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Abstract— We study the problem of determining the mini-
mum number of limited-range wavelength converters needed
to construct strictly, wide-sense, and rearrangeably nonblocking
optical cross-connects for both unicast and multicast traffic
patterns. We give the exact formula to compute this number for
rearrangeably and wide-sense nonblocking cross-connects under
both the unicast and multicast cases. We also give optimal cross-
connect constructions with respect to the number of limited-range
wavelength converters.

Index Terms— Wavelength-division-multiplexing (WDM), op-
tical switching networks, cross-connects, limited-range wave-
length conversion.
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I. I NTRODUCTION

Wavelength division multiplexing (WDM)is a key technique
to exploit the huge bandwidth of optics. As the number of
wavelengths in a WDM network increases to hundreds per
fiber and each wavelength operates at the rate of 10Gbps (OC-
192) or higher [2]–[4], optical communication has become a
promising networking choice to meet ever-increasing demands
on bandwidth from emerging bandwidth-intensive networking
and computing applications, such as data browsing in the
world wide web, multimedia conferencing, e-commerce, and
video on demand services. The next generation of the Internet
is expected to employ WDM-based optical backbones [5].

A WDM optical switching network(also referred to asWDM
cross-connector WXC) provides interconnections between a
group of input fiber links and a group of output fiber links
with each fiber link carrying multiple wavelength channels. It
not only can provide many more connections than a traditional
electronic switching network, but also can offer much richer
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communication patterns (e.g. unicast and multicast commu-
nication patterns under different connection models [6], [7]).
Such an optical switching network can be used to serve as an
optical cross-connect (OXC) in a wide-area communication
network or to provide high-speed interconnections among a
group of processors in a parallel and distributed computing
system.

In this paper, we consider supporting two typical commu-
nication patterns,unicast(or permutation) and multicast in a
WDM switching network. A unicast communication pattern is
a one-to-one mapping between input wavelengths and output
wavelengths of a WDM switching network, while a multicast
communication pattern is a one-to-many mapping between
them.

We will also consider WDM switching networks with
different nonblocking capabilities, such asstrictly nonblocking
(SNB), wide-sense nonblocking(WSNB), andrearrangeably
nonblocking (RNB). In an SNB network, any compatible
connection request can be arbitrarily realized without any
disturbance to existing connections. In a WSNB network, a
proper routing strategy must be adopted in realizing con-
nection requests to guarantee nonblockingness. In an RNB
network, any compatible connection request can be realized by
permitting the rearrangement of on-going connections in the
network. Rearrangeable networks are usually adopted in ap-
plications with scheduled, synchronized network connections

The major challenge in designing WDM optical switching
networks is how to provide maximum connectivity at high
speed while keeping minimum hardware cost. To meet the
challenge, it is required to keep data in optical domain all
the way from its source to destination. One reason is that
optical switching is much faster than electrical switching.
For example, Lucent’s all-optical switch LambdaRouter [8]
can transmit at 10 trillion bits per second, while today’s
fastest electrical switches can reach only about 160 billion
bits per second. Furthermore, all-optical switching eliminates
the need for costly conversions between optical and elec-
tronic signals (so-called O/E/O conversions). As the optical
technology matures, photonic switching systems not only can
potentially achieve higher throughput [9], but also can be
more cost-effective than their electronic counterparts even
for applications requiring a lower throughout. Indeed, certain
types of photonic switching fabrics such as the so-called WDM
cross-connects (WXCs), or dynamic, reconfigurable optical
add-drop multiplexers (OADMs), have already been deployed
as an economic way to handle a large amount of traffic at the
wavelength granularity.

In all-optical switching, either the wavelength on which the
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data is sent and received must be the same, or all-optical
wavelength converters are needed to convert the signals on
one input wavelength to another output wavelength. Since
WDM switching networks with no wavelength conversion
cannot provide full WDM connectivity [5], [6], wavelength
conversion should be included in the design of all-optical
WDM switching networks. Thus, the overall hardware cost
of a WDM optical switching network includes both the cost
of switching elements and the cost of wavelength conversion.
Some previous works [6], [10] have aimed at minimizing the
number of switching cross-points and the number of wave-
length converters. However, since wavelength converters are
still expensive, how to further reduce the cost of wavelength
conversion is a critical issue in designing WDM switching
networks.

Thus far, researchers have considered three approaches for
further reducing the cost of wavelength conversion.

One approach is to use sparse wavelength conversion [11]
which reduces conversion cost. However, this is applied in the
context of an optical network, not an optical cross-connect,
and so it is not quite as relevant as the other two approaches.

Another approach is to adopt limited-range wavelength con-
verters (LWCs) [7], [12]–[16] instead of full-range wavelength
converters (FWCs). Clearly, LWCs are less expensive but
less powerful than FWCs. A challenging task is to design
WDM switching networks with full connection capability by
using the less powerful LWCs. The recent designs of WDM
switching networks in [7], [16] have achieved this design
goal. One of the major differences between them is that the
switching elements used in [7] are arrayed waveguide grating
routers (AWGR); while the ones in [16] adopted SOA-based or
MEMS-based switching elements. Since an AWGR switch is
wavelength sensitive, the SOA-based or MEMS-based WDM
switching networks have lower wavelength conversion cost
than the AWGR-based ones. On the other hand, the advantage
of AWGR-based designs is that they consume very little power.
Also notice that both designs in [7], [16] used wavelength
converters dedicated to each wavelength in the switching
network.

Yet another approach to reducing the cost of wavelength
conversion is to share wavelength converters among the fiber
links of the switching network instead of dedicated to each
link [12], [15], [17]. There are two architectures proposed
for switching networks to share converters [12]. In share-per-
node structure, all converters are collected in a single converter
bank, and shared among all input/output wavelength pairs of
the switching network. In share-per-fiber-link structure, each
output fiber link is provided with a dedicated converter bank
so that the wavelength converters in the converter bank are
shared among input/output wavelength pairs related to this
output fiber link. However, so far there has been no work on
how many wavelength converters are necessary and sufficient
for WDM switching networks with full unicast and multicast
connection capabilities.

In this paper, by combining the two aforementioned
approaches, we consider WDM switching networks with
limited-range wavelength converters shared among network
input/output wavelengths. We will study the problem of de-

termining the minimum number of LWCs needed to construct
unicast and multicast switching networks under various non-
blocking conditions and traffic patterns. As the results, we
will give several optimal and near-optimal WDM switching
network constructions with respect to the number of limited-
range wavelength converters.

The rest of the paper is organized as follows. Section II
formulates our problem, and defines concepts and terminolo-
gies used throughout the paper. Sections III and IV address
the problem for unicast switches. Section V addresses the
problem for multicast switches. Section VI presents con-
structions of WDM optical switching networks that make
use of the minimum number of limited-range wavelength
converters as determined in previous sections. Lastly, Section
VII concludes the paper and discusses some future research
directions coming out of this work.

II. PRELIMINARIES

A General WDM
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Fig. 1. Heterogeneous WDM Cross-Connect

A general WDM cross-connect (WXC) consists off input
fibers withw wavelengths on each fiber, andf ′ output fibers
with w′ wavelengths on each fiber, wherefw = f ′w′ (see
Figure 1). The set of input wavelengths need not have any
relation with the output counterpart. This kind of WXCs are
referred to as the “heterogeneous WXCs,” which are needed
to optically switch data from different manufacturers [18].

In this paper, we consider the homogeneous situation where
each WXC1 has f input fibers andf output fibers, each of
which can carry a setΛ = {λ1, . . . , λw} of w wavelengths.
(Note that most of the ideas here apply to the heterogeneous
case too.) LetF = {F1, . . . , Ff} and F ′ = {F ′

1, . . . , F
′
f}

denote the set of input and output fibers, respectively.
In the (λ, F, F ′)-request model[7], a connection request is

of the form (λ, F, F ′), which means that a connection is to
be established from wavelengthλ ∈ Λ of input fiber F ∈
F to any free wavelength in output fiberF ′ ∈ F ′. In the
(λ, F, λ′, F ′)-request model, the difference is that the output
wavelengthλ′ is also specified.

The (λ, F, F ′)-request model is useful for switching optical
packets/bursts synchronously or one batch at a time, as well
as for optical circuit-switching in general. The other model is
particularly useful for asynchronous switching of optical bursts
using JET (just enough time) and void filling [7], [19], as
well as certain circuit-switching applications requiring specific
QoS.

1We will use the term WXC to refer also to WDM switches where switching
speed may be fast enough for optical packet/burst switching.
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In this paper, we are concerned with the(λ, F, λ′, F ′)-
model, leaving the(λ, F, F ′)-model for a future work. We
next briefly define the concepts of strictly nonblocking (SNB),
wide-sense nonblocking (WSNB) and rearrangeably nonblock-
ing (RNB) for both request models.

Consider a WXC with a few unicast connections already
established. Under the(λ, F, λ′, F ′)-model, a new unicast
request(λ, F, λ′, F ′) is valid if λ is free inF andλ′ is free
in F ′. A request frameis a set of requests such that no two
requests are from the same input wavelength in the same input
fiber, and no two requests are to the same output wavelength
in the same output fiber. A request frame isrealizableby a
WXC if all requests in the frame can be routed simultaneously.
A WXC is rearrangeably nonblockingiff any request frame
is realizable by the WXC. A WXC isstrictly nonblockingiff
a new valid request can always be routed through the WXC
without disturbing existing connections. A WXC iswide-sense
nonblockingiff a new valid request can be routed as long as
we follow a certain routing algorithm.

All the concepts defined above have their multicast coun-
terparts. Amulticast requestis of the form (λ, F,P) where
λ ∈ Λ, F ∈ F , and P ⊆ Λ × F ′ such that noF ′ ∈ F ′

appears more than once inP. (That is, if (a, b) and (c, d)
are different pairs inP, then b 6= d.) This restriction was
made since in practical networks it is not necessary to have
a multicast connection going to the same output fiber on two
different wavelengths [10], [20]. Amulticast request frameis
a set of multicast requests such that no two different requests
are from the same input wavelength in the same input fiber,
and that each wavelength on an output fiber is requested at
most once. (We shall be more rigorous in later sections.) The
concepts of SNB, RNB, WSNB for the multicast case are
defined similarly.

For1 ≤ d ≤ w−1, let LWC(d) denote a limited wavelength
converter of degreed, namely a LWC(d) can convertλi to any
λj where|i− j| ≤ d. Note that this conversion cannot “loop
around,” i.e.λ1 cannot be converted toλw whend ≤ w − 2.
Whend = w − 1, we get a full wavelength converter.

We will address two questions: (a) under a certain request
model, and certain traffic pattern (unicast, multicast), how
many LWC(d) are necessary?; and (b) how do we construct
an WXC with as small a number of LWC(d) as possible
(sufficiency)?.

Throughout the paper, for any positive integern, let [n] :=
{1, . . . , n}, and letSn denote the set of all permutations on
[n]. The graph theoretic terminologies and notations we adopt
in this paper are standard (see, e.g., [21]).

The following lemmas are going to be used throughout the
paper. We omit the proofs due to their simplicity.

Lemma II.1. For any a1, a2, a3 ∈ [w], we have⌈
|a1 − a3|

d

⌉
≤
⌈
|a1 − a2|

d

⌉
+
⌈
|a2 − a3|

d

⌉
Lemma II.2. For any a1, a2, a3, a4 ∈ [w] where botha1 and
a2 are strictly less thana3 and a4, we have⌈
|a1 − a2|

d

⌉
+
⌈
|a3 − a4|

d

⌉
≤
⌈
|a1 − a4|

d

⌉
+
⌈
|a2 − a3|

d

⌉

Lemma II.3. For any a1, a2, a3, a4 ∈ [w] wherea1 ≤ a2 ≤
a3 ≤ a4, we have⌈
|a1 − a2|

d

⌉
+
⌈
|a3 − a4|

d

⌉
≤
⌈
|a1 − a3|

d

⌉
+
⌈
|a2 − a4|

d

⌉

III. U NICAST WDM CROSS-CONNECTS

Consider any setD of requests under the(λ, F, λ′, F ′)-
request model. Each requestD in D is of the form
(λi, Fj , λi′ , F

′
j′), where1 ≤ i, i′ ≤ w, and 1 ≤ j, j′ ≤ f .

A setD of requests is called arequest frameif

|{(i, j) : (λi, Fj , λi′ , F
′
j′) ∈ D}| ≤ 1, ∀i′, j′,

|{(i′, j′) : (λi, Fj , λi′ , F
′
j′) ∈ D}| ≤ 1, ∀i, j.

If equality holds for both of the above inequalities, we call
the request frame afull request frame. In other words,D is
a request frame if there is at most one request inD from a
wavelength in a particular input fiber, and there is at most one
request to a wavelength in a particular output fiber. In a full
request frame, replace “at most one” by “exactly one” in the
previous sentence.

For any requestD ∈ D, let i(D) and i′(D) denote
the indices of the input and output wavelengths ofD, and
j(D) and j′(D) denote the indices of the input and output
fibers of D. In other words,D can be written asD =(
λi(D), Fj(D), λi′(D), F

′
j′(D)

)
.

In order to convertλi to λi′ , we need at least
⌈
|i−i′|

d

⌉
LWC(d). This observation leads to the following theorem.

Theorem III.1. A strictly, wide-sense, or rearrangeably non-
blocking WXC under the(λ, F, λ′, F ′)-request model needs at
least

m1(w, f, d) := max
D

∑
D∈D

⌈
|i(D)− i′(D)|

d

⌉
(1)

LWC(d), where themax goes over all request framesD.
Moreover,m1(w, f, d) is also the sufficient number of LWC(d)
to construct a rearrangeably or a wide-sense non-blocking
WXC.

Proof. The fact thatm1(w, f, d) is necessary is obvious from
the observation above. Sufficiency is shown with the construc-
tions presented in Section VI.

Theorem III.1 gave a characterization ofm1(w, f, d), the
necessary and sufficient number of LWC(d) for a rearrange-
ably and wide-sense non-blocking WXC. However, maximiz-
ing a function over all possible request frames (an exponential
number) does not give us a good handle onm1(w, f, d). The
following lemma characterizesm1(w, f, d) in a much better
fashion.

Lemma III.2.

m1(w, f, d) = f max
π∈Sw

w∑
i=1

⌈
|i− π(i)|

d

⌉
(2)



4 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. -, NO. –, – —-

Proof. For any request frameD, define its “cost” by

c(D) =
∑
D∈D

⌈
|i(D)− i′(D)|

d

⌉
.

Then,m1(w, f, d) = maxD c(D) by Theorem III.1. Consider
the request frame

Dσ = {(λi, Fj , λσ(i), F
′
j) | i ∈ [w], j ∈ [f ]},

where σ = arg max
π∈Sw

{
w∑

i=1

⌈
|i− π(i)|

d

⌉}
.

Then, it is straightforward that

m1(w, f, d) ≥ c(Dσ) = f max
π∈Sw

w∑
i=1

⌈
|i− π(i)|

d

⌉
.

Next, we show thatm1(w, f, d) is at most the right hand
side. LetD be a request frame which maximizesc(D) so that
m1(w, f, d) = c(D). If D is not a full request frame, we can
add more requests intoD to make it full without reducing the
cost c(D). Consequently, without loss of generality we can
assume thatD is a full request frame.

To this end, construct a bipartite multi-graphG = (X ∪
Y ;E), where X and Y are the color classes,X =
{x1, . . . , xw}, Y = {y1, . . . , yw}, and there is a copy of
an edge(xs, yt) ∈ E for every request inD of the form
(λs, Fj , λt, F

′
j′), for any j, j′. This way, every edge ofG

represents one request inD.
BecauseD is a full request frame,G is f -regular. By

König’s theorem [22],G is f -edge-colorable. Let[f ] be the
set of colors. LetMj be the set of edges with colorj, then
Mj is a perfect matching ofG. Each perfect matching of
G corresponds naturally to a permutationπ ∈ Sw, where
π(s) = t for each edge(xs, yt) in the perfect matching. Let
πj be the permutation corresponding toMj . We have

m1(w, f, d) =
∑
D∈D

⌈
|i(D)− i′(D)|

d

⌉

=
∑

(xs,yt)∈E

⌈
|s− t|

d

⌉
=

f∑
j=1

∑
(xs,yt)∈Mj

⌈
|s− t|

d

⌉

=
f∑

j=1

w∑
i=1

⌈
|i− πj(i)|

d

⌉
≤ f max

π∈Sw

w∑
i=1

⌈
|i− π(i)|

d

⌉
.

IV. A N EXPLICIT FORMULA FOR m1(w, f, d)

From the result of Lemma III.2, it is easy to see that the
functionm1(w, f, d) can be computed in polynomial time with
a standard maximum weighted matching algorithm (such as
the algorithm in [23]). However, an explicit formula form1(·)
would obviously be much more desirable.

For convenience, define a functiong : Sw → R by

g(π) =
w∑

i=1

⌈
|i− π(i)|

d

⌉
. (3)

We first consider the case whenw is an even number, say
w/2 = k ∈ Z. Lemma III.2 basically says that

m1(w, f, d) ≥ f · g(π), for any π ∈ Sw,

and that the bound is best possible. Our objective is thus to
find a π ∈ Sw that maximizesg(π). For anyπ ∈ Sw and any
subsetX ⊆ [w], let π(X) = {π(i) | i ∈ X}.

The following lemma restricts the search space forπ that
maximizesg(π).

Lemma IV.1. Supposew/2 = k ∈ Z. Let A = [k] and B =
[w]− [k]. The functiong(π) is maximized at some permutation
π ∈ Sw whereπ(A) = B and π(B) = A.

Proof. Consider a permutationπ ∈ Sw that maximizesg(π).
Obviously, if π(A) = B, then π(B) = A, and vice versa.
Suppose there is somea ∈ A such thatπ(a) ∈ A, then there
is someb ∈ B such thatπ(b) ∈ B. Note thata andπ(a) are
both strictly less thanb andπ(b). Hence, by Lemma II.2,‰
|a− π(a)|

d

ı
+

‰
|b− π(b)|

d

ı
≤

‰
|a− π(b)|

d

ı
+

‰
|b− π(a)|

d

ı
.

Consider the permutationπ′ defined byπ′(i) = π(i) for all
i ∈ [w] − {a, b}, π′(a) = π(b), and π′(b) = π(a). Then,
g(π′) ≥ g(π). Basically,π′ is obtained fromπ by exchanging
the images ofa andb underπ, keeping the rest the same. We
can keep exchanging images of these kinds of pairsa, b to
finally get a permutationπ with π(A) = B (and thusπ(B) =
A) while not reducing the costg(π).

To this end, we can restrict our attention to permutations
π ∈ Sw consisting of two parts:π|A : A → B and π|B :
B → A, whereπ|X is the mapping obtained by restrictingπ
to the subsetX of [w]. (Note thatπ|A andπ|B are one-to-one
correspondences.) LetSA,B denote the set of all one-to-one
correspondences betweenA andB. Then, due to symmetry,

max
π∈Sw

g(π) = 2 max
σ∈SA,B

∑
a∈A

⌈
σ(a)− a

d

⌉
. (4)

Consequently, to find an optimalπ we can just find an optimal
σ ∈ SA,B with respect to the right hand side of (4), then let
π|A = σ andπ|B = σ−1.

For any numberi ∈ [w], let

qi =
⌊

i

d

⌋
, ri = i mod d = i− d

⌊
i

d

⌋
. (5)

In other words,qi is the integer quotienti/d and ri is the
remainder ofi divided byd. Hence,0 ≤ ri ≤ d− 1,∀i ∈ [w].
Moreover, for anya ∈ A andb ∈ B,⌈

b− a

d

⌉
=

{
qb − qa if rb ≤ ra

qb − qa + 1 if rb > ra

Consequently, for anyσ ∈ SA,B , we have∑
a∈A

⌈
σ(a)− a

d

⌉
=

∑
a∈A

(qσ(a) − qa) +
∑
a∈A

⌈
rσ(a) − ra

d

⌉

=

(∑
b∈B

qb −
∑
a∈A

qa

)
+ |{a ∈ A : rσ(a) − ra > 0}|.
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The first term is independent ofσ. Thus, we can just concen-
trate on finding aσ ∈ SA,B which maximizes

t(σ) = |{a ∈ A : rσ(a) − ra > 0}|. (6)

Then, recalling relations (2) and (4), we conclude with a sim-
pler characterization ofm1(w, f, d) in the following lemma.

Lemma IV.2. Whenw/2 ∈ Z+, we have

m1(w, f, d) = 2f

(∑
b∈B

qb −
∑
a∈A

qa

)
+ 2f max

σ∈SA,B

t(σ) (7)

We now obtain a simple consequence of this lemma.

Theorem IV.3. m1(w, f, 1) = 1
2fw2 whenw is even.

Proof. When d = 1, ri = 0,∀i ∈ [w], hencet(σ) = 0,∀σ ∈
SA,B . Moreover,qi = i, ∀i ∈ [w]. Consequently, (7) gives

m1(w, f, 1) = 2f

(∑
b∈B

b−
∑
a∈A

a

)
=

1
2
fw2.

When d ≥ 2, the situation is not as simple. LetRA be
the multiset of allra, a ∈ A, and RB be the multiset of all
rb, b ∈ B. For any integerr, let µA(r) andµB(r) denote the
multiplicities of r in RA andRB , respectively. For example,
for w = 8, d = 3, we have

A = {1, 2, 3, 4} B = {5, 6, 7, 8}
RA = {1, 2, 0, 1} RB = {2, 0, 1, 2}

µA(0) = 1, µA(1) = 2 µB(0) = 1, µB(1) = 1,

µA(2) = 1 µB(2) = 2.

First, we make a simple yet important observation in the
following lemma. This idea is the key to finding an explicit
formula for m1(w, f, d)!

Lemma IV.4. Supposew is even andd ≥ 2. Then, for any
σ ∈ SA,B , we have

t(σ) ≤ w

2
− µB(0)−max{0, µB(1)− µA(0)}. (8)

Proof. By definition, t(σ) is the number of pairs(rσ(a), ra)
for which rσ(a) > ra, wherea goes over all elements ofA.
There are exactlyw/2 of these pairs. The numbersrσ(a) are
picked one by one from the multisetRB . Thus, for anyσ there
are µB(0) of the rσ(a) that are equal to0. Whenrσ(a) = 0,
rσ(a) ≤ ra and thus the pair will not be counted towardt(σ).
This explains the term−µB(0) in the right hand side of (8).

Similarly, there areµB(1) of the rσ(a) that are equal to1.
When rσ(a) = 1, rσ(a) ≤ ra unlessra = 0, and there are
only µA(0) of the ra which are0. Thus, the best we can do
is to pair up as many1’s in RB with 0’s in RA as possible. If
µB(1) − µA(0) ≤ 0, then we have enough0’s in RA to pair
up with 1’s in RB . WhenµB(1)− µA(0) > 0, there must be
at leastµB(1)− µA(0) 1’s left in RB , and the corresponding
pairs will not be counted towardt(σ). This explains the term
−max{0, µB(1)− µA(0)}.

What is amazing is that inequality (8) is the best possible,
as the following lemma shows. The lemma (and its proof)
basically gives an explicit formula form1(w, f, d).

Lemma IV.5. For evenw and d ≥ 2, we have

max
σ∈SA,B

t(σ) =
w

2
− µB(0)−max{0, µB(1)− µA(0)}. (9)

Proof. With the result of Lemma IV.4 in mind, we only need
to find aσ such that

t(σ) =
w

2
− µB(0)−max{0, µB(1)− µA(0)}.

In fact, we only need to find a way to pair up elements ofRA

andRB in a one-to-one fashion, so that the number of pairs
(ra, rσ(a)) with ra < rσ(a) is equal to the right hand side of
the above relation.

Recall the examplew = 8, d = 3 above. The upper bound
givest(σ) ≤ 4−1−max{0, 1−1} = 3. The following pairing
achieves this bound:[

ra 1 2 0 1
rσ(a) 2 0 1 2.

]
Implicitly, we get (at least) aσ that achieves the bound:σ(i) =
i + 4, 1 ≤ i ≤ 4. The general case is not as simple, but the
above example gives the main ingredients.

Let k = w/2. As usual, writek = qkd + rk. (Recall that
we assumedd ≥ 2.) Then,

RA = {1, 2, . . . , d− 1, 0, · · · , 1, . . . , d− 1, 0, 1, . . . , rk},

where there areqk groups of{1, . . . , d − 1, 0} and the last
group is{1, . . . , rk}. Thus,

µA(r) =

{
qk + 1 1 ≤ r ≤ rk

qk rk < r ≤ d− 1, or r = 0.
(10)

One nice thing is to haveµA(0) = qk, regardless ofrk. The
numbersµB(r) are not so nice, broken up into a few cases.
In general,RB looks like

{rk + 1, . . . , d− 1, 0, . . . , d− 1, · · · , 0, ..., d− 1, 0, . . . , 2rk},

in which there areqk − 1 groups of{0, 1, . . . , d − 1} in the
middle, a group{rk + 1, . . . , d− 1} in the beginning, and the
last group is{0, . . . , 2rk}.

When rk = d − 1, the first group is empty. Whenrk = 0,
the last group does not contain a1. When2rk = d, the last
group contains two0’s and a1. When2rk > d, the last group
contains two0’s and two1’s. We formally consider these cases
as follows.

Case 1:rk = d− 1. We have

RB = {0, . . . , d− 1, · · · , 0, . . . , d− 1, 0, . . . , d− 2}.

Whend = 2 we getµB(0) = qk + 1, andµB(1) = qk. The
upper bound ist(σ) ≤ k−qk−1, which can be achieved with
the following σ:

σ(i) = i + k, 1 ≤ i ≤ k.
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Whend > 2 we getµB(0) = µB(1) = qk + 1. The upper
bound ist(σ) ≤ k − qk − 2, which can be achieved with the
following σ:

σ(i) =

{
i + k + 2 1 ≤ i ≤ k − 2
i + 2 k − 1 ≤ i ≤ k.

Case 2: 2rk < d. We haveµB(0) = µB(1) = qk. The
upper bound ist(σ) ≤ k − qk, which is certainly obtainable
with the following σ:

σ(i) =

{
k + 1 + i 1 ≤ i ≤ k − 1
k + 1 i = k

, whenrk = 0

σ(i) =

{
k + 1− rk + i rk ≤ i ≤ k

2k + 1− rk + i 1 ≤ i ≤ rk − 1
, whenrk > 0

Case 3:2rk = d. We haveµB(0) = qk + 1, µB(1) = qk.
The upper bound ist(σ) ≤ k − qk − 1, which is achievable
with the following σ:

σ(i) =

{
k + 1− rk + i rk ≤ i ≤ k

2k + 1− rk + i 1 ≤ i ≤ rk − 1.

Case 4:2rk > d. We haveµB(0) = µB(1) = qk + 1. The
upper bound ist(σ) ≤ k − qk − 2, which is achievable with
the following σ:

σ(i) =


k + 1− rk + i rk ≤ i ≤ k

2k + d + 1− 2rk + i 1 ≤ i ≤ 2rk − d− 1
2k + d + 2− 3rk + i 2rk − d ≤ i ≤ rk − 1.

The previous lemma gives explicit formulas for the expres-
sion maxσ∈SA,B

t(σ), which is eitherk − qk, k − qk − 1, or
k − qk − 2, depending on the relationships betweend and
k. Combining Lemma IV.5 with Lemma IV.2, noting the fact
that qk =

⌊
w
2d

⌋
andrk = w

2 −d
⌊

w
2d

⌋
, we obtain the following

theorem for the even-w case.

Theorem IV.6. Supposew
2 ∈ Z, and 2 ≤ d ≤ w − 1. Let

r =
w

2
− d

⌊ w

2d

⌋
m̄1 = 2f

w/2∑
i=1

(⌊ w
2 + i

d

⌋
−
⌊

i

d

⌋)
+ 2f

(w

2
−
⌊ w

2d

⌋)
.

Then, we have
(i) m1(w, f, d) = m̄1 whend > 2r.

(ii) m1(w, f, d) = m̄1 − 2f whend = 2r.
(iii) m1(w, f, d) = m̄1 − 4f whend− 1 = r > 1 or d < 2r.

To this end, let us consider the case whenw is odd. Suppose
w = 2k + 1, wherek is a positive integer. (The case when
w = 1 is trivial, as no wavelength converter is needed.) Let

A = [k], B = [2k + 1]− [k], A′ = [k + 1], B′ = [2k + 1]− [k + 1].

Note that [w] = [2k + 1] = A ∪ B = A′ ∪ B′. We follow
roughly the same path as the even-w case.

Lemma IV.7. Suppose(w − 1)/2 = k ∈ Z+. The function
g(π) is maximized at some permutationπ ∈ Sw whereπ(A) =
B′ and π(B) = A′.

Proof. Consider any permutationπ that maximizesg(π).
Supposeπ(k + 1) = ā, π(b̄) = k + 1 for someā, b̄ ∈ [w].

Case 1:ā = b̄ = k +1. If there is somea ∈ A with π(a) ∈
A′, then there must be someb ∈ B−{k +1} with π(b) ∈ B′.
Note that botha and π(a) are strictly less thanb and π(b).
Similar to the argument in Lemma IV.1, we can switch the
images ofa and b to get a newπ while not reducingg(π).
Keep doing so until there is no morea ∈ A with π(a) ∈ A′,
we obtain a permutationπ with the desired property.

Case 2: ā < k + 1 and b̄ > k + 1. If there is somea ∈
A with π(a) ∈ A′, then, sinceπ is a permutation, we have
π(a) ∈ A′ − {k + 1, ā}. The setA′ − {k + 1, ā, a} hask − 2
elements, hence it cannot contain all theπ-images of elements
of B−{k+1, b̄} which hask−1 elements. Hence, there must
be someb ∈ B − {k + 1, b̄} with π(b) ∈ B′. We again can
switch the images ofa andb.

Case 3: ā > k + 1 and b̄ < k + 1. Noting thatg(π) =
g(π−1), we can replaceπ by π−1 and go back to case 2.

Case 4: ā < k + 1 and b̄ < k + 1. In this case, the set
A′ − {k + 1, ā} of size k − 1 cannot hold all the images of
the setB − {k + 1} of size k. Hence, there must be some
b > k + 1 with π(b) > k + 1. Since b̄ and k + 1 are both
strictly smaller thanb andπ(b), we can switch the images of
b̄ andb while not reducingg(π). We then go back to case 2.

Case 5: ā > k + 1 and b̄ > k + 1. This case is symmetric
to case 4.

Let SA,B′ (respectivelySA′,B) denote the set of all one-to-
one correspondences betweenA and B′ (respectivelyB and
A′). Lemma IV.7 implies

max
π∈Sw

g(π) =

max
σ∈SA,B′

∑
a∈A

⌈
σ(a)− a

d

⌉
+ max

τ∈SA′,B

∑
a∈A′

⌈
σ(a)− a

d

⌉
(11)

If we can find an optimalσ and an optimalτ in the above ex-
pression, an optimalπ with respect tog(π) can be constructed
by settingπ|A = σ andπ|B = τ−1. We thus can get an analog
of Lemma IV.2 for the case whenw is odd. We omit the proof
as it is similar to that of Lemma IV.2.

Lemma IV.8. When(w − 1)/2 ∈ Z+, we have

m1(w, f, d) = 2f

(∑
b∈B′

qb −
∑
a∈A

qa

)
+

f max
σ∈SA,B′

t1(σ) + f max
τ∈SA′,B

t2(τ), (12)

wheret1(σ) = |{a ∈ A : rσ(a)− ra > 0}|, and t2(τ) = |{a ∈
A′ : rτ(a) − ra > 0}|.

The following result is immediate from the lemma.

Theorem IV.9. m1(w, f, 1) = 1
2f(w − 1)2 whenw is odd.

We can now assumed ≥ 2. The followings are analogs of
Lemma IV.5 for the functionst1 and t2.

Lemma IV.10. Whenw is odd andd ≥ 2,

max
σ∈SA,B′

t1(σ) =
w

2
−µB′(0)−max{0, µB′(1)−µA(0)}. (13)
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Proof. The fact thatt1(σ) ≤ w
2 − µB′(0)−max{0, µB′(1)−

µA(0)} for all σ ∈ SA,B′ can be shown similar to that of
Lemma IV.5. Thus, we only need to specify aσ that achieves
equality. Writek = qkd + rk as usual, then

RA = {1, . . . , d− 1, 0, · · · , 1, . . . , d− 1, 0, 1, . . . , rk}.

µA(r) =

{
qk + 1 1 ≤ r ≤ rk

qk rk < r ≤ d− 1, or r = 0.
(14)

The key is thatµA(0) = qk, regardless ofrk. In general,RB′

looks as follows.

RB′ = {rk + 2, . . . , d− 1, 0, . . . , d− 1, · · · , 0, . . . , 2rk + 1},

in which there areqk − 1 groups of{0, . . . , d − 1} in the
middle, a group{rk + 2, . . . , d− 1} in the beginning, and the
last group is{0, . . . , 2rk + 1}. Similar to Lemma IV.5, we
break up the cases as follows.

Case 1:rk = d − 1. In this case, we haveµB′(0) = qk,
andµB′(1) = qk +1. The upper bound ist1(σ) ≤ k− qk − 1,
which can be achieved with the followingσ:

σ(i) =

{
i + k + 2 1 ≤ i ≤ k − 1
k + 2 i = k.

Case 2:rk = d− 2.
If d = 2, thenµB′(0) = µB′(1) = qk. The upper bound is

t1(σ) ≤ k− qk, which can be achieved with the followingσ:

σ(i) = i + k + 1, 1 ≤ i ≤ k.

If d = 3, then µB′(0) = qk + 1, and µB′(1) = qk. The
upper bound ist1(σ) ≤ k − qk − 1, which can be achieved
with the following σ:

σ(i) =


i + k + 3 1 ≤ i ≤ k − 2
k + 1 i = k − 1
k + 2 i = k.

If d > 3, thenµB′(0) = µB′(1) = qk. The upper bound is
t1(σ) ≤ k − qk − 2, which can be achieved with the sameσ
as the cased = 3.

Case 3:rk ≤ d− 3 and2rk + 1 < d. In this case, we have
µB′(0) = µB′(1) = qk. The upper bound ist1(σ) ≤ k − qk,
which can be achieved with the followingσ:

σ(i) =

{
i + 2k + 1− rk 1 ≤ i ≤ rk

i + k + 1− rk rk + 1 ≤ i ≤ k.

Case 4: rk ≤ d − 3 and 2rk + 1 = d. In this case, we
haveµB′(0) = qk + 1 andµB′(1) = qk. The upper bound is
t1(σ) ≤ k − qk − 1, which can be achieved with the sameσ
as that in case 3.

Case 5: rk ≤ d − 3 and 2rk + 1 > d. In this case, we
haveµB′(0) = µB′(1) = qk + 1. The upper bound ist1(σ) ≤
k − qk − 2, which can be achieved with the followingσ:

σ(i) =

{
i + k + d− rk + 2 1 ≤ i ≤ k − d + rk − 1
i + d− rk + 2 k − d + rk ≤ i ≤ k.

Lemma IV.11. Whenw is odd andd ≥ 2,

max
τ∈SA′,B

t2(τ) =
w

2
−µB(0)−max{0, µB(1)−µA′(0)}. (15)

Proof. The fact thatt2(τ) ≤ w
2 − µB(0) − max{0, µB(1) −

µA′(0)} for all τ ∈ SA′,B can be shown similar to that of
Lemma IV.5. Thus, we only need to specify aτ that achieves
equality. Writek = qkd + rk as usual, then

µA(0) =

{
qk + 1 1 ≤ rk = d− 1
qk rk < d− 1.

(16)

In general,RB looks as follows.

RB = {rk + 1, . . . , d− 1, 0, . . . , d− 1, · · · , 0, . . . , 2rk + 1},

in which there areqk − 1 groups of{0, . . . , d − 1} in the
middle, a group{rk + 1, . . . , d− 1} in the beginning, and the
last group is{0, . . . , 2rk + 1}. Similar to Lemma IV.5, we
break up the cases as follows.

Case 1:rk = d−1. In this case, we haveµA′(0) = µB(0) =
µB(1) = qk +1. The upper bound ist2(τ) ≤ k−qk−1, which
can be achieved with the followingτ :

τ(i) =

{
i + k + 2 1 ≤ i ≤ k − 1
i + 1 k ≤ i ≤ k + 1.

In the rest of the cases, we considerrk ≤ d− 2, and hence
µA′(0) = qk.

Case 2:2rk + 1 < d (note that this impliesrk ≤ d− 2).
If rk = 0, thenµB(0) = qk andµB(1) = qk +1. The upper

bound ist2(τ) ≤ k− qk − 1, which can be achieved with the
following τ :

τ(i) =

{
i + k + 1 1 ≤ i ≤ k

k + 1 i = k + 1.

If rk > 0, thenµB(0) = µB(1) = qk. The upper bound is
t2(τ) ≤ k − qk, which can be achieved with the followingτ :

τ(i) =

{
i + k + 1− rk rk ≤ i ≤ k + 1
i + 2k + 2− rk 1 ≤ i ≤ rk − 1.

Case 3: rk ≤ d − 2 and 2rk + 1 = d. In this case, we
haveµB(0) = qk + 1 and µB(1) = qk. The upper bound is
t2(τ) ≤ k− qk −1, which can be achieved with the following
τ :

τ(i) =

{
i + k + 1− rk rk ≤ i ≤ k + 1
i + 2k + 2− rk 1 ≤ i ≤ rk − 1.

Case 4: rk ≤ d − 2 and 2rk + 1 > d. In this case, we
haveµB(0) = µB(1) = qk + 1. The upper bound ist2(τ) ≤
k− qk − 2, which can be achieved with the sameτ as in case
3.

Lemmas IV.10, IV.11, and IV.8 finally characterize
m1(w, f, d) for the case whenw is odd.
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Theorem IV.12. Supposew−1
2 ∈ Z, and 2 ≤ d ≤ w − 1.

r =
w − 1

2
− d

⌊
w − 1

2d

⌋

m̄1 = 2f

w−1
2∑

i=1

(⌊ w−1
2 + i

d

⌋
−
⌊

i

d

⌋)
+

2f

(
w − 1− 2

⌊
w − 1

2d

⌋)
.

Then, we have
(i) m1(w, f, d) = m̄1 when0 < r ≤ d− 3 and 2r + 1 < d.

(ii) m1(w, f, d) = m̄1 − 2f whenr = 0.
(iii) m1(w, f, d) = m̄1 − 4f when eitherr = d − 1 or r =

d− 2 = 1 or d = 2r + 1 ≤ 2d− 5.
(iv) m1(w, f, d) = m̄1 − 8f when eitherr = d − 2 > 1 or

d < 2r + 1 ≤ 2d− 5.

Remark IV.13. It is possible to put the results of both
Theorems IV.6 and IV.12 in closed form (i.e. without the
summations). However, the given presentations of the theo-
rems are easier to follow. For instance, for the evenw case
in Theorem IV.6, if2r < d, thenm̄1 can be calculated to be
3
2dq2− 1

2dq+3rq+q, whereq = bw/(2d)c. What we do want
to notice is that in both cases,m1(w, f, d) = Θ(fw2/d)!

V. M ULTICAST WDM CROSS-CONNECTS

Consider any setD of (multicast) requests. Each requestD
in D is of the form(λi, Fj ,P), wherei ∈ [w], andj ∈ f , and
P ⊆ Λ × F ′ such that|{i′ : (λi′ , F

′
j′) ∈ P}| ≤ 1,∀j′ ∈ [f ].

As usual, we usei(D), j(D), andP(D) to denotei, j, andP.
Let I ′(D) denote the multiset of requested output wavelengths,
namelyI ′(D) := {i′ | (λi′ , F

′
j′) ∈ P(D), for somej′}. The

size ofI ′(D) (= |P|) is often called thefanoutof the request
D. Multicast requests with fanouts equal to1 are nothing but
unicast requests.

A setD of requests is called amulticast request frameif,
for all i ∈ [w] and j ∈ [f ],

|{D ∈ D : i(D) = i and j(D) = j}| ≤ 1,

and, for alli′ ∈ [w] and j′ ∈ [f ],

|{D ∈ D : (λi′ , F
′
j′) ∈ P(D)}| ≤ 1.

If equality holds for the later inequality for alli′, j′, we call
the request frame afull request frame. In other words,D is
a request frame if there is at most one request inD from a
wavelength in a particular input fiber, and there is at most one
request to a wavelength in a particular output fiber. In a full
request frame, each of the output wavelengths is involved in
some request.

Recall that, ifD is a unicast request, then we need at least
d i(D)−i′(D)

d e LWC(d). What is the corresponding number if
D were are multicast request? Consider a multicast requestD
whereI ′(D) = {i′1, . . . , i′k}, and i(D) = i. Without loss of
generality, assume

i′1 ≤ · · · ≤ i′s ≤ i < i′s+1 ≤ · · · ≤ i′k,

where0 ≤ s ≤ k. If s = 0, then all i′ ∈ I ′(D) are strictly
greater thani. If s = k, then alli′ ∈ I ′(D) are at mosti.

In order to satisfy this request, a set of paths must be
established betweenλi on input fiberFj and all theλi′t

, 1 ≤
t ≤ k, on the corresponding output fibers. The union of
these paths typically form therouting tree for this request.
Construct thewavelength conversion treeT corresponding to
the routing tree in the following manner. The treeT has nodes
labeled with wavelengths, and is rooted atλi. Each node of
T represents one wavelength on the routing tree. There is an
edge connectingλx to λy in T if λx was converted toλy on
some path of the routing tree. The number of edges ofT is
thus the number of wavelength converters used to satisfy the
request. The treeT has the property that if(λx, λy) is an edge,
then |x− y| ≤ d, and thatλi and allλi′t

, t = 1, . . . , k, appear
as nodes ofT . We say that the treeT realizesthe requestD.
(In a sense, this tree is a Steiner tree spanning all wavelengths
in I ′(D) ∪ {λi}.)

To find the necessary number of LWC(d) needed for the
requestD, we would like to determine the minimum number
of edges (i.e. LWC(d)) of a wavelength conversion tree forD.
Since each wavelength only needs to appear in the tree once
(we can just identify occurrences of the same wavelength),
multiplicities in the multisetI ′(D) ∪ {i(D)} do not matter.
We can assume without loss of generality thati′1 < · · · <
i′s < i < i′s+1 < · · · < i′k.

Another interesting observation is that we can turnT into
a tree in which each vertex is of degree at most2 (and thus
is a path), while maintaining the fact that it is a wavelength
conversion tree. SupposeT has a vertex labeledλx with degree
at least3. Let λx1 , λx2 , λx3 be some three neighbors ofλx in
T . By the pigeonhole principle, two of thex1, x2, x3 must be
larger thanx or smaller thanx. Without loss of generality,
assumex1 < x2 < x. Then, |x − x1| ≤ d and |x − x2| ≤ d
imply |x1 − x2| ≤ d. We thus can connectλx1 andλx2 , and
remove the edge(λx1 , λx) from the tree. The resulting tree
still spansI ′(D) with all the desired properties, and with the
same number of edges. In casex1 > x2 > x, we apply the
same procedure.

Repeated applications of this procedure will produce a tree
with maximum degree2 if we can show that we do not run
into an infinite loop. For each edgee = (λx, λy) of T with
x < y, define thecrossing weightw(e) be the number of nodes
λz in T for which x < z < y. The procedure described above
reduces the total crossing weight by one each time. Hence,
repeated applications of the procedure shall terminate.

To this end, we can assume thatT is a path. Leti1, . . . , ik+1

be the occurrences of elements ofI ′(D)∪{i(D)} as we visit
T from one end to another. It is easy to see that the number
of edges ofT is at least

k∑
t=1

⌈
|it − it+1|

d

⌉
≥⌈

|i′1 − i′2|
d

⌉
+
⌈
|i′2 − i′3|

d

⌉
+ · · ·+

⌈
|i′s − i|

d

⌉
+⌈

|i− i′s+1|
d

⌉
+
⌈
|i′s+1 − i′s+2|

d

⌉
+ · · ·+

⌈ |i′k−1 − i′k|
d

⌉
.

We can now conclude with an important lemma.



NGO et al.: OPTICAL SWITCHING NETWORKS WITH MINIMUM NUMBER OF LIMITED RANGE WAVELENGTH CONVERTERS 9

Lemma V.1. Let D be a multicast request whereI ′(D) =
{i′1, . . . , i′k}, i = i(D), such that

i′1 ≤ · · · ≤ i′s ≤ i < i′s+1 ≤ · · · ≤ i′k.

Then, the number of LWC(d) necessary and sufficient to satisfy
D is

c̄(D) :=
⌈
|i′1 − i′2|

d

⌉
+
⌈
|i′2 − i′3|

d

⌉
+ · · ·+

⌈
|i′s − i|

d

⌉
+⌈

|i− i′s+1|
d

⌉
+
⌈
|i′s+1 − i′s+2|

d

⌉
+ · · ·+

⌈ |i′k−1 − i′k|
d

⌉
.

Proof. Necessity was shown above, noticing that identical
elements ofI ′(D) contributes zero to the costc̄(D). The basic
idea to show sufficiency is that we can convertλi to λs, λs

to λs−1, until we get toλ1, using exactly⌈
|i′1 − i′2|

d

⌉
+
⌈
|i′2 − i′3|

d

⌉
+ · · ·+

⌈
|i′s − i|

d

⌉
LWC(d). Similarly, we get the other half of the sum̄c(D). The
signal onλi only needs to be split once. The point shall be
clearer when we present the construction in Section VI.

To satisfy all requests in a multicast request frameD, the
number of LWC(d) needed is at least̄c(D) =

∑
D∈D c̄(D).

When D is a unicast request frame,̄c(D) = c(D). Hence,
maxD c̄(D) ≥ m1(w, f, d). What is interesting is that we can
also showmaxD c̄(D) ≤ m1(w, f, d), which - along with our
construction in the next Section - gives an analog of Theorem
III.1 for the multicast case.

Lemma V.2. We have

max
D

c̄(D) = m1(w, f, d),

where themax is over all multicast request framesD.

Proof. As noted above, it is sufficient to showmaxD c̄(D) ≤
m1(w, f, d). Consider a multicast request frameD that max-
imizes c̄(D). If D is also a unicast request frame (i.e. all
requests have fanouts one), then the inequality certainly holds.
To show that it holds in general, we shall gradually turnD
into a unicast request frame without reducingc̄(D). Consider
a requestD ∈ D with fanout at least2. As usual, assume
I ′(D) = {i′1, . . . , i′k}, i = i(D), and i′1 ≤ · · · ≤ i′s ≤ i <
i′s+1 ≤ · · · ≤ i′k. SinceD has fanout at least two, there must
be at least one free input wavelengthλt on some input fiber
Fj̄ , namely(λt, Fj̄) is not part of any request inD. Let

i′ =


i′s if s 6= 0, s 6= k, andt > i

i′s+1 if s 6= 0, s 6= k, andt ≤ i

i′k if s = k

i′1 if s = 0.

ReplaceD by two requestsD1 and D2 such thati(D1) =
i, j(D1) = j(D), I ′(D1) = I ′(D) − {i′}, and thati(D2) =
t, j(D2) = j̄, I ′(D2) = {i′}, matching the output fiber for all
members ofI ′(D). Then, it is straightforward from Lemmas
II.2 and II.3 that̄c(D) ≤ c̄(D1)+c̄(D2). Repeated applications
of this replacement eventually yield a unicast request frame
without reducing thēc cost ofD.

Theorem V.3. A strictly, wide-sense, or rearrangeably non-
blocking multicast WXC under the(λ, F, λ′, F ′)-request model
needs at leastm1(w, f, d) Moreover,m1(w, f, d) is also the
sufficient number of LWC(d) to construct a rearrangeably or
a wide-sense non-blocking multicast WXC.

Proof. Necessity is obvious. Sufficiency comes from the con-
struction in Section VI and the previous lemma.

VI. CONSTRUCTIONS WITH MINIMUM NUMBER OF

LWC(d)

In this section, we will describe a construction that makes
use of the so-calledconverter pool, which works for both
the unicast and the multicast case. Consider the construction
shown in Figure 2. The construction has two main compo-
nents: theLWC pool component, and theswitching fabrics
component. The detailed design of the LWC pool component is
shown in Figure 3. The basic idea is that all input wavelengths
have access to allm converters (LWC(d)) in the pool. The
converters are interconnected with splitters and combiners,
so that an optic signal can be split as many times as we
want, and it can go through as many LWC(d) as needed.
The main objective of the LWC pool component is to use
the least number of LWC(d) to convert input wavelengths to
the requested output wavelength (in the unicast case), or the
requested output wavelengths (in the multicast case). After
the wavelength conversions are done, all output wavelengths
come at the inputs of the switching fabrics. We can then use
an appropriate switching fabrics construction such as those in
[6], [7], [10] to finish the design. Let us useN (m,w, f, d) to
denote the construction described above.

The switching fabrics does not have to convert wavelengths
as all wavelengths arriving at its inputs are ready to come
out to the right fiber, hence we only need it to be WSNB or
RNB in the circuit switching sense [24], [25]. One can use
a broadcast-and-select type of construction [10] to have an
optical crossbar (instead of normal crossbars as in the circuit
switching case). Instead of the number of cross-points, we
have the same number of SOAs. This observation leads to the
following results.

The following theorem completes the second part of Theo-
rem III.1.

Theorem VI.1. Letm1 = m1(w, f, d). Consider the construc-
tion N (m1, w, f, d). If the switching fabrics is rearrangeably
or wide-sense nonblocking in the circuit switching sense, then
N (m1, w, f, d) is rearrangeably or wide-sense nonblocking
under the(λ, F, λ′, F ′)-request model, respectively.

Proof. We show the WSNB case. The RNB case is shown
similarly. Our strategy to route a new requestD =
(λi, Fj , λi′ , F

′
j′), given some previously routed network state,

is as follows. First, use
⌈
|i−i′|

d

⌉
free LWC(d) to convertλi to

λi′ . Second, at the last LWC(d), set up the SOAs to route this
signal to a free input of the switching fabrics. The fact that
the switching fabrics is WSNB implies that we can also find
a route from this free input to the corresponding requested
output. We just have to make sure that we have the sufficient
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Demux MuxSOA

LWC Pool

CombinerSplitter

Switching Fabrics

Fiber 1

Fiber f

λ1...λw

Fiber 1

λ1...λw

Fiber f

λ1, ...λw

λ1, ...λ2

m × m wf × wf

Fig. 2. Switching network with minimum number of LWC(d)s

number of LWC(d) so that the routing does not get blocked.
This is precisely whym = m1(w, f, d) was needed.

combiners

To all
the other

combiners

To all
the other

combiners

To all
the other

LWC(d)

the other
splitters

From all 

the other
splitters

From all 

the other
splitters

From all 

Splitter Combiner

Fig. 3. A possible construction of theLWC(d) pool.

We also have the corresponding theorem for the multicast
case.

Theorem VI.2. Let m1 = m1(w, f, d). Consider the con-
structionN (m1, w, f, d). If the switching fabrics is multicast
rearrangeably or wide-sense nonblocking in the circuit switch-
ing sense, thenN (m1, w, f, d) is multicast rearrangeably
or wide-sense nonblocking under the(λ, F, λ′, F ′)-request
model, respectively.

Proof. The proof is very much the same as that of the previous
theorem. Consider requestD with the usuali′1 ≤ · · · ≤ i′s ≤
i < i′s+1 ≤ · · · ≤ i′k. We can first split the signal onλi

into two branches (unlesss = 0 or s = k). The first branch
convertsλi to λi′s , λi′s to λi′s−1

, and so on. The second branch
does the symmetric operation. The total number of LWC(d)
needed is preciselȳc(D). The number of LWC(d) is sufficient
due to Lemma V.2. Every time we get to aλx, x ∈ I ′(D), the
signal is split so thatλx comes to a free input of the switching
fabrics, while the other copy continues with the branch. If
s = 0 or s = k, then there is only one conversion branch.
The switching fabrics finishes the rest of the work. Note that
N (m1, w, f, d) is multicast capable, yet the switching fabrics
only needs to be a unicast network. The converter pool already
does the splitting for us.

The last thing we would like to mention is that the total
number of SOAs used inΘ(m2) for the LWC pool, and
Θ(fw lg(fw)) for the best construction of the circuit-type
switching fabrics. Our results earlier showed thatm2 = m2

1 =
Θ(f2w4/d2). Hence, the SOA cost is dominated by the LWC
pool.

VII. C ONCLUDING REMARKS AND FUTURE WORKS

We have completely characterized the minimum number of
LWC(d) needed for wide-sense and rearrangeably nonblock-
ing unicast and multicast optical cross-connects. The construc-
tion given in the previous section is not the only construction
that minimizes the number of wavelength converters, and it
may not be the simplest in terms of physical layout. We leave
this question for future work.

Another interesting point that comes from this paper is
that there seems to be an intrinsic trade-off between the
number of LWC(d) and the number of SOAs used. Recent
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nonblocking constructions proposed in [7], for example, did
not make use of any SOAs at all. Others [10], [16] used
fewer SOAs than the construction given here. The drawback
is that previous WXCs used wider range and non-uniform
limited wavelength converters. Having too many SOAs not
only complicates physical layout of the network, but also
consumes powers, leading to signal attenuation. Investigating
this trade-off is another future research topic. For instance,
how can we construct nonblocking WXCs which make use of
some more LWC(d) but much less SOAs?

The strictly nonblocking case is not yet completely charac-
terized. It is easy to see, for example, thatfwdw−1

d e LWC(d)
are sufficient for a unicast construction. What one can do is
to use dw−1

d e LWC(d) to simulate a full-range wavelength
converter, and then the rest can be done with a strictly
nonblocking circuit-type of switching fabrics. This number is
about twice the necessary numberm1(w, f, d). (We also would
like to note that this upper bound can be reduced a little, but
it is still more thanm1(w, f, d).)

The wavelength converters we considered in this paper are
based on an ideal model of four-wave mixing (FWM) in
SOAs (the threshold modelin [13]). More realistic models
lead to a different conversion range. There are also several
other wavelength conversion techniques based on cross-gain
modulation (XGM), cross-phase modulation (XPM), and SOA
Mach-Zehnder interferometer (SOA-MZI, which can be inte-
grated in InP), . . . , which we have not considered. The main
reason for our adopting the simple model is to reduce the
complexity of the analysis. In the future, we will study this
problem taking into account more realistic model and other
kinds of limited-range wavelength converters.

Last but not least, the(λ, F, F ′)-request model was not
addressed in this paper. One can pose exactly the same types
of questions for this request model.
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