Lexer with richer vocabulary
Vectors

Stacks
Well-ballanced expressions

Infix and postfix expressions

Improved Lexer

CSE 250, Spring 2012, SUNY Buffalo

INTEGER: is a consecutive sequence of digits
OPERATOR: is one of five operators +-*/=
DELIM: bracket delimiters such as {}[]()

COMMENT: all characters that follow a # character
to the end of the source file/string or until the end of
line "\n'character is reached

Unrecognized tokens are considered to be syntax
error

Returns a vector of remaining tokens

vector<Token> Lexer::tokenize()

vector<int> myvec;
myvec.pushback(123);
myvec.pushback(456);

Access using myvec|[o0], myvec|1]
myvec.front() // first element
myvec.back() // last element
myvec.insert(position)
myvec.size()

myvec.pop_back()

Stacks and Applications

- WELL-FORMED EXPRESSIONS
- STACKS
- INFIX, POSTFIX

CSE 250, Spring 2012, SUNY Buffalo 2/3/12

<div id="navigation">

HTML file

<div id="searcher">

<form method="get" action="http://www.gnu.org/cgi-bin/estseek.cgi">
<div><label class="netscaped" for="phrase">Search:</label>
<input name="phrase" id="phrase" type="text" size="18" accesskey="s"

value="Why GNU/Linux?" onfocus="this.value='"'" />
<input type="submit" value="Search" /></div><!-- unnamed label -->
</form>
</div><!-- /searcher -->

<1li id="tabPhilosophy"><a href=
"/philosophy/philosophy.html">Philosophy</1i>

<1li id="tabLicenses">Licenses</1li>

<1li id="tabEducation">Education</1li>

<li id="tabSoftware">Downloads</1li>

<1li id="tabDoc">Documentation</1li>

<1li id="tabHelp">Help GNU</1li>

<1li id="joinfsftab">Join the
FSF!</1li>

</div><!-- /inner -->
</div><!-- /navigation -->

CSE 250, Spring 2012, SUNY Buffalo 2/3/12

Or “balanced expressions”:

([thisis] { a number } 12345) # this is well-formed
([this is] { a number) 12345} # that is not
{[(34+4)/5] + 7}/4 # this is well-formed
11(34+4)/55 + 71/4 # that is not

The empty sequence is well-formed.

If A and B are well-formed, then the concatenation
AB 1s well-formed

If A 1s well-formed, then [A], {A}, and (A) are well-
formed.

Stack

]]
Pu?y /Po’p

CSE 250, Spring 2012, SUNY Buffalo

Read the next delimiter token.

If it is an open delimeter (i.e. [({), then we push it in
the stack.

If it is a close delimiter (i.e. |)}), then we match it
with a corresponding open delimiter in the stack

([with] and so on). If there is no match then the
sequence is not well-formed. If there is a match, then
we pop the stack and discard both the tokens.

When there is no more token left and the stack is
empty, then we have a well-formed sequence.
Otherwise the sequence is not well-formed.

5+4%*5/2-3 in postfix is writtenas 545 *2 / + 3 -

(5+4)*5/2-3 in postfix is written as 54 + 5% 2 / 3 —

Initialize an empty stack

While (there is still a token to read)

read the token t
if t is an operand, push it onto the stack

if t is an operator,

pop two operands from the stack, compute the result (using t)
// if there is division by zero, scream foul

push the result back onto the stack
// if there is less than two operands, scream foul

In the end, if there is one number in the stack, output it.
// 1f there is more than one number in the stack, scream
foul.

