
New Constructions of Non-Adaptive and
Error-Tolerance Pooling Designs

Hung Q. Ngo
�

Ding-Zhu Du
�

Abstract

We propose two new classes of non-adaptive pooling designs. The first
one is guaranteed to be

�
-error-detecting and thus ��� ��� -error-correcting, where�

, a positive integer, is the maximum number of defectives (or positives).
Hence, the number of errors which can be detected grows linearly with the
number of positives. Also, this construction induces a construction of a bi-
nary code with minimum Hamming distance at least � �
	 � . The second
design is the � -analogue of a known construction on

�
-disjunct matrices.

1 Introduction

The basic problem of group testing is to identify the set of defectives in a large
population of items. As it is becoming more standard to use the term positive in-
stead of defective, we shall use the former throughout the paper. We assume some
testing mechanism exists which if applied to an arbitrary subset of the population
gives a negative outcome if the subset contains no positive and positive outcome
otherwise. Objectives of group testing vary from minimizing the number of tests,
limiting number of pools, limiting pool sizes to tolerating a few errors. It is con-
ceivable that these objectives are often contradicting, thus testing strategies are
application dependent.

Group testing algorithms can roughly be divided into two categories : Combi-
natorial Group Testing (CGT) and Probabilistic Group Testing (PGT). In CGT, it

�
Department of Computer Science and Engineering, University of Minnesota, 200 Union

street, EE/CS Building, room 4-192, Minneapolis, MN 55455, USA. e-mail:
 hngo,
dzd � @cs.umn.edu. Support in part by by the National Science Foundation under grant CCR-
9530306.

1

is often assumed that the number of positives among � items is equal to or at most�
for some given positive integer

�
. In PGT, we fix some probability � of having

a positive. Group testing strategies can also be either adaptive or non-adaptive.
A group testing algorithm is non-adaptive if all tests must be specified without
knowing the outcomes of other tests. A group testing algorithm is error tolerant
if it can detect or correct some � errors in test outcomes. Test errors could be
either ��� � , i.e. a negative pool is identified as positive, or ��� � in the contrast.

In this paper, we propose two new classes of non-adaptive and error-tolerance
CGT algorithms. Non-adaptive algorithms found its applications in a wide range
of practical areas such as DNA library screening [2, 5] and multi-access commu-
nications [16], etc. For a general reference on CGT, the reader is referred to a
monograph by Du and Hwang [6]. Recently, Ngo and Du [14] gave a survey on
non-adaptive pooling designs.

The rest of the paper is organized as follows. Section 2 presents basic defi-
nitions, notations and related works. Section 3 provides our results and section 4
concludes the paper.

2 Preliminaries

Throughout this paper, for any positive integer 	 we shall use
�	
� to denote ����������������	�� .
Also, given any set � and ����� , "! #%$ denotes the collection of all � -subsets of
� . Naturally,
&�'�)(+* and ,! #%$ (+* if �.-0/ �1/ .

2.1 The Matrix Representation

Consider a 	32 � �4� -matrix 5 . Let 687 and 9;: denote row < and column = respec-
tively. Abusing notation, we also let 6>7 (resp. 9?:) denote the set of column (resp.
row) indices corresponding to the � -entries. The weight of a row or a column is
the number of � ’s it has.

Definition 2.1. 5 is said to be
�
-disjunct if the union of any

�
columns does not

contain another column.

A
�
-disjunct 	.2 � matrix 5 can be used to design a non-adaptive group testing

algorithm on � items by associating the columns with the items and the rows with
the pools to be tested. If 5�7&:@(A� then item = is contained in pool < (and thus test
<). If there are no more than

�
positives and the test outcomes are error-free, then

it is easy to see that the test outcomes uniquely identify the set of positives. We

2

simply identify the items contained in negative pools as negatives (good items)
and the rest as positives (defected items). Notice that

�
-disjunct property implies

that each set of at most
�

positives corresponds uniquely to a test outcome vector,
thus decoding test outcomes involves only a table lookup. The design of a

�
-

disjunct matrix is thus naturally called a non-adaptive pooling design. We shall
use this term interchangeably with the long “non-adaptive combinatorial group
testing algorithm”.

Let
������ � ��� denotes the set of all subsets of � items (or columns) with size at

most
�
, called the set of samples. For � � ��� �� � ��� , let 	 � � � denote the union of

all columns corresponding to � , i.e. 	 � � � (�
 7
��� 9 7 . A pooling design is � -error-
detecting (correcting) if it can detect (correct) up to � errors in test outcomes. In
other words, if a design is � -error-detecting then the test outcome vectors form
a 	 -dimensional binary code with minimum Hamming distance at least ��� � .
Similarly, if a design is � -error-correcting then the test outcome vectors form a
	 -dimensional binary code with minimum Hamming distance at least � ��� � . The
following remarks are simple to see, however useful later on.

Remark 2.2. Suppose 5 has the property that for any ������� � ��� �� � ��� �����(���� ,
	 � � � and 	 � ��� � viewed as vectors have Hamming distance � � . In other words,
/ 	 � � ��� 	 � � � � /�� � where � denotes the symmetric difference. Then, 5 is� ��� � � -error-detecting and � # �"!�$# -error-correcting.

Remark 2.3. 5 being
�
-disjunct is equivalent to the fact that for any set of

� � �
distinct columns 9?:&% ��� ��� 9;:(' with one column (say 9?:&%) designated, 9?:&% has a � in
some row where all 9?:*) ’s, �,+ �-+ �

contain � ’s.

2.2 Related Works

Previous works on error-tolerance designs are those of Dyachkov, Rykov and
Rashad [8], Aigner [1], Muthukrishnan [13], Balding and Torney [3] and Mac-
ula [12, 11]. Dyachkov, Rykov and Rashad [8] derived upper and lower bounds
for the test to item ratio given the number of tolerable errors, maximum number
of positives, and the size of the population. Aigner [1] and Muthukrishnan [13],
discussed optimal strategies when

� (� and the number of errors is small, al-
though in a slightly more general setting where each test outcome could be . -ary
instead of binary. Balding and Torney [3] studied several instances of the problem
when

� + � . In some specific case, they showed that an optimal strategy is pos-
sible if and only if certain Steiner system exists. In [12] Macula showed that his

3

construction is error-tolerant with high probability, while in [11] he constructed
� -error-tolerant

�
-disjunct matrices for certain values of � .

On construction of disjunct matrices, the most well-known method is to con-
struct the matrix from set packing designs. This method was introduced by Kautz
and Singleton [9] in the context of superimposed codes. A

�
-
� 	 ���)��� � packing is a

collection � of � -subsets of
&	
� such that any
�
-subset of
�	
� is contained in at most� members of � . When � (� we can construct a 	 2 / � / � -disjunct matrix 5

from a
�
-
� 	 � �)��� � packing if �.- � � � � � � . We simply index 5 ’s rows by members

of
�	�� and 5 ’s columns by members of � , where there is a � in row <8�
&	
� and
column � ��� iff <@��� . Little is known about optimal set packing designs ex-
cept for the case

���
	
(see, for example, [4, 14] for more details). Besides taking

results directly from Design Theory, other works known on directly constructing�
-disjunct matrices are those of Macula [10], Dýachkov, Macula, and Rykov [7].

3 Main Results

We first describe our
�
-disjunct matrices. Given integers � � �+- � � � . A

matching of size � (i.e. it has � edges) is called an � -matching.

Definition 3.1. Let 5 � � � �)� � � be the �4� -matrix whose rows are indexed by the
set of all

�
-matchings on
 ��� , and whose columns are indexed by the set of all � -

matchings on
 ��� . All matchings are to be ordered lexicographically. 5 � � � �)� � �
has a � in row < and column = if and only if the <���� � -matching is contained in the
= ��� � -matching.

For . being a prime power, let ��� denote ��� � . � . Let ������ �! denote the set of all � -
dimensional subspaces (� -subspaces for short) of the � -dimensional vector space
on �"� .
Definition 3.2. Let 5#� � � � � � � � be the ��� -matrix whose rows (resp. columns) are
indexed by elements of � � ���

 (resp. � � ��#). We also order elements of these set
lexicographically. 5#� � � � � � � � has a � in row < and column = if and only if the <�����

-subspace is a subspace of the = ��� � -subspace of � � � .

We now show that 5 � � � �)� � � and 5#� � � � � � � � are
�
-disjunct.

Theorem 3.3. Let $ � � �%� � (���� � $�& �
��')(
��* �+(, 	 ($ � � � � � , and � ($ � � � � � . For� � � - � � � , 5 � � � �)� � � is a 	�2 � �

-disjunct matrix with row weight$ � � � � � � � � � and column weight # � $.
4

Proof. It is easy to see that $ � � �%� � is the number of � -matchings of
 ��� . Thus,
5 � � � �)� � � is a 	 2 � matrix with row weight $ � � � � � � � � � and column weight
 # � $.To show 5 � � � � � � � is

�
-disjunct, we recall Remark 2.3. Consider

� � �
distinct columns 9 :(% ��9;: � ������� 9;: ' of 5 � � � �)� � � . Since all these columns are dis-
tinct � -matchings, for each < �
 � � there exists an edge

� 7 of
 ��� such that� 7 � 9;:&%�� 9;:�� . Hence, there exists a
�
-matching 6 � 9 :(% which contains

all
� 7 ’s. To form 6 we simply add more edges in 9 :&% to � � 7�� � �
 � � � if

/ � � 7	� ���
 � � ��/ � �
. Furthermore, since 6 �� 9?:�� ,
)< �
 � � , 9;:&% has a � in

row 6 where all other 9 :�� contains � .
�

Theorem 3.4. Let � � � � � (& � � �"!
'
& � �
� � �"!

'������
& � �
� *�� � �"!

'
& � * �"!

'
& � * � � �"!

'������
& � �"!

' , 	 (� � � � , and � (� � # � .
For � � � - � � � , 5 � � � � �)� � � is a 	 2 � � -disjunct matrix with row weight� � � �# � �

 � and column weight � # � � .
Proof. It is standard that the Gaussian coefficient � � � � counts the number of � -
subspaces of � � � (see, for example, Chapter 24 of [15]). The weight of any column
9 of 5 � � � � �)� � � is the number of

�
-subspaces of 9 , hence it is � # � � . The weight� � 6 � of any row 6 is the number of � -subspaces of � � � which contains the

�
-

subspace 6 . To show � � 6 � (� � � �# � �
 � , we employ a standard trick, namely double

counting. Let � � � � �)� � � be the number of ordered tuples
� 	 ! ����� � � 	 # � � � of ��� �

vectors in � � � �86 such that each 	'7 is not in the span of 6 and other 	 : ’s, = �(0< .
Notice that / � � � / (. � and /�6 / (. � . Counting � � � ���)� � � directly, there are
. � � . � ways to choose 	 ! , then . � � . ��� ! ways to choose 	 � and so on. Thus,

� � � � �)� � � (� . � � . � � � . � � . ��� ! � ����� � . � � . # �"! � (1)

On the other hand,
� 	 ! ������� � 	 # � � � can be obtained by first picking a � -subspace 9

of � � � which contains 6 in � � 6 � ways, then
� 	 ! ����� � � 	 # � � � is chosen from 9�� 6

in � � �)���)� � � ways. This yields

� � � � �)� � � (� � 6 � � � �)� � � � � (2)

Combining (1) and (2) gives � � 6 � (� � � �# � �
 � as desired. The fact that 5 � � � � �)� � �

is
�
-disjunct can be shown in a similar fashion to the previous theorem.

5

�
The following lemma tells us how to choose � so that the test to item ratio (

��) is
minimized. The proof is easy to see and we omit it here.

Lemma 3.5. For � goes from � to � , we have

(i) The sequence $ � � �%� � is unimodal and gets its peak at � (� � �
� � � !� # .

(ii) The sequence � � � � is unimodal and gets its peak at � (� � � # .

Before exploring further properties of 5 � � � �)� � � , we need a definition and a
lemma.

Definition 3.6. Let 9 :&% ��9;: � � ����� 9;: ' be any
� � � distinct columns of 5 � � � �)� � � .

A
�
-matching 6 is said to be private for 9 :&% with respect to 9?: � � ����� 9;: ' if 6 �

9;: % �
 7
��� ��� 9;:�� . Let � � 9;: %�� 9;: � ��� ��� 9;: ' � denote the number of private
�
-matchings

of 9;: % with respect to 9?: � ������� 9;: ' .
Lemma 3.7. Given integers � - � � � and any labeled simple graph � with
/
	 � � � / (� and / � � � � / (�

. Then, the number of vertex covers of size
�

(or�
-covers for short) of � is at least

� � � .
Proof. Decompose � into its connected components. Suppose � ! ����� � �%��� are
connected components which are not trees, and � � ! ��� ��� �%� �
 are the rest of the
components. Isolated points are also considered to be trees, so that � �7 is a tree for
all < �+
���� . For < (������� ��� , let 	'7 (/
	 � �>7 � / and ��7 (/ � � �>7 � / . For < (����� ����� ,
let 	 �7 (/
	 � � �7 � / and ���7 (/ � � �,�7 � / . The following equations are straight from the
definitions :

�
7 ��� � �

	 7�� �
7
���
 �

	 �7 (� (3)

�
7
��� � �

� 7�� �
7
���
 �

� �7 (�
(4)

hence,

� + �
7 ��� � �

� 7 � �
7
��� � �

	 7 (�� � � � � � � (5)

6

Observe that for any connected simple graph
�

, picking any /�	 � � � /��1� vertices
out of 	 � � � gives us a vertex cover. Hence, the number of

� /�	 � � � /�� � � -covers
of

�
is at least � � & �

' �� � & �
' � �"!,$ (/�	 � � � / . To this end, notice that a

�
-cover of � could

be formed by two methods as follows.

(a) Method 1. For each <��

��� , pick in 	 7 ways a
� 	 7 � � � -cover for � 7 , then

cover all other �8: , = �(< , with all of their vertices. We have used up��� 7
��� � � 	 7
� � � vertices, and need

� � ��� 7 ��� � � 	 7
� � � more to cover all

edges of the �,�7 ’s. Firstly, there should be enough number of vertices left.
Indeed,

�
7
���
 �

	 �7 (� � �
7
��� � �

	 7 � � �+��� �
7
��� � �

	 7

Secondly, since each ���7 can be covered by 	 �7 � � vertices, to cover all ���7 ’s
we need at most

� 7
��� � �
� 	 �7 � � � vertices.

��� � and
�
	 � assure that

�
7
���
 �

� 	 �7 � � � (� � �
7
��� � �

	 7 � � � � � ��� �
7
��� � �

	 7

In conclusion, this method gives us at least
� � �7�� ! 	 7 � � -covers for � .

(b) Method 2. This time, we are greedier by first taking all vertices in � 7 ’s,
< �0
 ��� to cover them.
 (� � � 7
��� � � 	 7 vertices are needed to cover the
rest. These
 vertices can be chosen as follows. For each

� � � � � -subset �
of

�%� , cover each � �7 � < ��� with 	 �7 � � vertices, then cover each � �7 � <�����
using all of its vertices. Indeed, the total number of vertices used is

�
7
���

� 	 �7 � � � � �
7�����

	 �7 (
�
7
���
 �

	 �7 � /��./'(� � �
��
7�� ! 	 7

� � � � � � � (�

Moreover, obviously there are at least � 7 ��� 	 �7 ways to pick
�
-covers for

each particular � . In total, the number of
�
-covers formed by Method 2 is

at least
�

� � ��� �
��
� '
�
�
7 ��� 	

�7 . Noticing that � � � � � � � , we have

7

�
��� � � �
�� � '

�
�
7
��� 	

�7 (�
��� � � ����
� '

�
�
7
���

� � �7 �+� �

� �
7
���
 �

� �7 �
� �
� � ���

� � �
7 ���
 �

	 �7 � � � � � � ��� � � � � �

(� � ��� �
7
��� � �

	 7

Hence, methods 1 and 2 combined yields at least
� � � � � different

�
-covers for � .

�
Theorem 3.8. Given � - � � � , and any set of

� � � distinct columns 9 : % ��9;: � ������� 9;: '
of 5 � � � � � � � , then � � 9?:&% � 9;: � ������� 9;: ' � � � � � .
Proof. Observe that for each < �
 � � , 9 :(%�� 9;:�� is a loopless multigraph which
is � -regular. 9?:&%�� 9;:�� consists of cycles with even lengths. Moreover, 9 :&% �(
9;:�� implies that 9?:&%�� 9;:�� must have a cycle of length at least

	
; consequently,

/ 9;:&% � 9;: � / �+� ,
)<?�
 � � .
For each <��
 � � , choose arbitrarily

� 7�� 9;:&% � 9;:�� so that / � 7 / (� . Let �
be the graph with 	 � � � (9?: % , � � � � (� � ! ������� � � � . Then, � is a simple graph
having � vertices and + �

edges. / � � � � / + �
because the

� 7 ’s are not necessarily
distinct. Any

�
-subset 6 of 9 : % such that 6	� � 7 �(* ,
)< is a private

�
-matching

of 9;:&% with respect to 9?: � ��� ��� 9;: ' . Note that 6 is nothing but a
�
-cover of � . To

show � � 9�
 � 9 ! � ����� 9 � � � � � � , we shall show that the number of
�
-covers of �

is at least
� � � . Since adding more edges into � can only decrease the number of�

-covers, we can safely assume that � has exactly
�

edges and apply Lemma 2.
�

Corollary 3.9. Given integers � - � � � , the following holds :

(i) 5 � � � � � � � is
�
-error-detecting and � � ��# -error-correcting.

(ii) Moreover, if the number of positives is known to be exactly
�
, then 5 � � � � � � �

is
� � � � � � -error-detecting and

�
-error-correcting.

8

Proof. For any ����� � � ������ � ��� ��� �(� � , without loss of generality we can assume
there exists 9?: % � � ��� � . Theorem 3 implies / 	 � � � � 	 � � � � / � � � � , hence
Remark 1 shows

� < � . If the number of positives is exactly
�
, we need to only

consider / �4/'(/ ���"/'(�
; hence there exists 9?:&% � � � � � and 9,�:(% � ��� � � . This time,

Theorem 3 implies / 	 � � � � 	 � � � � / �+� � ��� . Again, Remark 1 yields
� <"< � .

�
Corollary 3.10. Given integers � - � � � , then there exists a binary error-
correcting code of dimension $ � � � � � and size � & ��� � '� $ with minimum Hamming
distance � � ��� .
Proof. The code can be constructed by taking all the unions of

�
columns in

5 � � � � � � � . Clearly, it is
� � � �+� � -error-detecting and

�
-error-correcting.

�
Borrowing an idea from Macula [12], we get the following algorithm which

uses 5 � � � �)� � � for the at most
�

positive problem, and show that with very
high probability, our algorithm gives the correct answer. Notice that each row
of 5 � � � � � � � is a � -matching consisting of some two parallel edges

� ��� ��� � � of
 ��� . We pay attention to 5 � � � �)� � � because it has good
�� ratio.

Algorithm 3.11. Use 5 � � � �)� � � to design the pools as usual. For each edge� � � �
 ��� � such that the total number of positive outcomes involving
�

is
� � � , i.e. / � � � � � � � � the test

� � � � � � is positive ��/ (� � � , identify the item
9 (� � ��� � � � � � � � � � � is positive � as a positive.

Theorem 3.12. Algorithm 3.11 gives correct answer with probability 	 � � � � � � �
where

	 � � ���)� � � �
�� � #: � ! � ��� � : � ! #: $ ���� �
	 % & �"! ' � � � � � � & � � 7 � # � 7 '� �"! $

 � & ��� # ' �"!� �"! $

�
 �

For example, 	 ��� ������� � � � � � 	�� . This means that we could use 5 ��� ���4� � � ,
which has dimension

	 	 ���>2 � � �4� � ����� , to find at most � positives in a population
of � � �4� � ����� items using only

	 	 ��� tests with � � � 	�� chance of success.
Proof. Given a set of

�
distinct columns 9 : � ��9;:�� ������� 9;:(' . � � � �
 ��� � is called a

mark of 9;:�� if
�

is a private � -matching of 9 : � with respect to � 9 : * �%� �
 � � � � <��
� ,
9

in which case 9?: � is said to be marked. If 9 :�� is marked by
�

then exactly � � �
tests involving

�
and another edge in 9 :�� is positive. Consequently, algorithm 3.11

gives correct answer if the set of
�

positives is a marked set, i.e. every element is
marked.

The probability that algorithm 3.11 gives correct answer is thus the probability
that a random

�
set of columns of 5 � � ���)� � � is marked. For a fixed 9 : � , there

are � & ��� # ' �"!� �"! $ ways to pick the other
� � � columns. Let � 7 be the event that 9 7 is

marked relative to the other
� �1� columns, then

	 � � � �)� � � (� � ! � 	 � � � / � ! � 	 � � � / � ! � � � � � ��� � � 	 � � ! � � �
To calculate 	 � � ! � , we count number of ways to pick

� � � columns other
than 9;: � such that 9?: � is marked by some

� � 9?: � . Let
� 7 be the collection of all� � � � � -sets of columns other than 9 : � such that

� 7 � 9;: � marks 9;: � with respect
to

� 7 . The answer is then /
 � � 7 ��� + < +0� ��/ . This number can be obtained by
applying inclusion-exclusion principle twice. Dividing it by � & ��� # ' �"!� �"! $ gives us
	 � � ! � and proves the theorem.

�

4 Discussions

We have given the constructions of two different classes of pooling designs. 5 � � � �)� � �
has good performance when the number of positives is small comparing to the
number of items. Deterministically, a larger ratio of positives to items is some-
time preferred. Probabilistically, however, 5 � � � �)� � � could be used to solve the������ � ��� problem with very high probability of success. The main strength of this
construction is that 5 � � � � � � � is

�
-error-detecting. It also yields the construc-

tion of a
�
-error-correcting code. 5�� � � � �)� � � is the . -analogue of the construc-

tion given by Macula [10]. An interesting question is: “what is the . -analogue of
a matching?”

One could think of several different variations of the matching idea. For ex-
ample, a possible generalization is to index the rows (resp. columns) of a matrix
5 � � � �)� � �%� � with all graphs having

�
(resp. �) edges whose vertex degrees are

+ � . 5 � � � �)� � � is nothing but 5 � � � �)� � � � � . Further investigations in this direc-
tion might lead to better designs.

10

Lastly, in reality given a specific problem with certain parameters, � and �
have to be chosen appropriately to suit one’s need. More careful analysis need to
be done to help pick the best � and � given � ,

�
and/or any other constraints from

practice. We need some reasonably good asymptotic formulas to estimate them.

References
[1] M. AIGNER, Searching with lies, J. Combin. Theory Ser. A, 74 (1996), pp. 43–56.

[2] D. J. BALDING, W. J. BRUNO, E. KNILL, AND D. C. TORNEY, A comparative survey of non-adaptive
pooling designs, in Genetic mapping and DNA sequencing (Minneapolis, MN, 1994), Springer, New
York, 1996, pp. 133–154.

[3] D. J. BALDING AND D. C. TORNEY, Optimal pooling designs with error detection, J. Combin. Theory
Ser. A, 74 (1996), pp. 131–140.

[4] T. BETH, D. JUNGNICKEL, AND H. LENZ, Design theory, Cambridge University Press, Cambridge,
1986.

[5] W. J. BRUNO, E. KNILL, D. J. BALDING, D. C. BRUCE, N. A. DOGGETT, W. W. SAWHILL, R. L.
STALLINGS, C. C. WHITTAKER, AND D. C. TORNEY, Efficient pooling designs for library screening,
Genomics, (1995), pp. 21–30.

[6] D. Z. DU AND F. K. HWANG, Combinatorial group testing and its applications, World Scientific
Publishing Co. Inc., River Edge, NJ, 1993.

[7] A. G. DYACHKOV, A. J. MACULA, JR., AND V. V. RYKOV, New constructions of superimposed codes,
IEEE Trans. Inform. Theory, 46 (2000), pp. 284–290.

[8] A. G. DYACHKOV, V. V. RYKOV, AND A. M. RASHAD, Superimposed distance codes, Problems
Control Inform. Theory/Problemy Upravlen. Teor. Inform., 18 (1989), pp. 237–250.

[9] W. H. KAUTZ AND R. C. SINGLETON, Nonrandom binary superimposed codes, IEEE Trans. Inf.
Theory, 10 (1964), pp. 363–377.

[10] A. J. MACULA, A simple construction of
�

-disjunct matrices with certain constant weights, Discrete
Math., 162 (1996), pp. 311–312.

[11] , Error-correcting nonadaptive group testing with
���

-disjunct matrices, Discrete Appl. Math., 80
(1997), pp. 217–222.

[12] , Probabilistic nonadaptive group testing in the presence of errors and dna library screening,
Annals of Combinatorics, (1999), pp. 61–69.

[13] S. MUTHUKRISHNAN, On optimal strategies for searching in presence of errors, in Proceedings of
the Fifth Annual ACM-SIAM Symposium on Discrete Algorithms (Arlington, VA, 1994), New York,
1994, ACM, pp. 680–689.

11

[14] H. Q. NGO AND D. Z. DU, A survey on combinatorial group testing algorithms with applications
to dna library screening, in DIMACS: Series in Discrete Mathematics and Theoretical Computer Sci-
ence/DU2, Providence, RI, 2000, Amer. Math. Soc.

[15] J. H. VAN LINT AND R. M. WILSON, A course in combinatorics, Cambridge University Press, Cam-
bridge, 1992.

[16] J. K. WOLF, Born again group testing: multiaccess communications, IEEE Transaction on Information
Theory, IT-31 (1985), pp. 185–191.

12

