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Problem Definition

The basic group testing problem is to identify the unknown set of “positive items”
from a large population of “items” using as few “tests” as possible. A test is a subset
of items. A test returns positive if there is a positive item in the subset. The semantics
of “positives,” “items,” and “tests” depend on the application.

In the original context [3], group testing was invented to solve the problem of
identifying syphilis infected blood samples from a large collection of WWII draftees’
blood samples. In this case, items are blood samples, which are positive if they are
infected. A test is a pool (group) of blood samples. Testing a group of samples at a
time will save resources if the test outcome is negative. On the other hand, if the test
outcome is positive then all we know is that at least one sample in the pool is positive
but we do not know which one(s).

In non-adaptive combinatorial group testing (NACGT), we assume that the num-
ber of positives is at most d for some fixed integer d, and that all tests have to be
specified in advance before any test outcome is known. The NACGT paradigm has
found numerous applications in many areas of Mathematics, Computer Science, and
Computational Biology [4; 9; 10].

A NACGT strategy with t tests on a universe of N items is represented by a
t x N binary matrix M = (m;;), where m;; = 1 iff item j belongs to test i. Let M; and
MV denote row i and column j of M, respectively. Abusing notation, we will also use
M; (respectively, M’) to denote the set of rows (respectively, columns) corresponding
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to the l-entries of row i (respectively, column 7). In other words, M; is the ith pool,
and M is the set of pools that item j belongs to.

Let D C [N] be the unknown subset of positive items, where |D| < d. Let
y = (yi)!_; € {0,1}" denote the test outcome vector, i.e. y; = 1 iff the ith test is
positive. Then, the test outcome vector is precisely the (boolean) union of the positive
columns: y = ieD M. The task of identifying the unknown subset D from the test
outcome vector y is called decoding.

The main problem In many modern applications of NACGT, there are two key
requirements for a NACGT scheme:

(1) Small number of tests. “Tests” are computationally expensive in many applica-
tions.

(2) Efficient decoding. As the item universe size N can be extremely large, it would
be ideal for the decoding algorithm to run in time sub-linear in N, and more
precisely in poly(d,log N) time.

Key Results

To be able to uniquely identify an arbitrary subset D of at most d positives, it is
necessary and sufficient for the test outcome vectors y to be different for distinct
subsets D of at most d positives. A NACGT matrix with the above property is called
d-separable. However, in general such matrices only admit the brute force 2(N¢)-
time decoding algorithm. A very natural decoding algorithm called the naive decoding
algorithm runs much faster, in time O(tN).

Definition 1 (Naive decoding algorithm). Eliminate all items that participate in
negative tests, return the remaining items.

This algorithm does not work for arbitrary d-separable matrices. However, if the
test matrix M satisfies a slightly stronger property called d-disjunct, then the naive
decoding algorithm is guaranteed to work correctly.

Definition 2 (Disjunct matrix). A t x N binary matriz M is said to be d-disjunct
iff M\ Upeg MF £ 0 for any set S of d columns and any j ¢ S. (See Fig. 1.)
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Fig. 1. A d-disjunct matrix has the following property: for any subset S of d (not necessarily contigu-
ous) columns, and any column j that is not present in S, there exists a row ¢ that has a 1 in column
j and all zeros in S.



Minimize number of tests

It is remarkable that d-disjunct matrices not only allow for linear time decoding, which
is a vast improvement over the brute-force algorithm for separable matrices, but also
have asymptotically the same number of tests as d-separable matrices [4]. Let ¢(d, N)
denote the minimum number of rows of an N-column d-disjunct matrix. It has been

known for about 40 years [5] that ¢(£2(v/N), N) = O(N), and for d = O(v/N) we have

d2
< < 2 .
Q(logdlogN) < t(d,N) < O(dlog N) (1)

A t x N d-disjunct matrix with ¢ = O(d?*log N) rows can be constructed ran-
domly or even deterministically (see [11]). However, the decoding time O(tN) of the
naive decoding algorithm is still too slow for modern applications, where in most cases
d < N and thus t < N.

Efficient decoding

An ideal decoding time would be in the order of poly(d,log N), which is sub-linear
in N for practical ranges of d. Ngo, Porat, and Rudra [10] showed how to achieve
this goal using a couple of ideas: (a) two-layer test matrix construction, and (b) code
concatenation using a list recoverable code.
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Fig. 2. The vector x denotes the characteristic vector of the d positives (illustrated by the orange
box). The final matrix is the stacking of F, which is a (d, £)-list disjunct matrix, and D, which is a
d-disjunct matrix. The result vector is naturally divided into y; (the part corresponding to F and
denoted by the red vector) and yo (the part corresponding to D and denoted by the blue vector). The
decoder first uses y; to compute a superset of the set of positives (denoted by green box), which is
then used with yo to compute the final set of positives. The first step of the decoding is represented
by the red dotted box while the second step (naive decoder) is denoted by the blue dotted box.
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Two-layer test matrixz construction. The idea is to construct M by stacking
on top of one another two matrices: a “filtering” matrix F and an “identification”
matrix D. (See Fig. 2.) The filtering matrix is used to quickly identify a “small” set
of L candidate items including all the positives. Then, the identification matrix is
used to pinpoint precisely the positives. For example, let D be any d-disjunct matrix,
and that from the tests corresponding to the rows of F we can produce a set S of
L = poly(d,log N) candidate items in time poly(d,log N). Then, by running the naive
decoding algorithm on S using test results corresponding to the rows of D, we can
identify all the positives in time poly(d,log N). To formalize the notion of “filtering
matrix,” we borrow a concept from coding theory, where producing a small list of
candidate codewords is the list decoding problem [6)].

Definition 3 (List-disjunct matrix). Let d + ¢ < N be positive integers. A matrix
F is (d, 0)-list-disjunct if and only if ,cp M7\ Uyeg MF # 0 for any two disjoint sets
S and T of columns of F with |S| = d and |T| = {. (See Fig. 3.)
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Fig. 3. A (d, ¢)-list-disjunct matrix satisfies the following property: for any subset S of size d and any
disjoint subset T of size ¢, there exists a row i that has a 1 in at least one column in 7" and all zeros
in S.

Note that a matrix is d-disjunct matrix iff it is (d, 1)-list-disjunct. However, the
relaxation to £ = ©(d) allows the existence (and construction) of (d, O(d))-list disjunct
matrices with @(dlog(/N/d)) rows. The existence of such small list disjunct matrices is
crucially used in the second idea below.

(b) Code Concatenation with list recoverable codes A txN (d,/)-list-disjunct
matrix admits O(tN)-decoding time using the naive decoding algorithm. However, to
achieve poly(d,log N) decoding time overall, we will need to construct list-disjunct
matrices that allow for a poly(d,log N) decoding time. In particular, to use such a
matrix as a filtering matrix, it is necessary that ¢ = poly(d). To construct efficiently
decodable list disjunct matrices, we need other ideas. Ngo, Porat, and Rudra [10] used
a connection to list recoverable codes [6] to construct such matrices. This connection
was used to construct (d, O(d*?))-list disjunct matrices with ¢ = o(d?log; N) rows that
can be decoded in poly(¢) time. This along with the construction in Fig. 2 implies the
following result:

Theorem 1 ([10]). Given any d-disjunct matriz, it can be converted into another ma-
triz with 1 4+ o(1) times as many rows that is also efficiently decodable (even if the
original matriz was not).

Other constructions of list disjunct matrices with worse parameters were ob-
tained earlier by Indyk, Ngo and Rudra [7] and Cheraghchi [1] using connections to
expanders and randomness extractors.



Applications

Heavy hitter is one of the most fundamental problems in data streaming [8]. Cormode
and Muthukrishnan [2] showed that a NACGT scheme that is efficiently decodable
and is also explicit solves a natural version of the heavy hitters problem. An explicit
construction means one needs an algorithm that outputs a column or a specific entry
of M instead of storing the entire matrix M which can be extremely space consuming.
This is possible with Theorem 1 by picking the filtering and decoding matrices to be
explicit.

Another important generalization of NACGT matrices are those that can handle
errors in the test outcomes. Again this is possible with the construction of Fig. 2 if
the filtering and decoding matrices are also error-tolerant. The list disjunct matrices
constructed by Cheraghchi are also error-tolerant [1].

Open Problems

The outstanding open problem in group testing theory is to close the gap (1). An
explicit construction of (d, d)-list-disjunct matrices is not known; solving this problem
will lead to a scheme that is (near-)optimal in all desired objectives.
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