (SUNY at Buffalo) CSE 250 – Data Structures in C++ 18 / 21

Another commonly used trick: change of variable

Solve
T (n) = 2T (

√
n) + 1

Let m = lg n, then
T (2m) = 2T (2m/2) + 1

Let S(m) = T (2m), then

S(m) = 2S(m/2) + 1.

Hence,
S(m) = O(m).

Thus,
T (n) = S(lg n) = O(lg n).

c©Hung Q. Ngo (SUNY at Buffalo) CSE 250 – Data Structures in C++ 19 / 21

Guess by recurrence tree

Example (Binary search)

T (n) ≤ T (dn/2e) + Θ(1).

Recursion tree suggests T (n) = O(log n). Prove rigorously by
induction.

Example

T (n) = 3T (bn/4c) + Θ(n2).

Recursion tree suggests T (n) = O(n2). Prove rigorously by induction.

Example (Now try this)

T (n) = T (n/3) + T (2n/3) + O(n)

c©Hung Q. Ngo (SUNY at Buffalo) CSE 250 – Data Structures in C++ 20 / 21

Other methods of solving recurrences

Masters Theorem
Generating functions
Hypergeometric series
Finite calculus, finite differences
...

Further readings
“A = B,” by M. Petkovsek, H. Wilf, D. Zeilberger
“Concrete mathematics,” R. Graham, D. Knuth, O. Patashnik
“Enumerative combinatorics,” R. Stanley (two volumes)
“Theory of partitions,” G. Andrews

c©Hung Q. Ngo (SUNY at Buffalo) CSE 250 – Data Structures in C++ 21 / 21

	Binary search
	Recurrence relations
	Methods of solving recurrence relations
	Guess and induct

