Solution to CSE 250 Final Exam

Fall 2013
Time: 3 hours.

December 13, 2013

’ Total points: 100 14 pages ‘

Please use the space provided for each question, and the back of the page if you need to. Please do
not use any extra paper. The space given per question is a lot more than sufficient to answer the question.
Please be brief. Longer answers do not get more points!

e No electronic devices of any kind. You can open your textbook and notes

e Please leave your UB ID card on the table

o This booklet must not be torn or mutilated in any way and must not be taken from the exam

room

questions

Please stop writing when you are told to do so. We will not accept your submission otherwise.

If you wanted to, you can answer the extra credit question without answering all of the other

Your name:

Your UB ID:

The rest of this page is for official use only. Do not write on the page beyond this point.

Problem Score Problem Score Problem Score
name and id Problem 1 Problem 2
(2 max) (10 max) (4 max)
Problem 3 Problem 4 Problem 5
(4 max) (8 max) (8 max)
Problem 6 Problem 7 Problem 8
(8 max) (8 max) (4 max)
Problem 9 Problem 10 Problem 11
(4 max) (8 max) (8 max)
Problem 12 Problem 13 Problem 14
(8 max) (8 max) (8 max)
Total Score:
(100 max)

Problem 1 (10 points). Mark the correct choice(s) or give a brief answer. Each question is worth 1 point.
All codes are in C++.

1. Of the following C++ statements, which ones are both declarations and definitions? (Mark all that

apply.)
® int foo(int b) { return bxb;} ® long ij; ® char a='h’;
® bool easy; O typedef mytype string; O struct BSTNode;

2. Consider the following fragment

Char name[] :{,D,,,a,,,V,,,i,,,d,,,\O,,,B,,,l,,,a,,,i,,,n,,,e,,,\O, };

cout << name;

What does cout print?
® David O Blaine O David Blaine O None of the above

3. Consider the following fragment
int al]l = {1, 2, 3, 4}; *(at2) += 3;

What is the value of a [2] after the fragment is executed?
o1 o2 03 04 as ® 6

4. Consider the following fragment
int al[]l = {1, 2, 3, 4}; intx p = atl; p+t+; (*xp)++;

What is the value of a [2] after the fragment is executed?
Ol o2 a3 ® 4 as o6

5. Will the following program compile without error? ® YES O NO

#include <iostream>
using namespace std;
int foo(int i) { return i; }
int main () {
int a = 2;
int *b = &a;
cout << foo(*xb) << endl;
return 0;

10.

Suppose you wanted to make use of terminal control routines and the Lexer class I gave and all
your codes are put in yourprog.cpp. Write down one g++ compilation line that will compile
term_control.cpp and produce the object file term_control.o

g++ —-c term_control.cpp

Write one line of C++ that defines a new type, named myt ype, which represents a pointer to a
function that takes two chars and returns nothing.

typedef void (xmytype) (char, char);

Write one C++ statement that defines a variable mymap, where mymap is a map from st ring to
pointer to function that has two int arguments and returns an int.

std: :map<string, int (%) (int, int)> mymap;

. To print all keys of a BST in decreasing order, we use the following traversal order

O In- O Post- O Pre- ® Reverse In- O Reverse Post- O Reverse Pre-

In the B-Tree data structure we discussed in class, the last pointer of each leaf node points to its
sibling node on the right (except for the rightmost leaf node, whose last pointer points to NULL).
Explain why those pointers point that way?

So range queries can be answered quicker.

Problem 2 (4 points). Order the following functions in increasing order of asymptotic growth rate. You
don’t have to explain how you get the order.

L, Vv, 200 n2(logn)?, 3 n 2" nyn.
(logn)?

Solution.
n

(logn)?’

vn, n’4, nvn, n*(logn)®, 2710 n.on
]

Problem 3 (4 points). Use the recurrence tree method to solve the recurrence 7'(n) = 67'(n/2) +n. As
usual, you can assume 7'(k) = O(1) for k£ < 10. Draw the tree. Show your work.

Solution. (You should draw the figure.)

k—1
_ k n i(n
() = 67T (5)+> 6 (5)
=0
n k—1
_ k 7
- 6T(2—k)+ n-3
=0
n k—1
_ k 7
= 6T (5) +n
n
- 6’“T(2—k>+®(n).

Select k such that n/2¥ = 1 or k = log, n. This means
3k _ n10g2 3

6k _ n10g26‘

Thus,
T(n) _ nlogg 6T() + @(log, 3 n) — @(nlog26>'

Problem 4 (8 points). You can assume that using namespace std; is atthe top of the file.

1. (4) Write a C++ function iterative_range_count () that takes a stack st of int and an
integer a as arguments, and returns the number of integers in st that are at least a.

int iterative_range_count (stack<int> st, int a)

{

int count = 0;

while (!st.empty()) {
if (st.top() >= a) count++;
st.pop();

}

return count;

2. (4) Write a C++ function recursive_range_count () that solves the same problem recur-
sively.

int recursive_range_count (stack<int> st, int a)

{
if (st.empty()) return 0;

int tmp = st.top() >= a? 1 : O;
st.pop () ;

return tmp + recursive_range_count (st, a);

Problems 5-7 make use of the following linked list Node structure:

struct Node {

int key;

Node* next;

Node (int k=0, Nodex n=NULL) : key(k), next(n) {};
bi

Problem 5 (8 points). Write a function median_element that takes a head pointer to a NULL-
terminated singly linked list whose keys are sorted in increasing order. All keys are distinct. The function
returns a pointer to the node which stores the median key of all keys. If there are n keys then the median
key is the [n/2]-smallest key. (If the list is empty then NULL is returned.) For example, if the input list
is

a.l —=b5—c7—d8— NULL

then a pointer to b is returned (n = 4 in this case). As another sample, if the input list is
a.l —=b5—c7—d8— el0 - NULL

then a pointer to c is returned (n = 5 in this case). Most importantly, you can only use one while
loop in your function, and that’s the only looping structure you can use. In particular, the easy solution
of looping through to find n, and traverse the second time to report the median is not valid. (Hint: recall
the linked-list cycle detection problem I discussed in class.)

Node*x median_element (Nodex* head) {
if (head == NULL) return NULL;

Node *slow = head, =*fast = head;

while (fast->next != NULL && fast->next->next != NULL) {
slow = slow—>next;
fast = fast->next->next;

t

return slow;

Problem 6 (8 points). Write a function fold_list () that takes a head pointer to a NULL-terminated
singly linked list consisting of Nodes. The function modifies the list in the following way: it cuts the
list in half, moves the first half to the end, and returns the head pointer to the new list. Only pointer
manipulation is allowed. If the list has an odd number of elements, then the middle element belongs to
the first half. If the list is empty, NULL is returned. Feel free to call the median_element () function
from Problem 5.

For example, if the input list is

a4 —>bl—c3—>d6—el9— f14 - NULL

then the output list is
d6—el9— fl14 —ad—bl— c3— NULL,

and a pointer to d is returned. And, if the input list is
a4 —bl1l—c3—d6—el9— NULL

then the output list is
d6—el9—ad4— 01— c3— NULL,

and a pointer to d is returned.

Node+ fold_list (Node*x head) {

if (head == NULL || head->next == NULL) return head;

Nodex first_tail = median_element (head);

Node+ second_tail = head;

while (second_tail->next != NULL) second_tail = second_tail->next;
Node*x new_head = first_tail->next;

first_tail->next = NULL;

second_tail->next head;

return new_head;

Problem 7 (8 points). Write a function difference () that takes fwo head pointers to Node as ar-
guments. Each head pointer points to the head element of a NULL-terminated singly linked list which
contains distinct keys sorted in increasing order. (The keys within each list are distinct, but keys in dif-
ferent lists aren’t necessarily different.) The function difference () returns a new sorted linked list
of Nodes that contain all keys of the two input linked lists that are not in common between the two lists.
You have to keep the input linked lists intact. For example, if the two input lists are

a.l— b4 —c7—d.16 - NULL

e2— f4— 99— hl6 —i.17 - NULL

Then, the output list is
adl—e2—d7—4¢.9—4i.17 - NULL

and a pointer to o’ is returned. (Iused a’, e’, c’, g’, i’ because they are not the same nodes
as the ones from the input lists.) Write the function so that its asymptotic running time linear in the total
input list size.

Nodex difference (Node* headl, Nodex head2) {
Node* head = NULL;
while (headl != NULL && head2 != NULL) {
if (headl->key < head2->key) {
head = new Node (headl->key, head); headl
} else if (headl->key > head2->key) {
head = new Node (head2->key, head); head2 = head2->next;
} else { // they are equal
headl = headl->next; head2 = head2->next;

headl->next;

}

// at most one of the following while loops will ever execute
while (headl != NULL) {
head = new Node (headl->key, head); headl = headl->next;
}
while (head2 != NULL) {
head = new Node (head2->key, head); head2 = head2->next;

}

return reverse_sll (head);

// copy from lecture 13’s slides
Node* reverse_sll (Nodex head) {
Node x*prev = NULL, *temp;

while (head != NULL) {
temp = head->next; head->next = prev;
prev = head; head = temp;

}

return prev;

Problem 8 (4 points). Draw the binary tree that has the following inorder and postorder sequences

Inorder : 4 15 6 10 8 7 5
Postorder: 4 6 15 7 8 5 10

Problem 9 (4 points). Suppose we insert node 3 into the following AVL tree; Show where 3 is inserted
at first, then circle the node that becomes imbalanced and explain how the re-balance step works to keep
the AVL property. Draw the resulting AVL tree.

2 [2] <—— imbalanced, Right-Left case
/ \ / N\ do a right rotate at 8
1 8 [insert 3] 1 8 then a left rotate at 2
/ \ / \
4 9 4 9
/
3
after right rotate at 8 after left rotate at 2
2 4
/ \ / \
1 4 2 8
/ \ /\ \
3 8 1 3 9
\
9

Problem 10 (8 points). (a) Suppose we splay node 6 in the following tree, what does the resulting
tree look like? Draw all the intermediate trees after each zig-zig, zig-zag, or zig baby step and

label the step with the name zig-zig, zig-zag, or zig.

4 4 6
/ N\ / A\ / \
2 10 2 10 4 10
/ \ zig-zig / 0\ zig-zag / / 0\
8§ 11 —————v > 6 11 —————— > 2 7 11
/ N\ \ \
7 9 7 8
/ \ \
6 8 9
\
9

(b) Consider the following Binary Search Tree. Is it an AVL Tree? Why or why not? Put a color red
(R) or black (B) next to each node so that it is a red-black tree. (The x are NULL nodes.)

40 it is an AVL tree, because at every
/ \ node the height of the left differs
_ 30__ 50 from the height of the right subtree
/ \ / 0\ by at most 1
10 35 X 60
/ N\ / 0\ /N
8 15 x X X X
/N /0 N\
X X X X
40B
/ \
__ 30R_ 50B
/ \ / N\
10B 35B xB 60R
/\ /N /\
8R 15R xB xB xB Bx
/N /N

xB xBxB xXB

10

Problems 10 to 14 make use of the following binary search tree node structure:

struct BSTNode {
int key;
BSTNodex left;
BSTNodex right;
BSTNodex parent;
bi

Problem 11 (8 points). Write a function that takes a pointer to the root of a binary search tree with the
above BSTNode structure, and that removes the node with the minimum key from the tree. Note that the
root pointer is passed by reference. If the minimum node is the root node then the root pointer has to
be modified properly. All your code has to be contained within the function, do not write any auxiliary
function.

// this 1s virtually the same as a question in the sample exam
void delete_min (BSTNode*x& root)
{

if (root == NULL)
return;
BSTNodex min = root;
while (min->left != NULL)
min = min->left;
BSTNode* p = min->parent; // NULL if min == root
if (p == NULL) {
root = root->right; // new root
root—>parent = NULL;
} else {
p—>left = min->right;
if (min->right != NULL)

min->right->parent = p;
}

delete min; // don’t forget to release memory

11

Problem 12 (8 points). Write a function common_ancestors () that takes two (not necessarily dis-
tinct) pointers to BSTNodes in a BST and returns a vector of pointers to nodes in the tree which are the
common ancestors of the two given nodes. (Note that by definition a node is an ancestor of itself.)

vector<BSTNode*> common_ancestors (BSTNodex nodel, BSTNode* node?2)
{
stack<BSTNodex*> sl, s2;

while (nodel != NULL) {
sl.push (nodel) ;
nodel = nodel->parent;
}
while (node2 != NULL) {
s2.push (node?) ;
node?2 = node2->parent;

}
vector<BSTNodex> ret;
while (!sl.empty () && !s2.empty()) {
if (sl.top() == s2.top()) {
ret.push(sl.top());

sl.pop(); s2.pop();
} else {
break;

}

return ret;

12

Problem 13 (8 points). (a) Write a function size () that takes the root pointer of a binary tree with

(b)

the BSTNode structure and returns the size of the tree, which is the number of non-NULL nodes
in the tree.

size_ t size (BSTNodex root) {
if (root == NULL) return O;
return 1 + size(root->left) + size(root->right);

Write a function rank () that takes a pointer node to a node (not necessarily the root) of a binary
search tree with the BSTNode structure and returns the rank of that node. The rank of a node is &
if the node’s key is the kth smallest key among all keys. You can assume that all keys in the tree
are distinct. You should make use of the size () function from part (a). If node is NULL then 0
is returned.

size_t rank (BSTNodex node) {

if (node == NULL) return O0;
size_t r = 1 + size(node—->left);
while (node->parent != NULL) {
if (node->parent->right == node) {

r += 1 + size (node->parent->left);

}

node = node->parent;

}

return r;

13

Problem 14 (8 points). Write a function 1ast_node_depth_k () that takes the root pointer of a binary
tree with the BSTNode structure, a non-negative integer k and returns a pointer to the last node at depth
k of the tree. (Last as we go from left to right.) The root node is at depth 0, the root’s children are at
depth 1, and so on. If k is greater than the largest depth, then NULL is returned.

For example, consider the tree drawn in Problem 10b. The last node at depth 1 is node 50, at depth 2
is node 60, at depth 3 is 15, at any depth > 3 is NULL.

// this is a slight variation of a question from the sample exam
BSTNodex last_node_depth_k (BSTNode*x root, size_t k)
{

if (root == NULL) return NULL; // boundary case

size_t current_depth = 0;
deque<BTNodex*> q;
g.push_front (root) ;

size_t c=1; // ¢ = of nodes at current depth still in g
size_t n=0; // n = # of nodes at next depth already in g
while (!g.empty()) {

BTNode* cur = g.back(); // head of g
g.pop_back () ;
C——s

if (cur->left != NULL) { g.push_back (cur->left); n++; }
if (cur->right != NULL) { g.push_back (cur->right); n++; }
if (¢ == 0) {
if (current_depth == k)
return cur;
c =n; n= 0;

current_depth++;

}
return NULL;

14

