
CSE 250 Midterm Exam 1

Fall 2013
Time: 50 minutes.

Friday, Oct 04, 2013

Total points: 100 plus one extra credit question worth 5 points 7 pages

Please use the space provided for each question, and the back of the page if you need to. Please do
not use any extra paper. The space given per question is a lot more than sufficient to answer the question.
Please be brief. Longer answers do not get more points!

• No electronic devices of any kind. You can open your textbook and notes

• Please leave your UB ID card on the table

• This booklet must not be torn or mutilated in any way and must not be taken from the exam
room

• Please stop writing when you are told to do so. We will not accept your submission otherwise.

• If you wanted to, you can answer the extra credit question without answering all of the other
questions

Your name:
———————————————————————-

Your UBIT Name:
———————————————————————-

The rest of this page is for official use only. Do not write on the page beyond this point.

Problem Number Score obtained
name and id

(5 max)
Problem 1
(30 max)

Problem 2
(30 max)

Problem 3
(20 max)

Problem 4
(15 max)

Extra credit problem
(5 max)

Total Score:
(105 max)

1

Problem 1 (30 points). Mark the correct choice(s) or give a brief answer. Each question is worth 3
points. All codes are in C++.

1. Which of the following are declarations but not definitions? Check all that apply.

2 int i;
2 int i=1;
2 int foo(int);
2 int foo(int i);
2 typedef string my string;
2 None of the above

2. Consider the following definition char var[] = "this"; What is sizeof(var)?

2 4 2 5 2 6 2 7 2 8

3. Consider the following definition char var[] = "this\0is"; What is sizeof(var)?

2 4 2 5 2 6 2 7 2 8

4. Consider the following snippet of C++

void ubswap(int **a, int **b) {
int* temp = *a;

*a = *b;

*b = temp;
}
int main() {

int x = 1, y=9;
int* u = &x; int* v = &y;
int** a = &u; int** b = &v;
ubswap(a, b);
return 0;

}

which pairs of variables in main are swapped? Check all that apply.

2 x and y 2 u and v 2 a and b

5. Continue with the above snippet, which of the following – when called after ubswap(a, b);
line – will produce 9? (Check all that apply)

2 cout << **a; 2 cout << **b; 2 cout << *u; 2 cout << *v;
2 cout << x; 2 cout << y;

2

6. Suppose you wanted to make use of Lexer routines I gave and all your codes are put in yourprog.cpp.
The interface for for the Lexer is declared in Lexer.h and the implementation is stored in
Lexer.cpp, all in the same directory. The Lexer.h header is properly included. Which of the
following compilation commands will produce an executable file? (Check all that apply.)

2 g++ -c yourprog.cpp
2 g++ yourprog.cpp Lexer.cpp
2 g++ Lexer.cpp yourprog.cpp
2 g++ -c Lexer.cpp
2 g++ yourprog.cpp Lexer.cpp -o best
2 g++ Lexer.cpp -o yourprog.cpp

7. Write a C++ line that defines a new type named mytype t. The type is a function pointer to a
function that takes two char’s and returns an int.

8. Consider the following fragment

void foo(int&, int&); // foo()’s definition is somewhere else
int a=1, b=2;
foo(a, b);
// what’s a & b now?

The values of a,b after the fragment are

2 a==1 and b==2 2 a==2 and b==1 2 Can’t tell, need to know what foo() does

9. Consider the following fragment

void foo(int, int); // foo()’s definition is somewhere else
int a=1, b=2;
foo(a, b);
// what’s a & b now?

The values of a,b after the fragment are

2 a==1 and b==2 2 a==2 and b==1 2 Can’t tell, need to know what foo() does

10. Suppose we want to define a variable var so that later we can assign var["abc"] = true;
and var["xyz"] = false;. How would we define var?

3

Problem 2 (30 points). In writing the following functions, you can assume that using namespace
std; is at the top of the file.

1. (15) Write a C++ function foo() that takes a vector myvec of integers and an additional integer
k as arguments, and returns true if k appears at least twice in myvec, false otherwise.

bool foo(vector<int> myvec, int k) {

}

2. (15) Write a C++ function bar() that takes a stack st of int as argument, and returns a stack
ret of intwhich contains every alternate integer in st, starting from the top, in the same relative
order. In other words, if we were to mark the positions of integers in st from the top with position
1 (the top), 2 (below the top), 3 (below the two top), etc. Then, ret contains all integers at the
odd positions. For example,

bottom --> top bottom --> top
st = [1 3 -2 9 4 3], then ret = [3 9 3]
st = [1 3 -2 9 4 3 7], then ret = [1 -2 4 7]

bar() {

}

4

Problem 3 (20 points). You can assume that using namespace std; is at the top of the file.
Write a function foo() that does the following. It takes two vectors vec1 and vec2 of int as
input. A sub-sum of any integer vector vec is an integer of form

∑k
i=j vec[i] for some j, k such that

0 ≤ j ≤ k ≤ myvec.size()− 1.
The function foo() returns true if there is some sub-sum in vec1 that is equal to some sub-sum

in vec2, and false otherwise.
For example,

if vec1 = [3 5 2 3 5], and vec2 = [4 11 1] then true is returned
if vec1 = [3 5 2 3 5], and vec2 = [4 -3] then false is returned

In the former case, 5 + 2+ 3+ 5 = 4+ 11+ 1; in the latter, no sub-sum from vec1 is equal to 4 or −3
or 4− 3.

bool foo(vector<int> vec1, vector<int> vec2)
{

}

5

Problem 4 (15 points). In writing the following function, you can assume that using namespace
std; is at the top of the file. Consider a stripped-down version of Token type in the Lexer.h file in
assignment 3:

enum token_types_t { OPERATOR, NUMBER };
struct Token { token_types_t type; std::string value; };

Write function foo() that takes in a vector postfixvec of tokens which contains an expression in
proper postfix form, and returns a vector of tokens in infix form. You can assume that there are only
two types of operators: + and −. In particular, you don’t have to worry about precedence at all!
For example, suppose the input vector is

[(NUMBER, "123"), (NUMBER, "456"), (OPERATOR, "+"), (NUMBER, "7"), (OPERATOR, "-")]

then the output vector is

[(NUMBER, "123"), (OPERATOR, "+"), (NUMBER, "456"), (OPERATOR, "-"), (NUMBER, "7")]

vector<Token> foo(vector<Token> postfixvec)
{

vector<Token> infixvec;

return infixvec;
}

6

Problem 5 (5 points extra credit problem). Suppose we relax the assumption from Problem 4, we allow
for the input vector to contain ∗ and / operators. Do you need more types of tokens than just OPERATOR
and NUMBER. Why or why not?

7

