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Abstract

Insider attacks are a well-known problem acknowl-
edged as a threat as early as 1980s. The threat is at-
tributed to legitimate users who abuse their privileges,
and given their familiarity and proximity to the compu-
tational environment, can easily cause significant dam-
age or losses. Due to the lack of tools and techniques,
security analysts do not correctly perceive the threat,
and hence consider the attacks as unpreventable. In this
paper, we present a theory of insider threat assessment.
First, we describe a modeling methodology which cap-
tures several aspects of insider threat, and subsequently,
show threat assessment methodologies to reveal possible
attack strategies of an insider.

1 Introduction and Motivation

Insider threat is typically attributed to legitimate
users who maliciously leverage their system privileges,
and familiarity and proximity to their computational en-
vironment to compromise valuable information or inflict
damage. According to the annual CSI/FBI surveys con-
ducted since 1996, internal attacks and insider abuse
form a significant portion of reported incidents. The
strongest indication yet that insider threat is very real is
given by the recent study [2] jointly conducted by CERT
and the US Secret Service; the first of its kind, which
provides an in-depth insight into the problem in a real-
world setting. However, there is no known body of work
which addresses this problem effectively. There are sev-
eral challenges, beginning with understanding the threat.

• Insider threat is a low base rate problem. Perpre-
tators of insiders attacks are users with legitimate
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authorization, and therefore, it is difficult to predict
or protect against these attacks. Consequently, se-
curity officers view these attacks as unpreventable,
resulting in inaction.

• Insider threat is misperceived. Organizations
often concentrate on external attacks, almost ex-
clusively, mainly because security audit tools and
modeling techniques are readily available which
aid in finding vulnerabilities and fixing them. On
the other hand, insider threat is not correctly per-
ceived because it is difficult to measure it, and the
lack of tools and techniques doesn’t help the sit-
uation. Therefore, any good model or assessment
methodology is already a significant advance.

• Insider threat is high impact. Although insider
attacks may not occur as frequently as external at-
tacks, they have a higher rate of success, can go un-
detected and pose a much greater risk than external
attacks. This is due to the fact that insiders enjoy
certain important advantages over external adver-
saries. They are familiar about their targets and the
security countermeasures in place. Therefore, very
damaging attacks can be launched with only a short
or non-existent reconnaissance phase.

In a nutshell, insider threat is a complex problem involv-
ing both computational elements and human factors. As
a long-term process to mitigate this threat, steps such
as pre-hire screening of employees, training and educa-
tion can be undertaken. While all these practical mea-
sures will reduce the threat, they cannot eliminate it al-
together, and some incidents can still occur. A possible
solution it would seem is an overall increase in moni-
toring, logging and security countermeasures. However,
it only leads to general inconvenience. Moreover, in an
organization, it sends wrong signals of distrust between
the management and the employees. We seek a method-
ology by which very specific and targeted countermea-
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sures can be deployed. This approach occupies a sweet
spot between complete inaction and intrusive solutions.
Central to such an approach is an effective threat mod-
eling methodology, accompanied by threat assessment
and analysis, with the goal of discovering likely tactics
and strategy of an adversary so that appropriate counter-
measures can be taken.

Insiders can cause damage either by: 1) remaining
within their default set of privileges, or 2) exceeding
them by seeking new information and capability through
a repertoire which contains not only common attacks
but also unconventional ones such as social engineering.
The problem of insider threat assessment is precisely the
problem of evaluating the damage which can potentially
occur in these two cases.

Threat assessment methodologies are not new in gen-
eral and techniques such as attack graphs [16, 19, 21, 20]
and privilege graphs [7, 17] are already known. How-
ever, these techniques have been proposed to primarily
model external attacks, and hence, have a limited ap-
peal to insider threat. Moreover, there are also scal-
ability concerns regarding both model specification as
well as subsequent threat analysis. Specifying a model
requires information in very exacting detail, making it
impractical to generate the model manually. Instead,
current approaches generate models automatically [20]
via information obtained from live penetration testing of
an organization network. However, given the possibility
of systemic failures, a large part of the network is typi-
cally excluded during testing, resulting in an abbreviated
model instance. Consequently, any further inferences
drawn from the model are questionable. Also, threat
analysis following model specification very quickly runs
into the problem of intractability. To summarize, these
modeling techniques are not suitable for addressing in-
sider threat both for technical and practical reasons. We
seek to devise a more appropriate modeling and assess-
ment methodology.

1.1 Summary of Contributions

There are two prominent contributions in this paper.
As our first contribution, we propose a new threat model
called key challenge graph. The main idea behind in-
sider threat modeling is to focus on a legitimate user’s
view of an organization’s network. In order to esti-
mate the threat when insiders remain within their privi-
lege levels, we only need to represent the basic network
connectivity and access control mechanisms that are in
place. Additionally, to assess the threat when insiders
exceed their privilege levels, we also need to represent

knowledge and location of key information and capa-
bility, not normally accessible, which may assist him
in his attack. The overall goal, like attack graphs, is
to understand insider threat from a global perspective
rather than just single-point incidents. In terms of threat
variety, our model supports not only conventional at-
tacks, but also more complex scenarios such as social
engineering. One important design consideration is the
granularity of information and the nature of represen-
tation. Due to the unavailability of tools to scan for
weaknesses in the context of insider threat, a signifi-
cant portion of the model specification task can fall upon
the security analyst. Our modeling methodology allows
models to be manually specified and the resulting model
instances are only polynomially-sized in the input in-
formation. To demonstrate applications of our model,
we have constructed some typical scenarios motivated
by the CERT/USS insider threat study which analyzed
threats in the banking and financial sector.

As our next contribution, we investigate and analyze
the problem of automated threat analysis. It turns out
that the problem is NP-hard. Nevertheless, we have
designed two algorithms for this purpose - one which
solves the problem to optimality but takes exponential
time, and the other which is a polynomial-time heuris-
tic. We benchmark the algorithms for scalability and
quality of threat analysis. The impact of threat analy-
sis is manifold. Given a organization network and its
people, it is possible to assess whether existing security
countermeasures are adequate. If not, threat analysis al-
lows recommendations to be made to improve security.
In the face of insider threat, sometimes the only coun-
termeasure is installing monitoring and logging systems
for non-repudiability. Finally, if several intrusion detec-
tion systems are installed, threat analysis can also assign
appropriate weights to intrusion detection sensors based
on the likely areas of insider activity inside the organi-
zation.
Paper Organization. The rest of the paper is organized
as follows. We present our model in Section 2 and show
its application on representative illustrations in Section
3. Next, we describe the threat analysis methodology in
Section 4 and also present insights into the complexity
of the problem. Related work is discussed in Section 5
and finally, closing remarks are in Section 6.

2 Modeling Insider Threat

In this section, we elaborately discuss our modeling
methodology. But before that we state some working
assumptions based on generally accepted notions about
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insider threat along with results from the recent study
[2].

2.1 Background

Defining the term "insider" in an airtight manner is
hard because the boundary between insiders and out-
siders is fuzzy. We assume that every legitimate user
is an insider. Note that the term “insider” can have both
physical and logical connotation. Physical outsiders can
be logical insiders and vice versa. For example, an au-
thorized user who may be physically far away from an
organization but has wireless or VPN connectivity. Sim-
ilarly, users may be physically inside an organization but
have no authorized access to use the computation infras-
tructure. Insiders are in a unique position with the priv-
ileges entrusted to them and the knowledge about their
computational environment, and this already translates
directly to a certain amount of capability. Insider abuse
can occur within this default capability, but more dan-
gerous scenarios occur when an insider widens his realm
of capability. Since insiders have access privileges to use
the computational infrastructure, it represents resources
at their disposal that can be used against the parent or-
ganization, so resources for an insider attack are freely
available. Unlike external attackers who use the Inter-
net as an umbrella of anonymity and can be sloppy, in-
siders have a strong incentive to avoid detection. They
are a part of an organization and bound by the orga-
nization policy, and if caught, an organization has all
the necessary information about the insider and the legal
resources to prosecute him. External attackers can be-
come insiders too by compromising an internal system
and learning about the computers in the neighborhood.
However, there is an inherent risk to the attacker that the
compromise may be discovered and the corresponding
security hole patched.

The insider threat study [2] reports that financial gain
is the main motivating factor behind most insider at-
tacks; any other motive is simply not worth the risk. The
financial gain can be realized in different ways depend-
ing on the organization. In a financial institution such
as a bank, likely targets are customer account records or
perhaps company accounts, where there is a direct ac-
cess to funds. In other cases, an insider may not obtain
immediate monetary gain, such as in a software com-
pany where the real value lies in the proprietary software
code. While it is possible to envision several other sce-
narios, it is not realistic to expect that each and every
one of them can be modeled, mainly because it entails a
significant effort on the part of the security officer.

2.2 Our Model

In our model, we assume that an attacker is goal-
oriented. Also, he is already aware of the location of
his potential targets and how to reach them, obviating
the need for reconnaissance. These assumptions closely
model an insider and this is one of the reasons why our
model is most suitable for this class of threats. We also
assume that a successful compromise of a target is not
possible if there is no channel of interaction. Finally,
an attacker may not be able to use an existing channel
of interaction with a potential target due to a strong se-
curity mechanism in place on that channel. This may
force him to seek alternate routes to reach the target.
Each sub-target that is compromised requires extra ef-
fort but can provide the attacker with additional infor-
mation/capability and another front to continue the at-
tack. Given a model specification, the goal of vulnera-
bility analysis is to exhaustively find the different ways
in which attacker can reach the target.
Preliminaries. Prior to the formal definition of our
model, which we call a key challenge graph, we describe
the various components. Figure 1 shows the basic build-
ing block of the key challenge graph.

(keyw, c1, c2)

keyu keyv

u v

Figure 1. Basic building block of a key chal-
lenge graph
• Any physical entity on which some information or

capability can be acquired is represented as a ver-
tex of the graph. Let the set of vertices be denoted
by V . Typically, vertices are points in the network
where some information may be gained such as
a database server or simply any computer system
whose resources can be used or misused.

• Each piece of information or capability that is
present at any vertex is represented as a key. Let the
set of keys be denoted as K. For example, records
in a database, passwords stored on a computer, or
computational resources of a computer can be rep-
resented as keys. When an attacker visits a vertex,
he is empowered with this additional information
or capability. Note that this should not be confused
with cryptographic "keys". A key in our model is
only an abstraction.

• If there is a channel of access or communication be-
tween two physical entities which facilitates inter-
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action, then a directed edge is created between the
two corresponding vertices, pointing to the direc-
tion of the allowed interaction. Multiple channels
of communication are possible, hence there can be
more than one edge between two vertices. Let the
set of edges be denoted by E. For example, assume
a ssh server and a client computer. A channel of
communication exists from the client to the server
and a directed edge is drawn.

• The presence of a security measure or an enforced
security policy protects the resources and allows
only authorized interaction. This deterrence is rep-
resented as a key challenge on the corresponding
channel of communication. An example of a key
challenge is the password authentication required
prior to accessing to a server. A key challenge is an
abstraction to capture access control.

• If a user does not have the right key to the key chal-
lenge, then he incurs a significant cost in break-
ing or circumventing the security policy; legitimate
access incurs only a smaller cost of meeting the
key challenge. For example, when password au-
thentication is used, if a user knows the password,
he incurs little or no cost, while another user who
doesn’t know the password will incur a higher cost
in breaking the password. The cost metric is a rel-
ative quantity signifying the amount of deterrence
offered by one security measure over another. It
has been abstracted as a non-negative integer for
the purposes of our model.

• The starting point of an attack could be one or more
vertices in the graph, which are assumed to be ini-
tially in the control of an adversary. Let this set be
denoted as V0.

• The target of an attack could also be one or more
vertices in the graph. In case of multiple targets,
the goal is to compromise all of them. Let the set
of target vertices be denoted by Vs. An example of a
target is a source code repository for a commercial
product.

Table 1 provides a summary of all the abstractions
captured by our model.

Definition 2.1 (Key Challenge Graph). A Key Chal-
lenge Graph or KG is a tuple:

KG = (V,E;K,V0,Vs,π,δ),

where V is the set of vertices, E is the set of edges, V0
is the initial set of compromised vertices, Vs is the set of

Model Component Abstraction
Vertex Hosts, People
Edge Connectivity, Reachability
Key Information, Capability
Key Challenge Access Control
Starting Vertex Location of insider
Target Vertex Actual target
Cost of Attack Threat analysis metric

Table 1. Model components and the cap-
tured abstractions

target vertices, π : V → K is a function that assigns keys
to vertices, δ : E → K×N×N is a function that assigns
key challenges and costs to edges, and N is the set of
natural numbers.

For example, π(v1) = k0 means that the key k0 can
be obtained at vertex v1, δ(e1) = (a,c1,c2) implies an
assignment of a key challenge to edge e1, which requires
an attacker to produce the key a. If he cannot do so, then
he incurs a cost c1, which could be significant depending
on the access control mechanism; otherwise, he incurs a
smaller cost c2.

An adversary begins his attack at some point in the
set of compromised nodes in the graph and proceeds
by visiting more and more vertices until the target(s) is
reached. At each visited vertex, the attacker adds the
corresponding key to his collection of keys picked up
at previous vertices. Once an attacker compromises a
vertex, he continues to have control over it until an at-
tack is completed. Therefore, any vertex appears exactly
once in the attack description. While a trivial attack can
be performed by visiting all vertices until the target is
reached, cost constraints occlude such free traversals.
We shall now develop useful metrics for analysis of our
model.

Lets assume that initially V0 and Vs are disjoint sets,
that is, an attacker has not successfully compromised
any targets yet. We can define a successful attack as
follows.

Definition 2.2 (Successful Attack). A successful at-
tack is defined as a finite ordered sequence of a subset
of vertices (v1,v2, . . . ,vm), where Vs ⊆ {v1, . . . ,vm}, and
V0∩{v1, . . . ,vm}= /0.

In other words, a successful attack is a sequence of
zero or more vertices not in the initial set V0 but eventu-
ally containing all the target nodes in Vs. (Note that this
sequence in general does not represent a path or a walk.
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We elucidate this point in illustrations in the following
sections.)

The next important aspect of the model is the cost
metric. Although an attack is defined exclusively in
terms of vertices, the cost incurred by the attacker at a
vertex is mainly dependent on the edge that he chooses
to visit the vertex. We first define the cost of traversing
an edge and then the cost of visiting a new vertex. The
latter is the basic unit of cost metric in our model.

Definition 2.3 (Cost of Traversing an Edge). Let V ∗ be
the set of visited vertices so far, including the initially
compromised vertices, i.e. V0 ⊆ V ∗. For u ∈ V ∗ and
v /∈ V ∗, the cost of traversing the edge e = (u,v) ∈ E,
given that δ(e) = (k,c1,c2), is c1 if k /∈ {π(w) | w∈V ∗}.
Otherwise, it is c2. (In general, c1 > c2.) If (u,v) /∈ E,
for technical convenience we assume that c1 = c2 = ∞,
and that k is some unique key no node has.

Definition 2.4 (Cost of Visiting a New Vertex). Define
V ∗ as above. The cost of visiting a new vertex v /∈ V ∗ is
defined to be

c(v,V ∗) = min{cost of traversing (u,v) | u ∈V ∗}. (1)

Let NEW-VERTEX-COST be a procedure that computes
this value. (Note that the cost of traversing an edge is
implicit in this computation.)

The cost of an entire attack is measured as a sum of
the effort required to compromise individual vertices by
attempting to counter the key challenges on the edges
with or without the keys that an attacker has already
picked up.

Definition 2.5 (Cost of an Attack). The cost of an at-
tack v1v2 . . .vm is defined as:

m
∑
i=1

c(vi,V0∪{v1, . . . ,vi−1}) . (2)

We will call this computation ATTACK-COST.

3 Modeling Methodology And Applica-
tions

In this section, we describe the applications of our
modeling methodology. First we dispel concerns which
are normally attributed to most theoretical modeling
methodologies regarding their practicality. Later, we
demonstrate through illustrations the relevance of our
model in capturing different types of threat scenarios.

3.1 Practical Considerations
One major benefit of using theoretical models is that

they are inexpensive and do not require actual system
implementation and testing. However, such benefits can
be offset if the model is difficult to use or if several facets
of the modeling methodology are unclear. We answer
some of outstanding questions which may arise.
How is a model generated? Model specification begins
by identifying the scope of the threat; it could be a very
small part of the organization or the whole organization
itself. The algorithm BUILD-MODEL below gives a
step-by-step procedure to construct a model instance.

BUILD-MODEL(Network Information)
1. Identify potential target nodes denoted by set T .
2. ∀v ∈ T , identify all hosts/people denoted by u

having access to v.
Add (u,v) to the set of edges E.

3. ∀(u,v) ∈ E, identify key challenges and
calibrate costs.
Add the key challenge to the set δ.

4. ∀ keys in δ, identify nodes containing these keys.
Add each such node to T and goto Step 1.

5. Repeat until no new nodes are added to T .

Who constructs the model? The model is constructed
by someone who is aware of the organization network
and location of various resources. This is typically the
system administrator and/or the security analyst. Note
that for the purposes of evaluating security, we assume
that whatever a security analyst can model, an insider
can model as well. In terms of the time and effort re-
quired to construct the model, since our model takes a
high-level view of the network, the model instance is not
significantly larger than the actual network representa-
tion. Given a OPNET-like tool to assist in instantiating a
model, we expect that a security analyst will not have to
invest a substantial effort. We are currently implement-
ing one such tool.
How are costs defined? Costs in our framework are a
metric representative of the resistance put up by an ac-
cess control mechanism. In cases such as cryptographic
access control mechanisms, there are standards to go
by. For example, the strength of a cryptographic algo-
rithm is indicative of the time required for an adversary
to break it. However, in other cases, the solution may
be more systemic such as intrusion detection systems,
where the actual costs may not be very clear. In such
cases, a value relative to known standards can be used.
Note that it is quite possible for two security analysts to
assign different costs and it will depend on what each
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perceives is the more appropriate value.

3.2 Illustrations

We now turn to application of our model to specific
examples. We have performed small scale modeling of
banking environments based on [1] and [2].
A Financial Institution Example. Consider the follow-
ing description. From his workstation, every teller can
perform sundry personal accounting tasks. Each per-
sonal account transaction cannot exceed US$ 5,000. A
manager has to endorse any larger transactions and per-
sonally handles accounts involving business organiza-
tions. The business accounts database is kept separate
from the one that houses personal accounts. Any bank
transaction, either by the teller or the manager, which
operates on a database is encrypted. The communica-
tion between the teller’s computer and the personal ac-
counts database is frequent but not of high value, so
it uses a lower strength symmetric encryption. On the
other hand, the manager authenticates himself to a PKI
server with his credentials, and obtains a session key to
talk to the database and complete the transaction. Both
the databases are protected behind a firewall to prevent
any external attacks. Another key piece of information
known to the teller is that the manager doesn’t apply se-
curity patches to his computer frequently, and that the
manager’s computer could be vulnerable.

Now, consider an insider threat that manifests in the
form of a rogue teller and the target being the busi-
ness account database. Using the modeling methodol-
ogy described earlier, we convert this description into
our model (shown in Figure 2). Using our KG model

Manager’s
computer

Teller’s
computer

PKI
server

Manager’s
credentials

Target
account

1 exploit
VulnerabilityUsername

password
authentication

Session
key

Business
account
database

Personal
account
database

Credentials

Insider

32

Session key

�������
�
������������

���� ������������

Figure 2. Modeling an example insider
threat scenario

representation, the steps taken by an insider (shown nu-
merically in Figure 2) can be easily seen. The most
likely sequence of steps is: 1) use a vulnerability ex-
ploit to compromise the manager’s computer, 2) use the
manager’s credentials to obtain a session key from the
PKI server, and 3) use the session key to attack the busi-
ness account database. Simply with a key piece of in-
formation, an insider is able to launch a very damaging
attack, and our KG model is able to provide a very intu-
itive view of the attack. The solution in this scenario is
trivial, i.e., the manager’s computer is to be patched.

We point out a few properties based on the example.
The sequence of steps taken by the attacker is generally
not a path. This is a striking departure from the attack
graph model, where attacks appear as paths in the graph.
Also, note that a very damaging insider attack is possible
even with only one vulnerability in the network descrip-
tion.

Social Engineering Attacks. The KG model allows for
a very general kind of communication channel. This
means that it is possible to represent not only wired and
wireless network media, but also channels such as tele-
phone lines, and this still falls within the framework of
our model. For example, when a customer calls a credit
card company, a representative poses a key challenge in
the form of date of birth or social security number, and
divulges information only when the right information is
presented.

Colluding Insiders. In order to improve the chances
of a successful attack, two or more attackers controlling
different vertices may collude and share the keys that
they possess. In this case, the set V0 contains all these
vertices and |V0|> 1. This situation is no different from
the one where a single attacker may initially have control
over multiple vertices. This would not complicate the
analysis of the model as an attack is represented not as a
path but rather as a sequence of compromised vertices.

4 Threat Analysis
In this section, we address various aspects of threat

analysis. Looking at this task from a algorithmic com-
plexity viewpoint, a good attacking strategy for an in-
sider is in some sense equivalent to a good algorithm or
approximation algorithm [14] to find a minimum-cost
attack on the key challenge graph. An insider is unlikely
to adopt any other strategy because it will lead to an at-
tack that is easily detected. But first, we are interested
in knowing the computational difficulty of analyzing a
general instance of a key challenge graph. This provides
very useful insight into the problem based on which au-
tomated threat analysis algorithms can be developed.
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4.1 On the Complexity of Analyzing Key Chal-
lenge Graphs

Given a key challenge graph, we may consider the
problem of finding an attack with the minimum cost. Re-
call that an attack is a sequence of vertices (v1, . . . ,vm)
such that Vs ⊆ {v1, . . . ,vm}. The objective function is
the cost of orchestrating the attack. We will call this
problem KEYSEQ. We shall first show that KEYSEQ
is NP-hard by showing that its decision version is NP-
complete [10]. The decision version of KEYSEQ asks
if there is an attack whose cost is at most some given
positive integer C. (In fact, the optimization problem
KEYSEQ is difficult even to approximate up to a cer-
tain ratio.)

Lemma 4.1. The decision version of KEYSEQ is NP-
complete.

Proof. First, we prove that the decision version of KEY-
SEQ is in NP. Given an instance
G = (V,E,K,V0,VS,π,δ) of the problem, and a cost up-
per bound C, one can guess an attack S = (v1, . . . ,vm),
where vi ∈V . The verification that this is a good attack
can be done by checking that Vs ⊆ {v1, . . . ,vm}, and that
the total cost of the attack is at most C using formulas (1)
and (2). This verification certainly can be accomplished
in polynomial time (at most O(|V |2)).

Next we prove that KEYSEQ is NP-hard via a re-
duction from 3-SAT [10]. In the 3-SAT problem, one
is given a set of n boolean variables X = {x1, ...,xn} and
a 3-CNF formula φ over X . The formula φ consists of
clauses C1, ..., Cm of size 3. The problem is to deter-
mine if there is a truth-assignment to x1, ..., xn such that
φ is evaluated to be true. We construct an instance of
KEYSEQ corresponding to φ as follows. Let the set
of vertices V consist of the following nodes: 1) the lit-
erals x1, ...,xn, and x̄1, . . . , x̄n, 2) the clauses C1, ..., Cm,
3) a starting state v0, i.e., V0 = {v0}, 4) a success state
vs, i.e Vs = {vs}, and 5) n− 1 intermediate nodes v1, ..
vn. Let the set of keys be K = V , and the vertex to key
mapping π be the identity function. The set of edges E
and the corresponding key challenges are constructed as
follows:

1. for i = 1, . . . ,n, construct the following edges:
(vi−1,xi) with δ(vi−1,xi) = (xi,1,0), (vi−1, x̄i)
with δ(vi−1, x̄i) = (x̄i,1,0), (xi,vi) with δ(xi,vi) =
(vi,1,0), and (x̄i,vi) with δ(x̄i,vi) = (vi,1,0). The
main idea is that, to get from vi−1 to vi, one has to
pay a cost of at least 2, while obtaining at least one
of the keys xi or x̄i. If both of these keys are ob-

tained, then it must have been the case that a cost
of at least 3 was paid.

2. three edges (vn, C1) each representing a variable in
the clause C1. The key challenge on each of these
edges is of the form (li,∞,0), where li a literal in
C1. The infinity cost could be any large enough
integer (≥ 3n, e.g.).

3. similarly for j = 2, . . . ,m, three edges (C j−1,C j),
and literals in the clause C j appear in the key chal-
lenge.

4. A final “free” edge (Cm,vs) signaling that all con-
straints have been met. (“Free” here means both
costs are zero, having the key challenge or not.)

It is now straightforward to see that there is an attack of
cost ≤ 2n in this instance iff φ is satisfiable.

v0 v1 v2 v3 C1 C2 C3 vs

x2 x3x1

x1 x2 x3

1

1

1

1

1 1

1 1

1 1

1 1

x1

x2

x3

x1

x2

x3

x1

x2

x3

Figure 3. An example reduction from 3-SAT
to KEYSEQ
Figure 3 is a short example showing a reduction from

a 3-SAT instance φ =(x1∨x2∨ x̄3)∧(x̄1∨ x̄2∨ x̄3)∧(x̄1∨
x̄2∨ x3) to a KG instance. A satisfying assignment for φ
is {x1 = 1,x2 = 0,x3 = 1} which translates to a success-
ful key sequence v0, x1, v1, x̄2, v2, x3, C1, C2, C3, vs of
cost 6.

Corollary 4.2. KEYSEQ is NP-hard.

Given this complexity result, our aim is now to de-
rive efficient heuristics and approximation algorithms to
analyze key challenge graphs. We have seen that an op-
timal attack is in general difficult to obtain in a reason-
able amount of time, unless P=NP. Now one may ask:
how close to optimal can one construct an attack in
polynomial time? In other words, we would like to find
good approximation algorithms and/or devise inapprox-
imability results [12, 3, 4, 13, 9] for the KEYSEQ prob-
lem. An involved approximation-ratio preserving reduc-
tion [18, 15] from the LABEL-COVER problem [8] can
be obtained to show the following:

Theorem 4.3. KEYSEQ is quasi-NP-hard to approx-
imate to within 2log1−δ n where δ = loglog−c n, for any
constant c < 1/2.

See [5] for details of the proof.
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4.2 Threat Analysis Algorithms

We have proven that solving KEYSEQ to optimality
is very hard. In fact, even approximating the optimal so-
lution to a large factor is already very hard. However, it
is possible to get an estimate of the optimal solution us-
ing heuristics. We present a brute force algorithm along
with a heuristic algorithm for the purposes of compari-
son.

The brute force algorithm BRUTE-FORCE (see Ta-
ble 2) generates all possible permutations of attack se-
quences and finds the minimum cost among them. With-
out loss of generality, let V0 = {v0} and Vs = {vs}. Given
a set S, let PERMUTE(S) signify the set of all possible
permutations of elements of S without repetitions. The
running time of this algorithm is super-exponential but
it solves the KEYSEQ problem to optimality.

BRUTE-FORCE(KG)
1 min_cost← 0
2 for each S ⊆V − (V0

S

Vs)
3 do for each s ∈ PERMUTE(S)
4 do cost← ATTACK-COST(v0svs)
5 if cost < min_cost
6 then min_cost = cost
7 return min_cost

Table 2. A brute force algorithm to find cost
of optimal key sequence
We now describe our polynomial-time heuristic

called GREEDY-HEURISTIC (see Table 3) which is
based on the observation that a key sequence is struc-
turally a path from some initial vertex to a final tar-
get vertex with zero or more branches from this back-
bone path, taken to collect additional keys. We use a
greedy approach with the all-pairs shortest path (APSP)
as the core decision-making procedure. Given a n× n
adjacency matrix of a graph G = (V,E), the APSP algo-
rithm computes the all-pairs shortest path matrix, which
gives the shortest path between any pair of vertices in
the graph G. However, we cannot use this algorithm di-
rectly since the input that is available to us is a key chal-
lenge graph and not a weighted graph. We now briefly
describe the algorithm UPDATED-ADJ-MATRIX, which
converts a key challenge graph to a weighted graph.
The main idea is that when an attacker acquires a new
key, then weights on all edges having this key in the
corresponding key challenge will reduce to the lower
cost, otherwise they reduce to a higher cost. GREEDY-
HEURISTIC proceeds by evaluating which neighboring

key if acquired would give a shorter backbone path
from the source vertex to the target vertex than the one
currently seen. After at most |V | rounds of decision-
making, the algorithm returns a cost which cannot be re-
duced further. Invocation of the APSP algorithm inside
the loop results in a worst case running time of O(n5).
An insight into the algorithm is that we use both local
(neighboring keys) and global (shortest path) factors to
find the approximate solution.

GREEDY-HEURISTIC(KG)
1 S←V0
2 M← UPDATED-ADJ-MATRIX(KG,π(S))
3 A← APSP(M)
4 min_cost← A[v0,vs]
5 for round← 1 to |V |
6 do
7 f lag← 0
8 for each vi ∈ NEIGHBOR(S)
9 do vertex_cost← NEW-VERTEX-COST(vi)

10 M′← UPDATED-ADJ-MATRIX(KG,π(S S

{vi}))
11 ∀v j ∈ S, M′[v j,vi]← 0, M′[vi,v j]← 0
12 A′← APSP(M′)
13 if (vertex_cost +A′[v0,vs]) < min_cost
14 then min_cost← vertex_cost +A′[v0,vs]
15 new_vertex← vi
16 f lag← 1
17 if f lag = 1
18 then
19 S← S S

{new_vertex}
20 else return min_cost
21 return min_cost

Table 3. A greedy heuristic to find cost of
near-optimal key sequence

4.3 Algorithm Benchmarking

We have performed empirical evaluations to compare
BRUTE-FORCE with GREEDY-HEURISTIC. Our experi-
ments were conducted on a Pentium 4/3GHz/1GB RAM
running RedHat Linux 9.1. Since the BRUTE-FORCE
algorithm has a prohibitively expensive running time,
we have limited the size of the input to only 15 nodes.
Our test data set consists of 1000 simulation runs and
each run generates a random instance of a key challenge
graph. We have compared the quality of the solutions
(see Figure 4) computed by the two algorithms as well
as their running times (see Figure 5).

When comparing the attack costs returned by the two
algorithms, we have used randomly generated key chal-
lenge graphs of exactly 15 nodes for all the 1000 runs.
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In Figure 4, there are two distinct bands, a lower one
which corresponds to the optimal attack costs returned
by BRUTE-FORCE and a higher one which represents
the attack costs returned by GREEDY-HEURISTIC. The
gap is due to the inapproximability results as shown in
Section 4. GREEDY-HEURISTIC worked very well when
the final attack sequence is very small (3-4 nodes) and
this seems to be the best case scenario for the heuris-
tic algorithm. However, when the attack sequence is
long (10-15 nodes), the heuristic produces a larger gap
from the optimal solution. The explanation we give for
this observation is that longer the sequence, greater the
chances that the decision-making procedure will make
errors which are compounded.
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Figure 4. GREEDY-HEURISTIC vs BRUTE-
FORCE: Minimum cost of an attack
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Figure 5. GREEDY-HEURISTIC vs BRUTE-
FORCE: Running time behavior

When comparing the running time, the 1000 runs had
a cross-section of varying graph sizes (3-20 nodes). The
running time of the BRUTE-FORCE algorithm becomes

very large even for small values of 13 to 15. Clearly,
this is the expected behavior as the running time of this
algorithm is O(n!), which is worse than exponential. On
the other hand, the GREEDY-HEURISTIC has polyno-
mial running times for the same input. Even for graphs
with a large number of nodes (200-300 nodes), we have
observed a running time of only a few minutes (15-20
minutes).

5 Related Work
Theoretical models allow inexpensive security anal-

ysis without real experiments or implementation. Fault
trees, privilege graphs and attack graphs are the most
relevant modeling methodologies in the context of our
work. We compare and contrast against these techniques
to put our work in perspective.

Fault trees [11] are the first generation of formal mod-
els primarily used for system failure analysis. A fault
tree is a logic (AND-OR) tree, where nodes are single
faults, edges define a combination of them, and proba-
bilities over edges represent the chance of their occur-
rence. While fault trees are suitable to model a disjunc-
tion and conjunction of faults, they lack the expressive
power to capture attacks.

The privilege graph, introduced by Dacier et al. [7, 6]
as an extension to Typed Access Model (TAM), is a di-
rected graph where each node represents a set of priv-
ileges on sets of objects and each arc represents privi-
lege escalation possibly through an exploit. This model
also uses a probabilistic metric corresponding to likeli-
hoods of attacks. However, determining these probabili-
ties in a meaningful manner is far more challenging that
our approach which measures the effectiveness of access
control mechanisms. Ortalo et al. [17] describe an ex-
perimental evaluation of the privilege graph framework
under certain assumptions on the memory state of an at-
tacker, and their work did address a few insider attack
scenarios, but their implementation required a substan-
tial effort.

Philips and Swiler [21] proposed the attack graph
model, where nodes in the graph represent the state of
a network and edges represent steps in an attack. Build-
ing and analyzing such a graph by hand is not practi-
cal, and instead, several approaches have been proposed
which use model-checking to automatically generate at-
tack graphs [20]. However, model-checking suffers
from a well-known problem of state explosion which is
not easily solved and these approaches are not suitable
even for networks of a reasonable size.

Although in some respects, both privilege graphs and
attack graphs appear similar to our work, they are in fact
closer to each other than our approach. A major dis-
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tinction arises in the details that are captured (see Ta-
ble 1) and the nature of threat analysis. For example, in
their model, the difficulty attributed to edge traversal is a
static entity, while in our model it is dynamic. Moreover,
in both techniques, there is the problem of exponential
state explosion, whereas our approach generates models
which are polynomial-sized in the input network infor-
mation. Also note that attacks in our model can succeed
without privilege escalation or the presence of vulnera-
bilities, which is a distinct possibility for insider attacks.

6 Conclusion And Future Work

Insider threat is a long standing security problem,
but so far, without good tools and techniques, there is
little that could be done to counter the threat. In this
paper, we believe that we have made a significant ad-
vance by proposing a usable and generic threat assess-
ment model, and showed its applications to some typical
insider threat scenarios. Indeed we do not claim that our
model is a replacement for all the existing models, but
that it occupies a certain niche and complements other
models. We also believe that our modeling methodol-
ogy is more generic than demonstrated in this paper and
may have an appeal beyond just insider threat.

Our future work involves developing automated tools
around the modeling methodology and algorithms de-
veloped in this paper to empower security analysts with
techniques to measure a threat which has otherwise not
been possible.
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