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Problem 1 (30 points). Mark the correct choice(s) or give a brief answer. Each question is worth 3
points. All codes are in C++.

1. Which of the following are declarations but not definitions? Check all that apply.

⊗ struct Foo;
2 string s;
2 string s("David");
⊗ string foo(string s);
⊗ typedef string my string;
2 None of the above

2. Consider the following definition char var[] = "Hello\0World";
What does cout << var; print?

⊗ Hello 2 World 2 Hello World
2 it prints nothing 2 it can’t even compile because var is not a string

3. Will the following program compile without error? 2 YES ⊗ NO

#include <iostream>
using namespace std;
int main() { cout << foo() << endl; return 0; }
int foo() { return 1; }

4. Will the following program compile without error? ⊗ YES 2 NO

#include <iostream>
using namespace std;
int foo() { return 1; }
int main() { cout << foo() << endl; return 0; }

5. Consider the following snippet of C++

void ubswap(int*& a, int*& b) {
int* temp = a; a = b; b = temp;

}

int main() {
int x = 1, y=9;
int* u = &x; int* v = &y;
int** a = &u; int** b = &v;
ubswap(u, v);
return 0;

}

which pairs of variables in main are swapped? Check all that apply.

2 x and y ⊗ u and v 2 a and b
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6. Suppose you wanted to make use of Lexer routines I gave and all your codes are put in yourprog.cpp.
The interface for for the Lexer is declared in Lexer.h and the implementation is stored in
Lexer.cpp, all in the same directory. The Lexer.h header is properly included. Which of the
following compilation commands will produce Lexer.o? (Check all that apply.)

2 g++ -c yourprog.cpp
2 g++ yourprog.cpp Lexer.cpp
2 g++ Lexer.cpp yourprog.cpp
2 g++ Lexer.o yourprog.cpp
⊗ g++ -c Lexer.cpp
2 g++ yourprog.cpp Lexer.cpp -o best
2 g++ Lexer.cpp -o yourprog.cpp

7. Continue with the previous question. Suppose we already have Lexer.o in the same directory,
which of the folowing commands will produce an executable?

2 g++ -c yourprog.cpp
⊗ g++ yourprog.cpp Lexer.cpp
⊗ g++ yourprog.cpp Lexer.cpp -o best
⊗ g++ yourprog.cpp Lexer.o
⊗ g++ yourprog.cpp Lexer.o -o best
2 g++ -c Lexer.cpp
2 g++ Lexer.cpp -o yourprog.cpp

8. Write a C++ line that defines a new type named mytype t. The type is a function pointer to a
function that takes two pointers to int and returns a string.

typedef string (*mytype_t)(int*, int*);

9. Let foo be a function with the prototype int foo(int); Suppose we want to define a variable
var so that later we can assign var["abc"] = &foo; How would we define var?

// directly like this
map<string, int (*)(int)> var;
// OR, indirectly like this
typedef int (*mytype_t)(int);
map<string, mytype_t> var;

10. Consider the following helloWorld.cpp file

#include <iostream>
using namespace std;
int main() { cout << "Hello world" << endl; return 0; }

Write the content of a Makefile that when we type make will produce an executable named hw

all:
g++ hellowWorld.cpp -o hw
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Problem 2 (30 points). You can assume that using namespace std; and all appropriate #include
statements have been written at the top of the file.

1. (15) Write a C++ function foo() that takes a vector myvec of integers by reference and reverse
all elements of the vector.

void foo(vector<int>& myvec) {
for (int i=0; i<myvec.size()/2; ++i) {

swap(myvec[i], myvec[myvec.size()-1-i]);
}

}

2. (15) Write a C++ function bar() that takes a stack st of int as argument, and returns the
bottom element of the stack. For example,

bottom --> top
st = [ 1 3 -2 9 4 3], then bar() returns 1
st = [ 2 3 -2 9 4 3 7], then bar() returns 2

If the stack is empty then 0 is returned.

int bar(stack<int> st)
{

while (st.size() > 1)
st.pop();

return (st.size() == 1 ? st.top() : 0);
}
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Problem 3 (20 points). You can assume that using namespace std; is at the top of the file. Write
a function foo() that does the following. It takes an vector of int named vec as input, and returns
the maximum number of occurrences of an integer in the vector. For example,

vec = [ 3 9 -2 9 3 3 -5 3 ] ------> foo() returns 4

vec = [ 3 9 2 -1 5 4 -7 6 ] ------> foo() returns 1

In the former, number 3 occurs most frequently. In the latter, the number of occurences of any
number is 1, so the maximum is also 1. Of course, if vec is empty then 0 should be returned.

int foo(vector<int> vec)
{

int maxsofar = 0;
int currentCount = 0;
sort(vec.begin(), vec.end());
for (int i=0; i<vec.size(); ++i) {

currentCount++;
if (i > 0 && vec[i] > vec[i-1]) {

maxsofar = max(maxsofar, currentCount);
currentCount = 0;

}
}
return max(maxsofar, currentCount);

}
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Problem 4 (15 points). You can assume that using namespace std; and all appropriate #include
statements have been written at the top of the file. Consider the Token type in the Lexer.h file in as-
signment 3:

enum token_types_t { IDENT, BLANK, TAG, ERRTOK, ENDTOK };
struct Token { token_types_t type; std::string value; };

Suppose we already tokenized an input 250HTML expression, found no invalid token and no unknown
tag, and stored all tokens in a token vector vec. Write function valid() that takes vec as argument
and returns whether the expression is well-formed. For example, suppose the input expression is

<red>Hello world</red>

Then, vec is the following vector

[ (TAG, "red"), (IDENT, "Hello"), (BLANK, " "), (IDENT, "world"), (TAG, "/red") ]

and valid() should return true. On the other hand, if the expression was

<red>Hello<blue></red>

Then valid() should return false because vec is

[ (TAG, "red"), (IDENT, "Hello"), (TAG, "blue"), (TAG, "/red") ]

bool valid(vector<Token> vec)
{

stack<string> st;
for (int i=0; i<vec.size(); i++) {

switch (vec[i].type) {
case TAG:

if (vec[i].value[0] == ’/’) {
if (!st.empty() && st.top() == vec[i].value.substr(1)) {

st.pop();
} else {

return false; // unmatched closing TAG
}

} else {
st.push(vec[i].value);

}
break;

case IDENT:
case BLANK:
default:

break; // skip over all those guys
}

}
return st.empty();

}
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Problem 5 (5 points extra credit problem). Suppose we tokenized the input expression but didn’t put the
tokens in a vector; instead, we pushed them all onto a stack (in the same scanning order from left to right
of the input expression), and pass the stack of tokens to valid(). Describe in English how you would
write valid now? (In particular, no code has to be written, just a couple of lines describing your idea
is sufficient.)

Pop one token out at a time, treat open TAG as close TAG and
vice versa. All else is the same as in the vector case.

7


