
Solution to CSE 250 Midterm Exam 2

Fall 2014
Time: 50 minutes.

Total points: 100 There are 4 questions.

Please use the space provided for each question, and the back of the page if you need to. Please do
not use any extra paper. The space given per question is a lot more than sufficient to answer the question.
Please be brief. Longer answers do not get more points!

• No electronic devices of any kind. You can open your textbook and notes

• Please leave your UB ID card on the table

• This booklet must not be torn or mutilated in any way and must not be taken from the exam
room

• Please stop writing when you are told to do so. We will not accept your submission otherwise.

Your name:
———————————————————————-

UBIT ID:
———————————————————————-

CSE 250 Index Number:
———————————————————————-

The rest of this page is for official use only. Do not write on the page beyond this point.

Problem Number Score obtained
name, UBIT Name, Index Number

(5 max)
Problem 1
(20 max)

Problem 2
(15 max)

Problem 3
(30 max)

Problem 4
(30 max)

Total Score:
(100 max)

1



Problem 1 (20 points). Order the following functions in increasing order of asymptotic growth rate. You
don’t have to explain how you get the order.

n log3 n,
32n

n3
,

n
√
n

log2 n
, n3, log4 n, n1.5, 23n,

Answer.

log4 n, n log3 n,
n
√
n

log2 n
, n1.5, n3, 23n,

32n

n3
,

Problem 2 (15 points). Use the recurrence tree method to solve the following recurrence relation

T (n) = T (n/3) + n2

As usual, you can assume T (k) = O(1) for k ≤ 10. Show your work: draw the tree and do the
summation.

Answer. The recurrence tree is as follows.

Thus, we have

T (n) = T (n/3k) + n2 + (n/3)2 + (n/32)2 + · · ·+ (n/3k−1)2

= T (n/3k) + n2
(

1 + 1/9 + 1/92 + · · ·+ 1/9k−1
)

= T (n/3k) + n2

(
1− 1/9k

1− 1/9

)
.

By setting k = log3 n, we have n/3k = 1 and 9k = 9log3(n) = nlog3 9 = n2. Thus

T (n) = T (1) + n2 1− 1/n2

8/9
= T (1) + 9n2/8− 9/8 = Θ(n2).

2



Problem 3 (30 points). Let Node be the following structure

struct Node {
int key;
Node* next;

};

Write a recursive version and an iterative version of a C++ function that takes a pointer to Node
which is the head of a NULL-terminated singly linked list and returns an integer which is the following
alternating sum: first key minus second key plus third key minus fourth key, and so forth. For example,

• input : a.4→ b.2→ c.5→ d.2, output : 5, because 5 = 4− 2 + 5− 2

• input : a.4→ b.2→ c.5, output : 7, because 7 = 4− 2 + 5

• input : EMPTY – output : 0

int iterative_alt_sum(Node* head)
{

int sum=0;
size_t i=0;
for (; head != NULL; head = head->next) {

if (i % 2 == 0)
sum += head->key;

else
sum -= head->key;

i++;
}
return sum;

}

int recursive_alt_sum(Node* head)
{

if (head == NULL)
return 0;

else
return head->key - recursive_alt_sum(head->next);

}

3



Problem 4 (30 points). Let Node be the following structure

struct Node
{

int key;
Node* next;

}

Write a recursive C++ function that takes a pointer to Nodewhich is the head of a NULL-terminated
singly linked list, and a key x. The function removes all nodes with key = x and returns the pointer to the
head of the resulting linked list. Only pointer manipulation is allowed. (This is essentially the same
function required in Assignment 6, but a recursive solution is asked.) Remember to free up memory of
the removed nodes too. For example,

• Input: a.4→ b.5→ c.4→ d.3, x = 4; output: pointer to b, where the resulting list is b.5→ d.3.

Node* recursive_remove(Node* head, int x)
{

if (head == NULL)
return NULL;

if (head->key == x) {
Node* tmp = head->next;
delete head;
return recursive_remove(tmp);

} else {
head->next = recursive_remove(head->next);
return head;

}
}

4


