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Optical Switching Networks with Minimum
Number of Limited Range Wavelength Converters
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Abstract—We study the problem of determining the mini- communication patterns (e.g. unicast and multicast commu-
mum number of limited-range wavelength converters needed njcation patterns under different connection models [6], [7]).
to construct strictly, wide-sense, and rearrangeably nonblocking Such an optical switching network can be used to serve as an

optical cross-connects for both unicast and multicast traffic tical t (OXC) i id icati
patterns. We give the exact formula to compute this number for optical cross-connect ( ) in a wide-area communication

rearrangeably and wide-sense nonblocking cross-connects underN€twork or to provide high-speed interconnections among a
both the unicast and multicast cases. We also give optimal cross-group of processors in a parallel and distributed computing
connect constructions with respect to the number of limited-range  system.
wavelength converters. In this paper, we consider supporting two typical commu-
Index Terms— Wavelength-division-multiplexing (WDM), op- nication patternsunicast(or permutation and multicastin a
tical switching networks, cross-connects, limited-range wave- \WDM switching network. A unicast communication pattern is
length conversion. a one-to-one mapping between input wavelengths and output
wavelengths of a WDM switching network, while a multicast
COPYRIGHT NOTICE communication pattern is a one-to-many mapping between

20xx |IEEE. Personal use of this material is permitted®M- _ . .
However, permission to reprint/republish this material for,We will also qonS|der WDM SW'tCh'r.]g networks _W'th
advertising or promotional purposes or for creating ne\,{;in‘ferent nonblocking capabilities, such stsictly nonblocking

collective works for resale or redistribution to servers or liststSNB), wide-sense nonblockingVSNB), andrearrangeably

or to reuse any copyrighted component of this work in oth&PnPlocking (RNB). In an SNB network, any compatible
works, must be obtained from the IEEE. connection request can be arbitrarily realized without any

disturbance to existing connections. In a WSNB network, a
proper routing strategy must be adopted in realizing con-
nection requests to guarantee nonblockingness. In an RNB
Wavelength division multiplexing (WDN§ a key technique network, any compatible connection request can be realized by
to exploit the huge bandwidth of optics. As the number gfermitting the rearrangement of on-going connections in the
wavelengths in a WDM network increases to hundreds peé&twork. Rearrangeable networks are usually adopted in ap-
fiber and each wavelength operates at the rate of 10Gbps (Qfications with scheduled, synchronized network connections
192) or higher [2]-[4], optical communication has become a The major challenge in designing WDM optical switching
promising networking choice to meet ever-increasing demangistworks is how to provide maximum connectivity at high
on bandwidth from emerging bandwidth-intensive networkingpeed while keeping minimum hardware cost. To meet the
and computing applications, such as data browsing in tBRallenge, it is required to keep data in optical domain all
world wide web, multimedia conferencing, e-commerce, anfle way from its source to destination. One reason is that
video on demand services. The next generation of the Interggtical switching is much faster than electrical switching.
is expected to employ WDM-based optical backbones [5]. For example, Lucent’s all-optical switch LambdaRouter [8]
A WDM optical switching networfalso referred to 88/DM  can transmit at 10 trillion bits per second, while today’s
cross-connecbr WXC) provides interconnections between gastest electrical switches can reach only about 160 billion
group of input fiber links and a group of output fiber linksits per second. Furthermore, all-optical switching eliminates
with each fiber link carrying multiple wavelength channels. ke need for costly conversions between optical and elec-
not only can provide many more connections than a traditiongbnic signals (so-called O/E/O conversions). As the optical
electronic switching network, but also can offer much I’iChQéchnobgy matures, photonic switching systems not only can
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data is sent and received must be the same, or all-optiteimining the minimum number of LWCs needed to construct
wavelength converters are needed to convert the signals umicast and multicast switching networks under various non-
one input wavelength to another output wavelength. Sinbébcking conditions and traffic patterns. As the results, we
WDM switching networks with no wavelength conversiomwill give several optimal and near-optimal WDM switching
cannot provide full WDM connectivity [5], [6], wavelengthnetwork constructions with respect to the number of limited-
conversion should be included in the design of all-opticaange wavelength converters.
WDM switching networks. Thus, the overall hardware cost The rest of the paper is organized as follows. Section Il
of a WDM optical switching network includes both the costormulates our problem, and defines concepts and terminolo-
of switching elements and the cost of wavelength conversiagies used throughout the paper. Sections Ill and IV address
Some previous works [6], [10] have aimed at minimizing ththe problem for unicast switches. Section V addresses the
number of switching cross-points and the number of wavproblem for multicast switches. Section VI presents con-
length converters. However, since wavelength converters ateuctions of WDM optical switching networks that make
still expensive, how to further reduce the cost of wavelengtlse of the minimum number of limited-range wavelength
conversion is a critical issue in designing WDM switchingonverters as determined in previous sections. Lastly, Section
networks. VII concludes the paper and discusses some future research

Thus far, researchers have considered three approachegslfi@ctions coming out of this work.
further reducing the cost of wavelength conversion.

One approach is to use sparse wavelength conversion [11] [1. PRELIMINARIES
which reduces conversion cost. However, this is applied in the
context of an optical network, not an optical cross-connect, o NIV
and so it is not quite as relevant as the other two approaches. g,

Another approach is to adopt limited-range wavelength con- :
verters (LWCs) [7], [12]-[16] instead of full-range wavelength : cross-connect
converters (FWCs). Clearly, LWCs are less expensive but (WXC)
less powerful than FWCs. A challenging task is to design :
WDM switching networks with full connection capability by A1, A2
using the less powerful LWCs. The recent designs of WDM
switching networks in [7], [16] have achieved this design
goal. One of the major differences between them is that the- -
switching elements used in [7] are arrayed waveguide grating i
routers (AWGR); while the ones in [16] adopted SOA-based or A 9eneral WDM cross-connect (WXC) consists pinput
MEMS-based switching elements. Since an AWGR switch {9€rs withw wavelengths on each fiber, arfd output fibers
wavelength sensitive, the SOA-based or MEMS-based WDWth w’ wavelengths on each fiber, whefev = f'w’ (see
switching networks have lower wavelength conversion coEigUre 1). The set of input wavelengths need not have any
than the AWGR-based ones. On the other hand, the advant&gJation with the output counterpart. This kind of WXCs are
of AWGR-based designs is that they consume very little powéfTered to as the “heterogeneous WXCs,” which are needed

Also notice that both designs in [7], [16] used wavelengtW opti(_:ally switch data f_rom different manufactu_rers_[lS].
converters dedicated to each wavelength in the switching!n this paper, we consider the homogeneous situation where
network. each WXC has f input fibers andf output fibers, each of

Yet another approach to reducing the cost of wavelengffflich can carry a sed = {A;,..., A, } of w wavelengths.
conversion is to share wavelength converters among the fill¥iPte that most of the ideas here apply to the heterogeneous
links of the switching network instead of dedicated to eactfSe 00.) LetF = {Fi,... . Fy} and 7" = {F7,..., F}}
link [12], [15], [17]. There are two architectures proposeﬂenOte the set of input and output fibers, respecuvely. .
for switching networks to share converters [12]. In share-per-ln the (A, F, F’)-request_ mode{7], a connection request IS
node structure, all converters are collected in a single conver®érthe form (A, I, F”), which means that a connection is to
bank, and shared among all input/output wavelength pairs ¥t €stablished from wavelength € A of Input f|l/3erF €
the switching network. In share-per-fiber-link structure, each © any }‘ree wavelength in output fibef’ € 7. In the
output fiber link is provided with a dedicated converter bank® £+ A’ )—/rgquest modelthe difference is that the output
so that the wavelength converters in the converter bank d¥@velength\” is also specified.

shared among input/output wavelength pairs related to this! "€ (A £, £)-request model is useful for switching optical

output fiber link. However, so far there has been no work d}pckets/bursts synchronously or one batch at a time, as well

how many wavelength converters are necessary and sufficigftfor optical circuit-switching in general. The other model is
for WDM switching networks with full unicast and multicastParticularly useful for asynchronous switching of optical bursts

connection capabilities. using JET (just enough time) and void filling [7], [19], as
In this paper, by combining the two aforementione

Well as certain circuit-switching applications requiring specific
approaches, we consider WDM switching networks witRoS-

!imited-range wavelength converters shared among networkWe will use the term WXC to refer also to WDM switches where switching
input/output wavelengths. We will study the problem of despeed may be fast enough for optical packet/burst switching.

A General WDM PP VAR N

Heterogeneous WDM Cross-Connect
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In this paper, we are concerned with tlig&, F, ', F')- Lemma 11.3. For any aj, az,as, a4 € [w] Wherea; < ay <
model, leaving the(\, F, F’)-model for a future work. We a3 < a4, we have
next briefly define the concepts of strictly nonblocking (SNB),
wide-sense nonblocking (WSNB) and rearrangeably nonblock{ww + Pai" — a‘ﬂ < {al — afﬂ + {ag — a”ﬂ
ing (RNB) for both request models. d d d d
Consider a WXC with a few unicast connections already
established. Under thé\, F, N, F')-model, a new unicast I1l. UNICAST WDM CROSSCONNECTS
request(\, F, X', F') is valid if X is free inF and X is free Consider any seD of requests under théx, F, X', F')-
in F’. A request framds a set of requests such that no WO, uest model. Each requedd in D is of’ the 7f0rm
requests are from the same input wavelength in the same in %F v, 1) .wherel <ii <w andl < j,j' < f
t (28] j/ 1 — ) — 1 — ) — .

fiber, and no two requests are to the same output wavelen ,etjl’) of requests is called eequest framef

in the same output fiber. A request frameréslizable by a

WXC if all requests in the frame can be routed simultaneously. {G.5): N, Fy,\r, FL) € DY < 1, W, 5,

A WXC is rearrangeably nonblockingff any request frame 7N On F\ FJ, D < 1 Vi

is realizable by the WXC. A WXC istrictly nonblockingjff RG5O By A ) €D < 1, ¥, .

a new valid request can always be routed through the WXEequality holds for both of the above inequalities, we call

without disturbing existing connections. A WXCusde-sense the request frame &ull request frameIn other wordsD is

nonblockingiff a new valid request can be routed as long ag request frame if there is at most one requesDirfrom a

we follow a certain routing algorithm. wavelength in a particular input fiber, and there is at most one
All the concepts defined above have their multicast coupsquest to a wavelength in a particular output fiber. In a full

terparts. Amulticast requests of the form (A, F,P) where request frame, replace “at most one” by “exactly one” in the

A€ A, F e F, and P - A x F’' such that noF’ ¢ F' previous sentence.

appears more than once . (That is, if (a,b) and (c,d) For any requestD € D, let i(D) and (D) denote

are different pairs inP, thenb # d.) This restriction was he indices of the input and output wavelengthsaf and

made since in practical networks it is not necessary to hay@D) and j'(D) denote the indices of the input and output

a multicast connection going to the same output fiber on tW@ers of D. In other words, D can be written asD =

different wavelengths [10], [20]. Anulticast request frames Q,(D) Fipr Ay, F! ) .

a set of multicast requests such that no two different requests ”) /() 77 (P 73(D) o

are from the same input wavelength in the same input fiber,In order to convert\; to A\, we need at Ieas{%w

and that each wavelength on an output fiber is requested.{C(d). This observation leads to the following theorem.

most once. (We shall be more rigorous in later sections.) Th

concepts of SNB, RNB, WSNB for the multicast case ar‘gﬁeo_rem lll.1. A strictly, wide-sense, or rearrangeably non-
definez similarly blocking WXC under thé\, F, X', F’)-request model needs at

Forl <d < w-—1, let LWC(d) denote a limited wavelength least
converter of degred, namely a LW(Qd) can convert\; to any

_ |i(D) —i'(D)|
\; wherel|i — j| < d. Note that this conversion cannot “loop mi(w, f,d) = max > [ d (1)
around,” i.e.\; cannot be converted td,, whend < w — 2. bep
Whend = w — 1, we get a full wavelength converter. LWC(d), where themax goes over all request frameb.

We will address two questions: (a) under a certain requedbreover,m, (w, f,d) is also the sufficient number of LG
model, and certain traffic pattern (unicast, multicast), how construct a rearrangeably or a wide-sense non-blocking
many LWQd) are necessary?; and (b) how do we construgyXxcC.

an WXC with as small a number of LW@) as possible . . :
(sufficiency)?. Proof. The fact thatm; (w, f,d) is necessary is obvious from

Throughout the paper, for any positive integerlet [1] :— the observation above. Sufficiency is shown with the construc-

{1,...,n}, and letS, denote the set of all permutations orffions presented in Section VI. H
[n]t.hThe graph thect>ret(|jc tgrmlnologles gid notations we adOpt‘I'heorem IIl.1 gave a characterization of; (w, f,d), the
n ThIS ]?alllper. arel standar (see,_ e'%" L D dth h ttnece:ssary and sufficient number of L\\MZ for a rearrange-

€ foflowing femmas are going fo be used throughou t‘laleoly and wide-sense non-blocking WXC. However, maximiz-
paper. We omit the proofs due to their simplicity.

ing a function over all possible request frames (an exponential

Lemma II.1. For any aq,as, a3 € [w], we have number) does not give us a good handleren(w, f,d). The

following lemma characterizes:; (w, f,d) in a much better
lay — as] la; — as] lag — as] .
< + fashion.
d - d d
Lemma I.2. For anyay,as,as, a4 € [w] where botha; and Lemma ll.2.
are strictly less tharmus and a4, we have w i — (i
a2 Yy 3 Gy ml(w7f7 d) — f max Z ’V|Z ZZT(Z)-‘ (2)

lar — as] lag — aq] lar — ay] lag — as| f”es'w =1
< i=
{ d W " { d W = { d 1 " { d 1
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Proof. For any request fram®, define its “cost” by We first consider the case whenis an even number, say
. w/2 =k € Z. Lemma Ill.2 basically says that
()= 3 [HD) = 1(D) / V52
- d ' my(w, f,d) > f-g(m), foranym e S,,
DeD

and that the bound is best possible. Our objective is thus to

Then, my(w, f,d) = maxp c(D) by Theorem IIl.1. Consider gy 5 'c g that maximizegy(r). For anyr € S,, and any

the request frame subsetX C [w], let 7(X) = {x(i) | i € X}.
Dy = {(Ni, Fjs Ao(iy, F) | i € [w], § € [f]}, The following lemma restricts the search space fothat
maximizesg(r).
where o = argmax { 3 PZ’ - W(i)w . Lemma IV.1. Supposes/2 =k € Z. Let A = [k] and B =
reSw | o d [w] — [k]. The functiory() is maximized at some permutation

m € S, Wheren(A) = B andn(B) = A.

Proof. Consider a permutation € S,, that maximizesy ().
|i _W(i)w Obviously, if 7(A) = B, thennw(B) = A, and vice versa.

Then, it is straightforward that

Suppose there is somee A such thatr(a) € A, then there
is someb € B such thatr(b) € B. Note thata andr(a) are
both strictly less thab and 7 (b). Hence, by Lemma 1.2,

my(w, £,d) > e(Dy) = f max [
Yi=1

Next, we show thain;(w, f,d) is at most the right hand
side. LetD be a request frame which maximizeéD) so that P“ — ”(“)r‘ + Pb — ”(b)r‘ < P“ - 7T(b)|-‘ + Pb - ”(a)r‘ ,
m1(w, f,d) = ¢(D). If D is not a full request frame, we can d d d
add more requests inf® to make it full without reducing the Consider the permutation’ defined byr'(i) = (i) for all
cost ¢(D). Consequently, without loss of generality we can € [w] — {a,b}, 7'(a) = =(b), and 7’(b) = =n(a). Then,
assume thabD is a full request frame. g(m') > g(r). Basically,7’ is obtained fromr by exchanging
To this end, construct a bipartite multi-gragh = (X U the images of: andb underr, keeping the rest the same. We
Y;E), where X and Y are the color classesX = can keep exchanging images of these kinds of pajtsto
{z1,...,24}, Y = {y1,...,yw}, and there is a copy of finally get a permutatiom with 7(A) = B (and thusr(B) =
an edge(z,,y;) € E for every request inD of the form A) while not reducing the cosj(r). O

(s, Fj, A, ), for any j,j'. This way, every edge ofs To this end, we can restrict our attention to permutations
represents one requestin _ 7 € S, consisting of two partsr|, : A — B and|p :
BecauseD is a full request frame(s is f-regular. By p _, 4 \wherer|y is the mapping obtained by restricting
Konig's theorem [22]( is f-edge-colorable. Leff] be the 4 the subsef of [w]. (Note thatr|4 andr|; are one-to-one
set of colors. Letl/; be the set of edges with colgr then ¢4 pespondences.) Lets 5 denote the set of all one-to-one

Mj is a perfect matching ofx. Each perfect matching of .,rrespondences betweenand B. Then, due to symmetry,
G corresponds naturally to a permutatian € S,,, where

m(s) =t for each edgdz,,y:) in the perfect matching. Let max g(m) =2 max ["(a)_ﬂ ) 4
m; be the permutation corresponding ;. We have mE€Sw o€SaB = d
li(D) — i’ (D) Consequently, to find an optimalwe can just find an optimal
mi(w, f,d) = Z {d-‘ o € S4,p with respect to the right hand side of (4), then let
DeD mla =0 andn|p =01
s — t| f s — | For any numbei € [w], let
e i i
(zs,y1)€E 3=1 (2s,y:)€M; G = LZJ , Ti=imodd=1i—d LiJ . (5)
f w . . w . .
- 3 PZ_WW < f max Pl_ﬂ(zw _ In other words,g; is the integer quotient/d and r; is the
=1 im1 d m€Sw 1= d remainder ofi divided byd. Hence,0 <r; < d—1,Vi € [w].
0 Moreover, for anya € A andb € B,
F)_ﬂ_ W~ qa if ry <7q
IV. AN EXPLICIT FORMULA FORm(w, f,d) d @ —Gqa+1 ifry>r,

From the result of Lemma lIl.2, it is easy to see that theonsequently, for any € S4 g, we have

functionm, (w, f, d) can be computed in polynomial time with o(a) —a
a standard maximum weighted matching algorithm (such as Z {d w
the algorithm in [23]). However, an explicit formula fat, (-) a€A
would obviously be much more desirable. _ To(a) — Tﬂ
- o(a) = Ya + - 3
For convenience, define a functign S,, — R by anA(q (@ = ) ;4 [ d

g(ﬂ):i PZ;T(Z)—‘ ) 3 (quan> +Ha € A:ren) —re >0}

beB acA
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The first term is independent of Thus, we can just concen- What is amazing is that inequality (8) is the best possible,
trate on finding ar € S4 5 which maximizes as the following lemma shows. The lemma (and its proof)
basically gives an explicit formula farn, (w, f, d).

tlo) =Ha € A:ryq) — 14 > 0} (6)
5. >
Then, recalling relations (2) and (4), we conclude with a Sml]__emma IV.5. For evenw andd > 2, we have
pler characterization of; (w, f,d) in the following lemma. max (o) = w_ 105(0) — max{0, z5(1) — 1a(0)}. (9)

oc€Sa,B 2
Lemma IV.2. Whenw/2 € Z*, we have

Proof. With the result of Lemma V.4 in mind, we only need

my(w, f,d) = 2f (Z @ — Z qa> +2f gg?ﬁ t(o) (7) © find ac such that

beB acA w
o) = & — 1p(0) — max{0, ps(1) — pa(0)}.
We now obtain a simple consequence of this lemma. |, fact, we only need to find a way to pair up elementsiof
Theorem IV.3. m;(w, f,1) = 5 fw® whenw is even. and Rp in a one-to-one fashion, so that the number of pairs

(TasTo(a)) With 7, < 744 is equal to the right hand side of

Sa p. Moreover,g; = i,Vi € [w]. Consequently, (7) gives

my(w, f,1) =2f (Zb—Za

beB acA

Recall the examplev = 8,d = 3 above. The upper bound
givest(o) < 4—1—max{0,1—1} = 3. The following pairing
) =~ fw? achieves this bound:

[ra 1 2 0 1]
[ro@ 2 0 1 2]

O

Whend > 2, the situation is not as simple. Lét4 be
the multiset of allr,,a € A, and Rg be the multiset of all
ry,b € B. For any integer-, let u4(r) and up(r) denote the
multiplicities of r in R4 and R, respectively. For example,
for w = 8,d = 3, we have

A={1,2,34} B={56,7,8}

Implicitly, we get (at least) & that achieves the bound(i) =
i+ 4,1 < i < 4. The general case is not as simple, but the
above example gives the main ingredients.

Let £ = w/2. As usual, writek = ¢xd + 7. (Recall that
we assumed > 2.) Then,

Ra={1,2,0,1}  Rp={20,1,2} Ra={L2,...,d=1,0,---,1,...,d=1,0,1,.., 7},
pa(0)=1,pa(1)=2  pp(0)=1,us(1) =1, where there arey, groups of{1,...,d — 1,0} and the last
pa(2) =1 up(2) = 2. group is{1,...,r}. Thus,
First, we make a simple yet important observation in the - G+l 1<r<mr (10)
. o . L L ") =
following lemma. This idea is the key to finding an explicit HA 0 re<r<d—1, orr=0.

formula for my (w, f, d)!

Lemma IV.4. Supposew is even andd > 2. Then, for any One nice thing is to have 4(0) = gi, regardless of. The
o € Sup, we have numberspp(r) are not so nice, broken up into a few cases.

In general,Rp looks like

w
t(0) < 5 — pp(0) —max{0, up(1) — na(0)}.  (8)
{re+1,...,d—1,0,...,d—1,---,0,...,d—1,0,...,2r:},

in which there are, — 1 groups of{0,1,...,d — 1} in the
middle, a group{rx + 1,...,d — 1} in the beginning, and the
last group is{0,...,2r}.

Whenr, = d — 1, the first group is empty. Wher, = 0,
the last group does not containlaWhen2r, = d, the last
group contains twd@'s and al. When2r, > d, the last group
contains twad)'s and twol’s. We formally consider these cases
as follows.

Case 1:r, = d — 1. We have

Proof. By definition, t(o) is the number of pairgr,(,),7a)
for which r,,y > r,, wherea goes over all elements of.
There are exactlyv/2 of these pairs. The numbers, are
picked one by one from the multis&tz. Thus, for any there
are up(0) of the r,(, that are equal t@. Whenr, ) = 0,
To(a) < Tq @nd thus the pair will not be counted towat(d ).
This explains the term-u5(0) in the right hand side of (8).
Similarly, there areup(1) of the r,(,) that are equal td.
Whenr, ) = 1, 75 < 1o unlessr, = 0, and there are
only n4(0) of ther, which are0. Thus, the best we can do
is to pair up as many’s in Rg with 0's in R4 as possible. If
up(1l) — pa(0) <0, then we have enoughis in R4 to pair Whend = 2 we getup(0) = gr + 1, andup(1) = gi. The
up with 1's in 5. Whenup(1) — p14(0) > 0, there must be ypper bound ig(c) < k— g; — 1, which can be achieved with
at leastup (1) — p1a(0) 1's left in R, and the corresponding the following o
pairs will not be counted towart{o). This explains the term
—max{0, ug(1) — pa(0)}. O o(i)=i+k, 1<i<k.

Rp=1{0,...,d—1,---,0,...,d—1,0,...,d—2}.
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Whend > 2 we getup(0) = up(1l) = qr + 1. The upper Proof. Consider any permutationr that maximizesg(r).
bound ist(c) < k — g, — 2, which can be achieved with theSupposer(k + 1) = a, 7(b) = k + 1 for somea, b € [w].
following o Case l:a = b = k+ 1. If there is somer € A with 7(a) €

_ _ A’, then there must be sonbes B — {k + 1} with = (b) € B’.
o(i) = {Z tht2 1<i< k -2 Note that botha and 7 (a) are strictly less tham and = (b).
i+2 k—1<i<k. Similar to the argument in Lemma IV.1, we can switch the

Case 2:2r, < d. We haveus(0) = up(l) = q. The images ofa and b to get a newr while not reducingg(r).

i ok i ; Keep doing so until there is no moree A with w(a) € A’
upper bound ig(0) < k — gi, which is certainly obtainable “€€P 9 < (a) € A,

with the following o we obtain a permutation with the desired property.
Case 2:a < k+ 1 andb > k + 1. If there is somez €
o (i) = {k +1+:1 1<:<k-1 when, = 0 A with 7w(a) € A’, then, sincer is a permutation, we have
k+1 i=k ’ n(a) € A’ —{k+1,a}. The setAd’ — {k +1,a,a} hask — 2
elements, hence it cannot contain all thémages of elements
o(i) = {k +1—rg+i r<i<k whenr, > 0 of B—{k-1,b} which hask — 1 elements. Hence, there must
2k+1—rp+i 1<i<r,—1’ be someb € B — {k + 1,b} with =(b) € B’. We again can

switch the images of andb.
Case 3:a > k+ 1 andb < k + 1. Noting thatg(r) =
g(m1), we can replacer by 7—! and go back to case 2.
Case 4:a < k+ 1 andb < k + 1. In this case, the set
’ k+1l—rp+i r<i<k A’ —{k + 1,a} of sizek — 1 cannot hold all the images of
(1) = Ut l—rpti 1<i<rp—1. the setB — {k + 1} of size k. H_encg, there must be some
b > k+1 with #(b) > k + 1. Sinceb and k + 1 are both
Case 4:2r), > d. We haveup(0) = pup(1) = qx + 1. The strictly smaller tharb and = (b), we can switch the images of
upper bound ig(o) < k — g — 2, which is achievable with p andb while not reducingy(r). We then go back to case 2.

Case 3:2r, = d. We haveup(0) = qx + 1, pp(1) = qx.
The upper bound ig(c) < k — gx — 1, which is achievable
with the following o

the following o: Case 5:a > k+ 1 andb > k + 1. This case is symmetric
k+1—ry+i e <i<k to case 4. O

o(t)=q2k+d+1—-2rp,+1 1<i<2rp—d-—1 Let S4B (respectivelyS4, g) denote the set of all one-to-
+d+2—3r+i 2rp—d<i<r,— L. one correspondences betwedrand B’ (respectivelyB and

- A’). Lemma IV.7 implies

The previous lemma gives explicit formulas for the expres- res. g(m) =

sionmaxyes, , t(o), which is eitherk — qx, k — qx — 1, or o(a) —a o(a) —a

k — g, — 2, depending on the relationships betweg¢rand ~ Iax Z [dw + Dax [d] (11)
k. Combining Lemma IV.5 with Lemma V.2, noting the fact T acd T agA

thatg, = || andr, = % —d | 2|, we obtain the following If we can find an optimab and an optimat in the above ex-
theorem for the even: case. pression, an optimat with respect tgy(7) can be constructed
by settingr|4 = o andn|z = 7. We thus can get an analog
of Lemma IV.2 for the case whemn is odd. We omit the proof
r o= Y _y [EJ as it is similar to that of Lemma IV.2.

2 2d
Lemma IV.8. When(w —1)/2 € Z*, we have

w/2 w i % w w
o B ez T
bEB’ a€A

Then, we have
(i) mi(w, f,d) = my whend > 2r. f max ti(o)+ f max t2(7), (12)
@iy m(w, f,d) =m1 —2f whend = 2r. 7€5a, T€Sarp

(i) mi(w, f,d) =mi —4f whend —1=r>10rd <2r. whereti(c) = |{a € A:7,(s) —ra > 0}, andts(7) = [{a €

To this end, let us consider the case wheis odd. Suppose A’ : 7'r(a) — 7a > 0}].
w = 2k 4+ 1, wherek is a positive integer. (The case when The followi Itis i diate f he |
w = 1 is trivial, as no wavelength converter is needed.) Let 1n€ following result is immediate from the lemma.

A=[k,B=[2k+1]—[k],A =[k+1],B = [2k+1] — [k+1]. Theorem IV.9. m;(w, f,1) = 3 f(w —1)? whenw is odd.

Note that[w] = [2k +1] = AU B = A’ U B’. We follow We can now assumé > 2. The followings are analogs of
roughly the same path as the evercase. Lemma IV.5 for the functiong; andt,.

Lemma IV.7. Suppose(w — 1)/2 = k € Z*. The function Lemma IV.10. Whenw is odd andd > 2,

g(m) is maximized at some permutatiere S,, wherer(A) = _w B _
B’ andn(B) = A'. X t1(0) = 5 —ppr (0)—max{0, ppr (1)~ (0)}. (13)

Theorem IV.6. Supposey € Z, and2 < d < w — 1. Let
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Proof. The fact thatty(¢) < § — up/(0) — max{0, up/(1) — Lemma IV.11. Whenw is odd andd > 2,
1a(0)} for all o € Sy g can be shown similar to that of w
Lemma IV.5. Thus, we only need to specify-ahat achieves _max ta(7) = 3 —up(0) —max{0, up(1) —pas(0)}. (15)
equality. Writek = gid + 7 as usual, then TERale

Ra={1,...,d—1,0,---,1,....,d—1,0,1,...,1%). Proof. The fact thatto(7) < § — up(0) — Ingx{o,ug(l) -
wa(0)} for all 7 € Sy p can be shown similar to that of
g +1 1<r<rg Lemma IV.5. Thus, we only need to specifyrahat achieves
pa(r) = {qz@ re<r<d—1, orr=0. (14) equality. Writek = qi.d + r; as usual, then
The key is thafu4(0) = ¢, regardless of. In general,.Rp/ gp+1 1<ry,=d-1
looks as follows. pa(0) = i re<d—1. (16)

Rp ={rx+2,...,d=1,0,....d=1,---,0,....2m + 1}, | general, R looks as follows.

in which there areg;, — 1 groups of{0,...,d — 1} in the
middle, a group{ry, + 2, ...,d— 1} in the beginning, and the £ = {rx +1,...,d=1,0,....d = 1,---,0,..., 21 + 1},
last group is{0,...,2r; + 1}. Similar to Lemma IV.5, we
break up the cases as follows.

Case 1l:r, = d — 1. In this case, we havgp (0) = gy,
andup (1) = q, + 1. The upper bound is; (¢) < k —qi, — 1,
which can be achieved with the following

in which there areg;, — 1 groups of{0,...,d — 1} in the
middle, a group{r; + 1,...,d — 1} in the beginning, and the
last group is{0,...,2r; + 1}. Similar to Lemma IV.5, we
break up the cases as follows.

Case L, = d—1. In this case, we have,: (0) = up(0) =

. itk+2 1<i<k-1 up(1) = g +1. The upper bound i&;(7) < k— g, — 1, which
o(i) = ) i=k can be achieved with the following:
Case 2:ry, =d — 2. N i+k+2 1<:<k-1
If d =2, thenup (0) = pup/(1) = gx. The upper bound is 7(i) = i+1 E<i<k+1.

t1(0) < k — qx, which can be achieved with the following

In the rest of the cases, we considgr< d — 2, and hence
par(0) = qi.

If d =3, thenpup (0) = qr + 1, and pup/(1) = qi. The Case 2:2r; + 1 < d (note that this implies;, < d — 2).
upper bound ig; (o) < k — g — 1, which can be achieved If r, =0, thenup(0) = ¢, andpup (1) = ¢ + 1. The upper

oi)=i+k+1, 1<i<k.

with the following o bound ist2(7) < k — ¢x — 1, which can be achieved with the
. . following 7
i+k+3 1<i<k-—2
o(i)=<ck+1 i=k-1 L )iFk+1l 1<i<k
k+2  i=k =Vt ikaL

If d > 3, thenpup (0) = pup/(1) = q,. The upper bound is
t1(0) < k — qr — 2, which can be achieved with the same
as the casd = 3.

Case 3:r, < d—3 and2r; +1 < d. In this case, we have {

If r, >0, thenup(0) = up(l) = gx. The upper bound is
tao(7) < k — g, which can be achieved with the following

i+k+1—7“k Tk§i§k+1

(0) = up (1) = q;. The upper bound is < k— q, =
MB() MB() dk pp 1(0)— qk T(Z) Z+2k+2—7’k lgigrk—l.

which can be achieved with the following

(i) =

i+2%k+1—7, 1<i<m Case 3:r, < d—2 and2r, + 1 = d. In this case, we
itk+l—rn re+l<i<k have up(0) = qr + 1 gndMB(l) = Q- The upper bound'ls
ta(1) < k—qr — 1, which can be achieved with the following
Case 4:r, < d—3 and2r;p + 1 = d. In this case, we r:
havep: (0) = gx + 1 and up: (1) = qx. The upper bound is , it k+l—ry rp<i<k+1
t1(d) < k — g, — 1, which can be achieved with the same T = okt e 1<i<r —1
as that in case 3. o= r=Tke e
Case Siry < d—3 and2r; +1 > d. In this case, We  cage 4:7, < d — 2 and2ry + 1 > d. In this case, we
haveip: (0) = pp/(1) = g + 1. The upper bound i6,(0) < have u5(0) = pp(1) = g + 1. The upper bound i, (r) <
k — qx — 2, which can be achieved with the following k — g — 2, which can be achieved with the samas in case
" {z‘+k+drk+2 1<i<k—d+ry,—1 3. H
o(1) =1 . .
itd=—rp+2 k—dtr<i<k Lemmas IV.10, IV.11, and IV.8 finally characterize
0O mi(w, f,d) for the case whemw is odd.
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Theorem V.12, Suppose”%1 €Z,and2 <d<w-—1. In order to satisfy this request, a set of paths must be
w—1 w—1 established betweek; on input fiberF; and all the);,, 1 <
r o= —d{ J t < k, on the corresponding output fibers. The union of
2,%] 2d these paths typically form theouting tree for this request.
IRV R, i Construct thewavelength conversion tréE corresponding to
my = 2f Z Q 2 P J - LlJ) + the routing tree in the following manner. The tfEéhas nodes
i=1 labeled with wavelengths, and is rooted gt Each node of
2f (w _1-9 {w - 1J) ) T represents one wavelength on the routing tree. There is an
2d edge connecting, to A, in T if A, was converted td, on
Then, we have some path of the routing tree. The number of edge§’ ¢é
() mi(w, f,d) =m; when0 <r <d—3and2r +1 < d. thus the number of wavelength converFers useq to satisfy the
(i) mi(w, f,d) =m, —2f whenr = 0. request. The tre@ has the property that {f\,, \,) is an edge,
(i) mi(w, f,d) = m, — Af when eitherr = d — 1 or r = then|r —y| < d, and that\; and all \;, t=1,....k, appear
d—2=1ord=2r+1<2d—5. as nodes ofl. We say that the tre& realizesthe requesi.

(v) mi(w, f,d) = mi — 8f when eitherr = d — 2 > 1 or (In :jtsense, this tree is a Steiner tree spanning all wavelengths
d<2r+1<2d—5. in I'(D) U {A:})
) ) To find the necessary number of LM needed for the

Remark [V.13. It is possible to put the results of bothyequestD, we would like to determine the minimum number
Theorems IV.6 and V.12 in F:Iosed form (|..e. without theys edges (i.e. LWCd)) of a wavelength conversion tree fér.
summations). However, the given presentations of the the§nce each wavelength only needs to appear in the tree once
rems are easier t.o follow. For instance, for the ewerase (we can just identify occurrences of the same wavelength),
n Theolrem IV.6, if2r < d, thenm, can be calculated to be mytiplicities in the multisetl’(D) U {i(D)} do not matter.
5d¢* — 3dg+3rq+q, whereg = |w/(2d) |. What we do want \ye can assume without loss of generality that< --- <
to notice is that in both casesy, (w, f,d) = O(fw?/d)! i <i<ily <o <il.
V. MULTICAST WDM CROSSCONNEGTS Another iqteresting observgtion is that we can tliirinto

' a tree in which each vertex is of degree at mdgand thus

Consider any seD of (multicast) requests. Each requést s a path), while maintaining the fact that it is a wavelength

in D is of the form();, F;, P), wherei € [w], and;j € f, and  conversion tree. Suppodehas a vertex labeled, with degree
P C A x F' such that{i' : (\ir, F},) € P} < 1,Vj" € [f]. atleast3. Let \,,, Ay,, A, be SOMe three neighbors af in
As usual, we usé(D), j(D), andP(D) to denotei, j, andP. 7. By the pigeonhole principle, two of they, 2o, 25 must be
Let (D) denote the multiset of requested output wavelengthgrger thanz or smaller thanz. Without loss of generality,
namely (D) := {i' | (A\w, F},) € P(D), for somej’}. The assumer; < 25 < 2. Then,|z — z1| < d and |z — 25| < d
size of I'(D) (= [P]) is often called thdanoutof the request imply |z, — 25| < d. We thus can connect,, and),,, and
D. Multicast requests with fanouts equal tare nothing but remove the edgé),,,\,) from the tree. The resulting tree

unicast requests. still spansI’(D) with all the desired properties, and with the
A set D of requests is called multicast request fram#e#, same number of edges. In case > z, > x, we apply the
for all i € [w] andj € [f], same procedure.
{DeD:iD)=iandj(D)=j}<1, .Repeat.ed application_s of this procedure will produce a tree
y , with maximum degree if we can show that we do not run
and, for alli’ € [w] andj’ € [f], into an infinite loop. For each edge= (\;, \,) of T with
{DeD: (A, Fj,) € P(D)}] < 1. x < y, define thecrossing weightuv(e) be the number of nodes

) _ _ , A, in T for which z < z < y. The procedure described above
If equality holds for the later inequality for all, j*, we call reqyces the total crossing weight by one each time. Hence,
the request frame &ll request frameIn other words,D is  epeated applications of the procedure shall terminate.
a request frame if there is at most one requesDifrom a To this end, we can assume thats a path. Lety, ..., i1

wavelength in a particular input fiber, and there is at most OR8 the occurrences of elementsIéfD) U {i(D)} as we visit

request to a wavelength in a particular output fiber. In a fuh o1 one end to another. It is easy to see that the number
request frame, each of the output wavelengths is involved jn edges ofT" is at least

some request.

‘Recall that, ifD is a unicast request, then we need at least & iy — i1 |
[M] LWC(d). What is the corresponding number if {fdww >
D were are multicast request? Consider a multicast request t=1

where I'(D) = {i,...,i,}, andi(D) = i. Without loss of [Ii’l —iélw N Pi’g —iélw . V’S —ilw N

generality, assume d d d
: -/ -/ i/ -/ i
i< <dl <i<il <<, Pl;SH—‘+PZSHdZSH—‘Jr”'JF{Zk_ld Zk-—"

where0 < s < k. If s =0, then alli’ € I'(D) are strictly
greater than. If s =k, then alli’ € I'(D) are at most. We can now conclude with an important lemma.
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Lemma V.1. Let D be a multicast request whetE(D) = Theorem V.3. A strictly, wide-sense, or rearrangeably non-
{i},...,i.}, i =i(D), such that blocking multicast WXC under th, F', \', F’)-request model
needs at leastn;(w, f,d) Moreover,m;(w, f,d) is also the
sufficient number of LW@) to construct a rearrangeably or
Then, the number of LW@) necessary and sufficient to satisfya wide-sense non-blocking multicast WXC.

Dis

ip << <A<y <o < g

Proof. Necessity is obvious. Sufficiency comes from the con-

&(D) = i} — 5] n i, — %] T il — ] N struction in Section VI and the previous lemma. O
d d d
i— il N AN P |11 — % VI. CONSTRUCTIONS WITH MINIMUM NUMBER OF
d d d ' LWC(d)

Proof. Necessity was shown above, noticing that identical In this section, we will describe a construction that makes
elements off’(D) contributes zero to the costD). The basic use of the so-calleadtonverter poal which works for both
idea to show sufficiency is that we can convgstto A;, As the unicast and the multicast case. Consider the construction

to A,_1, until we get to);, using exactly shown in Figure 2. The construction has two main compo-
I, — ib)| i — i} il — nents: theLWC pool component, and thewitching fabrics
[ d -‘ { d -‘ +e { Sd -‘ component. The detailed design of the LWC pool component is

shown in Figure 3. The basic idea is that all input wavelengths
LWC(d). Similarly, we get the other half of the sufiD). The have access to alh. converters (LWGCd)) in the pool. The
signal on); only needs to be split once. The point shall bgonverters are interconnected with splitters and combiners,
clearer when we present the construction in Section VL] so that an optic signal can be split as many times as we

To satisfy all requests in a multicast request framethe Want, apd it can go through as many L\WZ as ngeded.
number of LWGQd) needed is at least(D) = 3", &(D). The main objective of the LWC pool_component is to use
When D is a unicast request framé(D) = (D). Hence, the least number of LW@) to convert input yvavelengths to
maxp &D) > my(w, f,d). What is interesting is that we canthe requested output wavelength (in the un!cast case), or the
also showmaxp &D) < m (w, f,d), which - along with our requested output wavelengths (in the multicast case). After

construction in the next Section - gives an analog of Theordf}f Wavelength conversions are done, all output wavelengths

lI.1 for the multicast case. come at the inputs of the switching fabrics. We can then use
an appropriate switching fabrics construction such as those in
Lemma V.2. We have [6], [7], [10] to finish the design. Let us us¥ (m,w, f,d) to
max &D) = m1 (w, f,d) denote thg cc_)nstruct_ion described above.
The switching fabrics does not have to convert wavelengths
where themax is over all multicast request frameBs. as all wavelengths arriving at its inputs are ready to come

out to the right fiber, hence we only need it to be WSNB or

1) Consid lticast ¢ framfiethat RNB in the circuit switching sense [24], [25]. One can use
.ml.(w’ji ,d). Consi er a multicast request fra at max- broadcast-and-select type of construction [10] to have an
imizes ¢(D). If D is also a unicast request frame (i.e. alg

. . . tical crossbar (instead of normal crossbars as in the circuit
requests have fanouts one), then the inequality certainly hol %

To show that it holds i | hall dually 1 itching case). Instead of the number of cross-points, we
[0 show that It holds In general, we sha Lgra ually W have the same number of SOAs. This observation leads to the
into a unicast request frame without reduci#@). Consider

i following results.
a requestD € D with fanout at leas®. As usual, assume .
y g gy y . . The following theorem completes the second part of Theo-
I'(D) ={d,...,i.}, i = 4(D), andi} < --- <4 <i<

/ em 1.
ity <--- <1i). SinceD has fanout at least two, there must
be at least one free input wavelength on some input fiber Theorem VI.1. Letm; = m;(w, f,d). Consider the construc-

Proof. As noted above, it is sufficient to showaxp ¢(D) <

F;, namely(\;, F;) is not part of any request i®. Let tion A (m1,w, f,d). If the switching fabrics is rearrangeably
, ) ) or wide-sense nonblocking in the circuit switching sense, then
Us ff s7#0,s# k, andt > N (my,w, f,d) is rearrangeably or wide-sense nonblocking
g i s#0 s#Fk andt <i under the(\, F, X', F’)-request model, respectively.
=] o
"k s =k Proof. We show the WSNB case. The RNB case is shown
41 if s=0. similarly. Our strategy to route a new requesfl =
ReplaceD by two requestsD; and D, such thati(D;) = ()\i,Fj,)\i/7FJf,), given some previously routed network state,

i,j(D1) = j(D),I'(D1) = I'(D) — {i'}, and thati(D2) = is as follows. First, us%%w free LWC(d) to convert); to
t,j(D2) = j,I'(D2) = {i'}, matching the output fiber for all ), Second, at the last LW@), set up the SOAs to route this
members ofl’(D). Then, it is straightforward from Lemmassijgnal to a free input of the switching fabrics. The fact that
Il.2 and 1.3 thate(D) < ¢(D1)+¢(D2). Repeated applicationsthe switching fabrics is WSNB implies that we can also find
of this replacement eventually yield a unicast request framgeroute from this free input to the corresponding requested

without reducing thes cost of D. O output. We just have to make sure that we have the sufficient
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Fig. 2. Switching network with minimum number of LW&)6

number of LWGQd) so that the routing does not get blockedProof. The proof is very much the same as that of the previous
This is precisely whym = m;(w, f,d) was needed. O theorem. Consider request with the usuak) < --- <, <

i < iy, < --- < 4. We can first split the signal on;

into two branches (unless = 0 or s = k). The first branch
converts\; to Air, Ay 0 Ay, and so on. The second branch

From all—p A Toall does the symmetric operation. The total number of LVI)C
the other I I the other needed is precisely( D). The number of LW() is sufficient
Splitters = combiners due to Lemma V.2. Every time we get to\g, = € I'(D), the

— signal is split so thah, comes to a free input of the switching
From all—A A Toall fabrics, while the other copy continues with the branch. If
the other ' ' the other s = 0 or s = k, then there is only one conversion branch.
splitters__{J = combiners The switching fabrics finishes the rest of the work. Note that

N (mq,w, f,d) is multicast capable, yet the switching fabrics
only needs to be a unicast network. The converter pool already

— does the splitting for us. O
From all—# A== Toall . . o
the other ' ' the other The last thing we would like to mention is that the total
splitters__J = combiners number of SOAs used i®(m?) for the LWC pool, and
O(fwlg(fw)) for the best construction of the circuit-type
_ _ switching fabrics. Our results earlier showed thet = m? =
spliter @ LwC() D Combiner O(f?w*/d?). Hence, the SOA cost is dominated by the LWC
pool.

VIl. CONCLUDING REMARKS AND FUTURE WORKS

We have completely characterized the minimum number of

We also have the corresponding theorem for the multicd/C(d) needed for wide-sense and rearrangeably nonblock-

case. ing unicast and multicast optical cross-connects. The construc-
tion given in the previous section is not the only construction

Theorem VI.2. Let m1 = m(w, f,d). Consider the con- that minimizes the number of wavelength converters, and it
struction N (my, w, f, d). If the switching fabrics is multicast may not be the simplest in terms of physical layout. We leave

rearrangeably or wide-sense nonblocking in the circuit switchhis question for future work.

ing sense, thenV'(mi,w, f,d) is multicast rearrangeably  Another interesting point that comes from this paper is
or wide-sense nonblocking under the, F, \', F”)-request that there seems to be an intrinsic trade-off between the
model, respectively. number of LWQd) and the number of SOAs used. Recent

Fig. 3. A possible construction of theW C(d) pool.
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nonblocking constructions proposed in [7], for example, dido]

not make use of any SOAs at all. Others [10], [16] used

fewer SOAs than the construction given here. The drawbagk,

is that previous WXCs used wider range and non-uniform

limited wavelength converters. Having too many SOAs not
only complicates physical layout of the network, but als%
consumes powers, leading to signal attenuation. Investigating
this trade-off is another future research topic. For instandé?!
how can we construct nonblocking WXCs which make use gfy

some more LWQd) but much less SOAs?
The strictly nonblocking case is not yet completely charac-

terized. It is easy to see, for example, tifat[“1] LWC(d)
are sufficient for a unicast construction. What one can do is

to use [“1] LWC(d) to simulate a full-range wavelength

converter, and then the rest can be done with a stric{ﬁ/s]

nonblocking circuit-type of switching fabrics. This number is

about twice the necessary number(w, f, d). (We also would [16]
like to note that this upper bound can be reduced a little, but
it is still more thanm; (w, f,d).)

The wavelength converters we considered in this paper are
based on an ideal model of four-wave mixing (FWM) irg

SOAs (thethreshold modein [13]). More realistic models

lead to a different conversion range. There are also several
other wavelength conversion techniques based on cross-gag

modulation (XGM), cross-phase modulation (XPM), and SOA

Mach-Zehnder interferometer (SOA-MZI, which can be int _20] Yang Wang and Yuanyuan Yang, “Multicasting in a class of multicast-
grated in InP), ..., which we have not considered. The main J v y & 9

11]

(14]

(17]

Zhigang Jing H. Jonathan Chao, Kung-Li Deng, “A petabit photonic
switch (p3s),” inProceedings of IEEE Infocom’0%an Francisco, USA.,
April 2003.

Yuanyuan Yang, Jianchao Wang, and Chunming Qiao, “Nonblocking
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