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ABSTRACT
Optical reach is defined as the distance optical signal can tra-
verse before its quality degrades to a level that necessitates
regeneration. It typically ranges from 500 to 2000 miles,
and as a consequence, regeneration of optical signal becomes
essential in order to establish a lightpath between a source-
destination node pair whose distance exceeds the limit. In a
translucent optical network, the optical signal is regenerated
at selected nodes of the network before the signal quality
degrades below the acceptable threshold. Given the optical
reach of the signal, to minimize the overall network design
cost, the goal of the regenerator placement problem is to
find the minimum number of regenerators necessary in the
network, so that every pair of nodes is able to establish a
lightpath between them. In this paper, we study the regen-
erator placement problem and present complexity result for
that.
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1. INTRODUCTION
In a translucent optical network, the optical signal is re-

generated at the regeneration points (typically a subset of
the network nodes with the regeneration capability) to carry
the signal over long distances. Optical reach (the distance
an optical signal can travel before its quality degrades to a
level that necessitates regeneration) usually ranges from 500
to 2000 miles [4]. To transmit an optical signal beyond this
distance, it is essential to re-amplify, reshape and re-time (a
process often called 3R regeneration) it. The Regenerator
Placement Problem (RPP) problem is to find i) the mini-
mum number of regenerators and ii) their locations, so that
a communication path can be established between every pair
of source-destination nodes in the network.
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The RPP has been studied by a number of researchers
[4, 5, 2]. However most of the published methods of lo-
cating regenerators operate by iteratively improving previ-
ously computed routes until they become feasible. These
methods usually generate a path between each pair of nodes
and then place regenerators, as needed, along those paths to
make them feasible. However, this approach usually results
in placing a significantly higher number of regenerators than
are needed to ensure that a path can be established between
every source-destination node pair.

Although most of the studies indicated earlier focused on
the technological aspects of regenerator placement in opti-
cal networks, the theoretical computer science community
also has investigated these problems [2]. In a recent pa-
per in SPAA [2], the authors claim that their study is the
first that presents a theoretical framework to study the RPP
and related problems. They present polynomial time algo-
rithms, NP-complete proofs, approximation algorithms and
inapproximability results for four different versions of the
RPP problem.

The contribution of this paper is the following:
• We show that the RPP can be effectively solved us-

ing an approximation algorithm for the minimum con-
nected dominated set problem.

• We point out several serious flaws of the algorithm
presented for the solution of RPP in [2].

2. REGENERATOR PLACEMENT PROBLEM
In this section, we first discuss the approach taken in [2]

for the solution of the RPP. After pointing out a few limi-
tations of their approach, we present our technique in sub-
section 2.2.

2.1 Flammini et al. approach to RPP
An optical network is modeled as an unweighted undi-

rected graph G = (V, E) in [2]. The length of a path is
measured in terms of the number of edges that constitute
the path and the notion of optical reach is incorporated by
putting a bound (d) on the number of edges a lightpath
can traverse before requiring regeneration. A connection
between a source (s) and a destination (t) comprises of a
sequence of lightpaths from s to a regenerator node, or from
one regenerator node to another, or from one regenerator
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node to t (of length at most d) whose concatenation form a
path from s to t. A solution to the RPP consists of identi-
fication of the smallest subset of nodes U ⊆ V to place the
regenerators, such that paths can be established between
source-destination node pairs.

We make a few comments on the network model and so-
lution technique proposed in [2].

Comment 1: Given that in reality the distance between
nodes are not identical and deterioration of signal strength
is proportional to the distance traversed by an optical signal,
we feel that an edge-weighted graph would have been a more
appropriate model for the RPP, instead of the un-weighted
graph used in [2]. In our model described in section 2.2, we
use an edge-weighted graph model, where the weights on the
edges represent the distance between the nodes.

Comment 2: The authors in [2] make a distinction be-
tween simple path case and non-simple path case. They
correctly note that if only simple paths are acceptable for
lightpath establishment, then the number of regenerators
needed to establish connection between the nodes can be
significantly higher than the number of regenerators needed
when non-simple paths are also acceptable. However, we
would like to point out that the distinction should not be
drawn between simple and non-simple path cases as non-
simple path cases are acceptable under some conditions and
unacceptable under some others. We elaborate our obser-
vation with an example shown in Figure 1. In the figure,
the weights assigned on the edges represent the distance
between the corresponding nodes in miles. If the optical
reach is 3250 miles, we can establish a non-simple path
P1 : A − B − C − D − F − G − B − C − H from node
A to H , with signal regeneration at node D. The two
path segments that make up the path from A to H are
(P1,1 : A−B−C −D) and (P1,2 : D−F −G−B−C −H).
However, this may not be an acceptable solution when we
consider free wavelengths available on each of the fiber links.
Let λ1 be the only wavelength available on the fiber links
AB and CH and let wavelengths {λ1, λ2, . . .} be available
on the remaining links. In this scenario both the path seg-
ments P1,1 and P1,2 must use wavelength λ1 to set up the
lightpath. This will not be an acceptable solution since the
link BC appears in both path segments. Thus in this case,
the non-simple path P1 from A to H will be unacceptable.
However, the non-simple path P2 from A to H given by
A−B−G−F −D−F −G−B−C−H will be perfectly ac-
ceptable, as this path will be composed of two path segments
P2,1 : A−B−G−F −D and P2,2 : D−F −G−B−C−H .
The difference between the two cases is that in the first case
the two path segments P1,1 and P1,2 share an edge, BC, that
is traversed in the same direction and in the second case the
two path segments P2,1 and P2,2 do not share any edge that
is traversed in the same direction. Since in an optical net-
work, traffic in opposite directions are normally carried by
two different optical fibers, the non-simple path P1 is un-
acceptable, whereas the non-simple path P2 is acceptable.
The authors in [2] do not make a distinction between these
two types of non-simple paths. If X, Y, Z represent the num-
ber of regenerators that will be needed for a RPP problem
instance for the cases where (i) only simple paths are ac-
ceptable, (ii) all simple and non-simple paths are acceptable
and (ii) all simple and only non-simple paths that do not

share any edge that is traversed in the same direction are
acceptable, respectively, then X ≥ Z ≥ Y .
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Figure 1: Example illustrates need for edge-

disjointness among directed path segments

Comment 3: In proof of the Theorem 2.8 in [2], the au-
thors describe an algorithm to find a solution to a ver-
sion of RPP denoted by RPP/∞/req. RPP/∞/req problem
states that given route requests between different source-
destination pairs and an optical reach d > 0, find loca-
tions for the smallest number of regenerators. The algo-
rithm starts by transforming the instance of RPP/∞/req

problem to an instance of the set-cover problem. Unfor-
tunately, the algorithm at times may fail to find a solution
of the RPP/∞/req problem. The solution computed by this
algorithm when executed on the graph G = (V, E) is shown
in Figure 2. For this graph the solution corresponding to the
set-cover instance is the solution for the RPP/∞/req prob-
lem with d = 2. But it is not a solution for the RPP/∞/req

problem for the graph G with d = 2 as the path length
between the nodes v2 and v3 is greater than 2. Also the so-
lution of the set-cover instance of RPP/∞/req problem does
not always guarantee that a simple path can be found be-
tween every source-destination node pairs, once regenerators
are placed at the locations identified by the algorithm. The
Figure 3 shows another example where the solution returned
by this algorithm for the RPP/∞/req problem with d = 3 is
the solution corresponding to the set-cover instance of graph
G = (V, E). In Figure 3 the algorithm returns node r as the
final solution for placement of a regenerator. However, if a
regenerator is placed at only this node, the path between the
leaf nodes v1 and v2 will be non-simple. In order to have
at least one simple path between every pairs of nodes the
correct solution has to place regenerators at nodes a and b.

2.2 Our approach to solution of the RPP
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In our model G = (V, E) is a connected edge-weighted
graph with edge-weights representing distances between the
corresponding nodes.
Path Segment w.r.t. node set V ′: Given a source node s, a
destination node t and a subset V ′ ⊆ V , a subpath PS of a
path from s to t (henceforth called a s−t path) is referred to
as a path segment, if the end-points of PS are in V ′ ∪ {s, t}
and no intermediate node is in V ′.
Optical reach constraint: Given a path in a network between
a source and a destination, the optical reach constraint en-
sures that the distance of any path segment between two
regenerator nodes, or the distance from the source to a re-
generator or the distance from a regenerator to the destina-
tion on the s − t path does not exceed fiber’s optical reach.
Regenerator Placement Problem (RPP): Given G = (V, E),
the problem is to find the smallest V ′ ⊆ V such that there
exists a path between every pair of nodes {s, t} ∈ V where
(i) no path segment of the s − t path has a length greater
than R and (ii) no two path segments of the s− t path share
an edge that is traversed in the same direction.
Reachability Graph: Given a network graph G = (V, E) with
edge weights representing the distances between the nodes,
and an optical reach distance R, the reachability graph G′ =
(V ′, E′) corresponding to G is constructed as follows: V ′ =
V and two nodes vi and vj in V ′ will have an edge between
them if the shortest path length between those two nodes in
V is at most R.

Theorem 1: The Minimum Connected Dominating Set
(MCDS) of the reachability graph G′ = (V ′, E′) of the net-
work graph G = (V, E) represents the solution of Regenera-
tor Placement Problem (RPP), in non-trivial cases in which
G′ is not a clique.

Proof: The proof follows from the following lemmas.

Lemma 1: If there’s an α-approximation algorithm for the
MCDS problem, then there’s an α-approximation algorithm
for the RPP.

Proof: Given an instance [G = (V, E), w : E → R
+, R] of

the RPP problem, construct an instance G′ = (V ′, E′) of
the MCDS problem in the following way: Set V ′ = V , and
let (u, v) ∈ E′ iff dG(u, v) ≤ R. Here dG(u, v) denotes the
shortest distance between the nodes u and v in G in terms of
the distance function w. For convenience, define a distance
function w′ : E′ → R

+ by assigning w′(uv) = dG(u, v).
Let ∅ 6= S ⊆ V = V ′ be a MCDS of the graph G′. Con-

sider any two vertices s and t in V . Without loss of general-
ity, assume st /∈ E′. (Otherwise, there’s a path from s to t of
length ≤ R and we’re done.) We need to show that there’s
a walk from s to t in G such that no two path segments in
the walk share an edge that is traversed in the same direc-
tion twice. First, let s′ be the vertex in S for which w′(ss′)
is smallest, and t′ be the vertex in S for which w′(tt′) is
smallest. If s ∈ S then s = s′. If t ∈ S, then t = t′.

Let s′ = s1, s2, . . . , sm = t′ be the shortest path in G′[S]
between s′ and t′. Since S is a connected dominating set,
such a path exists. Now, for each edge sisi+1 ∈ E′ on
this path, there’s a corresponding (si, si+1)-path in G with
length ≤ R. Hence, putting everything together, we can find
a walk from s to t in G consisting of segments s = s0 ; s1,
s1 ; s2, ..., sm−1 ; sm, sm ; t = sm+1. Each segment
has length ≤ R.

Now, suppose there’s some edge uv ∈ E which is traversed
twice in the same direction (from u to v). Suppose uv was

used in the segment si ; si+1 and then again in segment
sj ; sj+1. Without loss of generality, assume i < j. Now,
on the sj ; sj+1 segment, the length of the sj ; u part has
to be at least the length of the u ; si+1 part. Otherwise,
from si we could have gone to u, and then take the u ; sj

path to sj ; this “shortcut” would contradict that fact that
the s′, t′-path we chose was a shortest path.

Thus, the v ; si+1 part is strictly shorter than the sj ; u
path. Consequently, from si+1 we can go to v and then
take the v ; sj+1 branch; this would be shorter than the
current sj ; sj+1 path, again contradicting the shortest
path choice. This proves that a feasible solution for the
MCDS instance is a feasible solution for the RPP instance.

Lemma 2: If there’s an α-approximation algorithm for
the RPP, then there’s an α-approximation algorithm for the
MCDS problem.

Proof: Consider an instance G of the MCDS problem. Con-
struct an instance G′ of the RPP by setting G′ = G, and
R = 1. Set the weight of each edge to be 1. It’s easy to see
that if a solution is feasible for RPP on G′ then it is feasible
for MCDS problem on G.

However, both lemma 1 and 2 holds except the trivial case
when reachability graph G′ is clique. If G′ is a clique then
solution of RPP will return 0 node while MCDS of G′ will
give exactly 1 node.

From recent [3], we know that minimum connected dom-

inating set (MCDS) can be approximated to within about
ln n + O(1). We also know that MCDS cannot be approxi-
mated (unless P = NP ) to within ln n − Θ(ln ln n) [1].

Corollary 3: There’s a O(ln n)-approximation algorithm
for the RPP.

Comment 4: In [2] the authors present an algorithm for the
RPP/∞/req with approximation ratio of 3

2
log m + 1, where

the demand matrix is all-to-all. If the demand matrix is
all-to-all m is O(n2), where n is the number of nodes in
the network. In this case the approximation ratio becomes
3log n+1. In our MCDS based approach for the solution of
RPP, we can provide better performance, as MCDS can be
computed with approximation ratio ln δ + 2 where δ is the
maximum degree in the input graph [3].
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of dominating set problems in bounded degree graphs.
Information and Computation, 206(11):1264–1275,
2008.

[2] M. Flammini, M. Spaccamela, et al. On the complexity
of the regenerator placement problem in optical
networks. In Proceedings of the 21st SPAA, pages
154–162. ACM, 2009.

[3] L. Ruan, H. Du, X. Jia, W. Wu, Y. Li, and K. Ko. A
greedy approximation for minimum connected
dominating sets. Theoretical Computer Science,
329(1-3):325–330, 2004.

[4] J. Simmons, M. Archit, and N. Holmdel. Network
design in realistic¿ all-optical¿ backbone networks.
IEEE Communications Magazine, 44(11):88–94, 2006.

[5] X. Yang and B. Ramamurthy. Sparse regeneration in
translucent wavelength-routed optical networks:
architecture, network design and wavelength routing.
Photonic network communications, 10(1):39–53, 2005.

180


