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Constructions of Given-Depth and Optimal
Multirate Rearrangeably Nonblocking Distributors

Yang Wang, Hung Q. Ngo, and Thanh-Nhan Nguyen

Abstract— The theory of multirate switching networks, started
in the late 80s, has been very practically useful. In particular, it
has served as the theoretical foundation for the development of
most ATM switching systems.

Rearrangeable multirate multicast switching networks are cus-
tomarily called distribution networks, or distributors for short.
It has been known for more than15 years that distributors with
cross-point complexity O(n log2 n) can be constructed, wheren
is the number of inputs. The problem of constructing optimal
distributors remains open thus far.

In this paper, we give a general method for constructing given-
depth rearrangeable multirate distributors. One of the rewards
of our construction method is a distributor with cross-point
complexity O(n log n), which we then show to be optimal. We
thus settle the aforementioned open problem.

I. I NTRODUCTION

Multi-rate switching networks are switching networks that
support varying bandwidth connections. The theory of mul-
tirate switching networks, perhaps started with the papers by
Niestegge [1] and Melen and Turner [2], has proved to be
very useful in practice. For example, this theory has served as
the theoretical foundation for the development of most Asyn-
chronous Transfer Mode (ATM) switching systems from major
ATM equipment manufacturer [3]–[5]. Roughly speaking, as
opposed to space switching where each connection request can
only be carried on an internal or external link of a switch, the
multirate switches allow for connections with varying “rates”
or bandwidths to be carried on a single link, as long as the
total connection rates does not exceed the link’s capacity.

In the unicast case, one particularly fruitful line of research
on multirate switching networks has been on the multirate re-
arrangeability of the Clos network [6], represented by the (still
open) conjecture by Chung and Ross in 1991 [7] which states
that the Clos networkC(n, m, r) is multirate rearrangeably
nonblocking when the numberm of middle-stage switches is
at least2n−1. This conjecture is interesting because it points
towards a possible generalization of the Konig’s theorem for
edge coloring bipartite graphs. Later developments on this
conjecture and related problems were reported in [8]–[13]. See
also [14], [15] for several related lines of research.

In the multicast and broadcast cases, there have been notably
few known results, though. The works presented in [14], [16]–
[18] concern conditions for the Clos network to be multicast
capable. The study presented in [19] (the journal version is
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[20]) was the only one that deals directly with more general
constructions and complexities of multicast multirate switch-
ing networks. In their paper, using Pippenger’s network [21],
the authors constructed a rearrangeable multirate distributor
with cross-point complexityO(n log2 n). (Distributor, also
called generalized connector, is a standard name referring to
multicast switching networks.)

The problem of constructing optimal multirate multicast
switching networks remains open thus far. In this paper, we
give a general method for constructing rearrangeable multirate
distributors. One of the rewards of the method is a multicast
distributor with cross-point complexityO(n log n). We then
show that this is optimal, thus settling the aforementioned open
problem.

The rest of the paper is organized as follows. Section
II presents basic definitions and several fundamental com-
positions of networks. Section III gives the definition and
construction of a special version of multirate concentrators,
which is crucial for the later constructions of multirate dis-
tributors. Section IV contains the main results, including a
general distributor construction given the network depth. The
construction gives rise to a multiraten-distributor of size
O(n lg n) which is then shown to be optimal. Lastly, Section
V concludes the paper with a few remarks and discussions on
future works.

II. PRELIMINARIES

A. Multirate networks

In the rest of the paper, let[m] = {1, . . . ,m} and Zm =
{0, . . . ,m− 1} for any positive integerm. For any finite set
X, let 2X denote the power set ofX. For any positive integer
k, we use

(
X
k

)
to denote the set of allk-subsets ofX. Graph

theoretic terminologies we use here are fairly standard. See
[22], for instance.

An (n1, n2)-networkis a directed acyclic graph (DAG)N =
(V,E;X, Y ), whereV is the set of vertices,E is the set of
edges,X is a set ofn1 nodes calledinputs, andY – disjoint
from X – is a set ofn2 nodes calledoutputs. The vertices
in V − X ∪ Y are internal vertices. The in-degrees of the
inputs and the out-degrees of the outputs are zero. Thesize
of a network is its number of edges. The size of a network
is the equivalence of thecross-point complexityof a switch.
The DAG model is standard for studying the complexity of
switching networks [23], [24]. Thedepthof a network is the
maximum length of a path from an input to an output. For
short, we call an(n, n)-network ann-network.

In the multirate environment, a constantβ ≤ 1 is often
used to represent thecapacity of each input and outputof
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the networkN . Input nodes have capacity (normalized to)1.
The factor1/β is often referred to as thespeed advantageof
the system. Thisinternal speedupis a common technique for
designing broadband switches [2], [25], [26].

Given an n-network N = (V,E;X, Y ), a distribution
request(or multicast request) is a triple

D = (x, S, w) ∈ X × 2Y × [b, B].

As we are only concerned with distribution networks in this
paper, the term “request” should be implicitly understood
as “distribution request” henceforth, unless it is explicitly
specified otherwise. Theweight or rate w of the request
satisfiesb ≤ w ≤ B for some given lower- and upper-bounds
0 ≤ b < B ≤ β ≤ 1.

A distribution assignmentis a setD of requests satisfying
the following conditions: (a) total weight of requests coming
from any particular input does not exceedβ, and (b) total
request weight to any output does not exceedβ, in other words∑

(x,S,w)∈D
y∈S

w ≤ β, ∀y ∈ Y.

A requestD is compatiblewith a distribution assignmentD
iff D ∪ {D} is also a distribution assignment.

A distribution route (or just route) R for a requestD =
(x, S, w) is a (directed) tree rooted atx whose leaves are
precisely the nodes inS. We also say thatR realizesD, and
call w the weight (or rate) ofR. A stateof N is a setR of
distribution routes, where the total weight of routes containing
any node does not exceed the capacity of that node. Each state
of N realizes a unique distribution assignment, one route per
request. A distribution assignmentD is realizableiff there is a
network state realizing it. A request iscompatiblewith a state
if it is compatible with the distribution assignment realized by
the state.

We are now ready to define the central notions of nonblock-
ingness in the multirate environment. In defining different
notions of distributors, we drop the “multirate” qualifier to
avoid being too wordy. Distribution networks in this papers
are implicitly understood as multirate distribution networks,
unless explicitly stated otherwise.

A rearrangeable (RNB) n-distributor (or simply n-
distributor) is ann-network in which any distribution assign-
ment is realizable.

A strictly nonblocking (SNB)n-distributor is ann-network
N in which, given any network stateR realizing a distribution
assignmentD and a new requestD compatible withD, there
exists a routeR such thatR∪{R} is a network state realizing
D ∪ {D}.

As requests come and go, a strategy to pick new routes
for new requests is called arouting algorithm. An n-network
is called awidesense nonblocking (WSNB)n-distributor with
respect to a routing algorithmA if A can always pick a new
route for a new request compatible with the current network
state. We can also replaceA by a class of algorithmsA. In
general, ann-networkN is WSNB iff it is WSNB with respect
to somealgorithm.

We will consider two classes of functions on each network
type: (a) the minimum size of a network, and (b) the minimum

size of a network with a given depth. The main theme
of research in switching network has been to address the
tradeoff between networks’ depths and sizes. This paper is
no exception.

Given the parametersb, B, and β as described above,
let mrdβ[b,B](n), mwdβ[b,B](n), and msdβ[b,B](n) denote
the minimum size of a multirate RNB, WSNB, and
SNB n-distributor, respectively. In the given-depth case, let
mrdβ[b,B](n, k), mwdβ[b,B](n, k), andmsdβ[b,B](n, k) denote
the minimum size of an RNB, WSNB, and SNBn-distributor
with depthk, respectively.

In the special case whenb = 0, B = β = 1, i.e.
the case when there is no internal speedup and no request
rate restriction, we will drop the subscriptsβ[0, B] and use
mrd(·),mwd(·),msd(·) to denote the corresponding func-
tions.

B. Classical networks

In constructing multirate distributors, we will also need
the notions of classical distributors, concentrators, super-
concentrators.

The classicaln-distributor is defined similar to the multirate
distributor, except for the fact thatβ = 1 and all request
weights are1. Thus, in a classical network state the distribution
routes are vertex disjoint trees. Also, since all request weights
are1, there is no need to include a weight to describe a request.

Given integersn ≥ m > 0, an (n, m)-concentratoris an
(n, m)-network, such that for any subsetS of m inputs there
exists a set ofm vertex disjoint paths connectingS to the
outputs. Letc(n, m) andc(n, m, k) denote the minimum sizes
of an(n, m)-concentrator and an(n, m)-concentrator of depth
k, respectively.

An n-superconcentratoris an n-network with inputsX
and outputsY such that for anyS ⊆ X and T ⊆ Y with
|S| = |T | = k, there exist a set ofk vertex disjoint paths
connecting vertices inS to vertices inT . Let s(n) ands(n, k)
denote the minimum sizes of ann-superconcentrator and an
n-superconcentrator of depthk, respectively.

For n ≥ m, an (n, m)-superconcentratoris a network
obtained by removing any(n − m) outputs from ann-
superconcentrator. Obviously, an(n, m)-superconcentrator is
an (n, m)-concentrator. Hence,

c(n, m) ≤ s(n), (1)

c(n, m, k) ≤ s(n, k). (2)

Note that the concentrators and superconcentrators described
above operate in thespace domainor the circuit switching
environment, namely no two paths can share a vertex. It
has been known for more than 3 decades that there are
concentrators and superconcentrators of linear sizes [27], [28].
The constructions were based on a class of graphs called
expanders, whose applications in mathematics and computer
science are numerous [29].

For the fixed depth case, the asymptotic behaviors of all
thes(n, k) were only completely characterized recently. Table
I summarizes the results. The functionλ(d, n) is the inverse
of functions in the Ackerman hierarchy: they are increasing
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TABLE I

M INIMUM SIZE OF n-SUPERCONCENTRATORS WITH DEPTHk

Depthk Sizes(n, k)

2 Θ
“

n log2 n
log log n

”
[30]

3 Θ (n log log n) [31]
2d, 2d + 1, d ≥ 2 Θ (nλ(d, n)) [32], [33]
In particular, fork = 4, 5 Θ (n log∗ n) [32], [33]
Θ(α(n)) Θ(n) [33]

extremely slowly. The reader is referred to [33] for the
definitions ofλ(d, n) andα(n) (which is actually calledβ(n)
in their paper, but we change its name to avoid confusion with
our speedup parameterβ).

C. Basic compositions of networks

Let N1 andN2 be any two(n, m)-networks. We useN1 1

N2 to denote an(n, m)-networkN obtained by identifying the
inputs ofN1 andN2 in any one-to-one manner, and identifying
the outputs ofN1 andN2 in any one-to-one manner. We refer
to N1 1 N2 as thestackingof N1 andN2. When stackingk
copies of a networkN , denote the result by1k N .

Given any k (n, m)-networks N1, . . . ,Nk, let
` (N1, . . . ,Nk) denote the (n, mk)-network obtained
by identifying the inputs ofN1, . . . ,Nk in any one-to-
one fashion. (In effect, we “paste” together the inputs of
N1, . . . ,Nk.) When theNi are identical copies of the same
(n, m)-networkN , we use`k N to denote the result instead
of writing ` (N , . . . ,N ). Given an(n, m)-networkM and
a (m, l)-networkN , let M◦N be the network obtained by
identifying the outputs ofM and the inputs ofN in any
one-to-one fashion.

III. M ULTIRATE CONCENTRATORS

There are several obvious ways to generalize the notion
of classical concentrators to multirate concentrators. To avoid
cumbersome notations, we will define here only a particular
type of multirate concentrators which are used in later sections
to construct good multirate distributors.

Given integersn ≥ m > 0. Consider an(n, m)-network
C = (V,E;X, Y ). A concentration requestis a pair (x, w),
wherex is an input andw ≤ 1 is the weight of the request.
A path fromx to some output is called aroute realizing this
request. A set of routes arecompatibleif the total weight of
routes containing any vertex is at most1. A concentration
assignmentis a set of concentration requests such that each
input generates requests with total weight at most1, and that
the total weight of all requests is at mostm/2. The network
C is called an(n, m)-multirate concentratorif and only if,
for each concentration assignmentD there exists a set of
compatible routes realizing requests in the assignment.

Lemma 1. Let C be any(n, m)-concentrator andS be any
(n, m)-superconcentrator. Then,C(n, m) = C 1 S is an
(n, m)-multirate concentrator.

Proof. The reader is referred to Figure 1 for an illustration of
C(n, m). To prove this lemma, we will use a routing algorithm
adapted from the CAP algorithm proposed in [2].

(n, m)-concentrator

(n, m)-superconcentrator

Fig. 1. Construction of an(n, m)-multirate concentratorC(n, m).

Let D be any concentration assignment. Note that the
inputs of these requests are not necessarily different from one
another. As long as there are still two requests(x,w1) and
(x, w2) coming from the same inputx, replace them by a
new request(x,w1 + w2). The new set of requests is still a
valid concentration assignment. Moreover, a valid route for
(x, w1 + w2) can be “decomposed” back into two routes with
weightsw1 andw2 to satisfy the requests(x, w1) and(x,w2).
Consequently, we can assume that the inputs of these requests
are distinct.

PartitionD into two subsetsD1 andD2, whereD1 consists
of all requests with weights> 1/2. Let x = |D1|, y = |D2|.
For i = 1, 2, let Wi be the total weight of requests inDi.
Then, becauseD is a concentration assignment,

m/2 ≥ W1 + W2 > x/2 + W2. (3)

The set of requests inD1 can be routed through the concen-
tratorC so that no two routes share a vertex. Thus, the vertex
capacity constraint is satisfied.

Next, we route the requests inD2 through the superconcen-
tratorS to the otherm−x outputs that are unused after routing
D1. These requests are routed using the CAP algorithm.

Let s = m−x. Partition they requests ofD2 into t = dy/se
groups of sizes each, with possibly the last group having less
than s members. Assume the weights for these requests are
w1 ≥ w2 ≥ · · · ≥ wy. The partition is such that the first
group consists ofs largest weightsw1, . . . , ws, the second
group consists of the nexts largest weightsws+1, . . . , w2s,
and so forth.

Becauses ≤ m, for any group of requests, in the(n, m)-
superconcentratorS there ares vertex disjoint paths joining
the inputs of the requests in the group to somes outputs.
We will use these paths as routes realizing the requests in the
group. This ensures that no two routes for requests in the same
group share any vertex.

To this end, we need to show that no vertex ofS carries
routes with total weight exceeding1. In the worst case, a vertex
carries one request from each group. Thus, the maximum
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weight a vertex might carry is at most

w1 + ws+1 + · · ·+ w(t−1)s+1

≤ 1
2

+
w1 + · · ·+ ws

s
+ · · ·+

w(t−2)s+1 + · · ·+ w(t−1)s

s

≤ 1
2

+
W2

s
≤ 1

2
+

m/2− x/2
m− x

= 1.

The last inequality follows from (3).

Corollary 2. An (n, m)-multirate concentrator of depthk can
be constructed with the same asymptotic complexity ass(n, k)
shown in Table I.

Proof. This follows directly from the fact that, removing
any n − m outputs from a classicaln-superconcentrator
yields an(n, m)-superconcentrator, which is also an(n, m)-
concentrator. Thus, in fact our(n, m)-multirate concentrator
of depthk is of size at most2s(n, k).

IV. REARRANGEABLE MULTIRATE DISTRIBUTORS

A. Distributors for the caseB ≤ β ≤ 1/2
In this subsection, we construct distributors under the condi-

tion B ≤ β ≤ 1/2. In fact, we will construct slightly stronger
distributors, where the capacity of input nodes are allowed to
be 1. Obviously, any distributor with capacity-1 inputs is also
a distributor with capacity-β inputs. The outputs’ capacities
remain equal toβ ≤ 1/2.

m-distributorM

m-distributorM

(n, m)-multirate concentratorC

(n, m)-multirate concentratorC

Fig. 2. Recursive construction of distributors with capacity-1 inputs.

In the following lemma, we ignore the issue of divisibility
for the sake of clarity. It is simple but tedious to deal directly
with divisibility. The following construction is the multirate
version of Pippenger’s network [21].

Lemma 3. Let m be a factor ofn. Let C be an (n, m)-
multirate concentrator. LetM be any multiratem-distributor
with capacity-1 inputs. Then, the networkN = `n/m (C ◦M)
is an n-distributor with capacity-1 inputs. Note that, we only
consider the case whenB ≤ β ≤ 1/2.

Proof. The reader is referred to Figure 2 for an illustration
of N . Consider a distribution assignmentD. PartitionD into

n/m subsetsD = D1 ∪D2 ∪ · · · ∪Dn/m as follows. For each
requestD = (x, T,w) ∈ D and i ∈ {1, . . . , n/m}, let

Ti = T ∩ {(i− 1)m + 1, (i− 1)m + 2, . . . , im}

Then, add(x, Ti, w) into Di, unlessTi = ∅. Note that, if we
can find routes realizing all ofD1, . . . ,Dn/m, then a natural
union of those routes will realizeD. For example, to realize
the requestD above, take the union of the routes realizing the
sub-requests(x, T1, w), . . . , (x, Tn/m, w).

The idea is to use the first concentrator and distributor to
realizeD1, the second concentrator and distributor forD2, and
so on. Since the construction is symmetric, we only need show
how to construct routes realizingD1.

Firstly, notice that the total weight of requests fromD1 is
at mostm/2, because there are at mostm outputs involved
in these requests, each with capacityβ ≤ 1/2. Thus, there
are compatible routes inC joining each inputx of a request
(x, T1, w) in D1 to an outputf(x) of C. For two inputsx and
x′, f(x) andf(x′) might be the same, though.

Secondly, construct a distribution assignmentD′
1 for the

correspondingm-distributor as follows. For each request
(x, T1, w) in D1, add (f(x), T1, w) to D′

1. By definition of
compatibility, the total weight of compatible routes to any out-
put of C is at most1. Consequently,D′

1 is a valid distribution
assignment, which can be realized by some network stateR′

1.
Finally, each request(x, T1, w) in D1 can be realized by the

concatenation of the route inC and the corresponding route
in R′

1.

We can now construct multirate distributors for the case
B ≤ β ≤ 1/2. The following theorem can be made slightly
better with more careful calculus. We state a somewhat weaker
version for the sake of clarity.

Theorem 4. For β ≤ 1/2, we can constructn-distributors of

(a) depthk = 3 and sizeO
(
n3/2 log n√

log log n

)
.

(b) depthk = 4 and sizeO
(
n3/2

√
log log n

)
.

(c) depthk = 5 and sizeO
(
n4/3 log4/3 n

(log log n)2/3

)
.

(d) depthk = 6 and sizeO
(
n4/3(log n)2/3

)
.

(e) any depthk ≥ 3 and sizeO
(
n1+1/j (log n)1+1/j

(log log n)1−1/j

)
,

wherej = dk/2e.
(f) sizeO(n log n).

Proof. The reader is referred to Table I and Corollary 2
when examining the following reasoning. We will use the
construction of Lemma 3.

(a) Let m =
√

n log n√
log log n

. ChooseC of depth 2 and size

O
(
n log2 n

log log n

)
. ChoseM to be the completem × m

bipartite graph.
(b) Let m =

√
n log log n. ChooseC of depth 3 and size

O (n log log n). ChoseM to be the completem × m
bipartite graph.

(c) Let m = n2/3 (log n)2/3

(log log n)1/3 . ChooseC of depth2, andM
the depth-3 m-distributor constructed in part (a).

(d) Let m = n2/3 log log n
(log n)2/3 . ChooseC of depth3, andM the

depth-3 m-distributor constructed in part (a).
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(e) We induct onk. For 2 ≤ k ≤ 6, the previous cases serve
as the bases for our induction hypothesis. When,k = 2j

with j ≥ 4, choosem = n1−1/j (log log n)(2j−1)/(j+1)

log n , C of
depth3 and sizeO (n log log n), andM to be the depth-
(k − 3) m-distributor inductively constructed. The case
whenk = 2j − 1 is similar.

(f) In this part, we choosem = n/2, C to be the linear
size multirate concentrator (with depthα(n) as in Table
I). The networkM is recursively constructed this way.
Suppose theC are of sizecn for some constantc. The
total size is thus

2 · cn + 4 · cn

2
+ · · ·+ 2log nc

n

2log n−1
= O(n log n).

B. Distributors for the general case

We first need a technical lemma.

Lemma 5. Let S be a set ofk positive real numbers
{w1, . . . , wk}, wherewi ≤ 1/2, ∀i ∈ [k], and

∑k
i=1 wi ≤ 1.

Then,S can be partitioned into at most four subsets, each of
whose sums is at most1/2.

Proof. Let Si = {wi} for each i ∈ [k]. We will gradually
merge theseSi until there are only at most four sets left with
the desired property. For each setX, let w(X) denote the sum
of elements inX. Call X a type-j set if 1/2j+1 < w(X) ≤
1/2j .

Now, consider the setsSi, i ∈ [k]. For anyj > 1, as long
as there are two setsSi, Si′ of type j, mergeSi and Si′ .
The merge results in a type-(j − 1) set. When it is no longer
possible to merge, we have at most3 sets of type-1, and at
most 1 set of type-j for eachj > 1. To this end, merge all
sets of type-j for all j > 1. Because1/4 + 1/8 + · · · = 1/2,
the resulting set of this last merge has sum at most1/2.

Lemma 6. Let M be any classicaln-distributor. LetN be
a distributor as in Lemma 3. Then, the stacking ofM and 4
copies ofN is a multiraten-distributor for any parameters
0 ≤ b < B ≤ β ≤ 1.

Proof. Consider any distribution assignmentD. For each out-
put vertexy, consider the set of weights of requests involving
this vertex. Partition this weight set into at most5 classes.
Class 0 consists of (at most) one weight which is> 1/2.
Partition all the weights≤ 1/2 into 4 sets using Lemma 5,
then label the sets classes1 to 4.

For each request(x, T,w) ∈ D, partition T into at most5
classesT0, T1, . . . , T4, wherey ∈ Ti iff the weightw belongs
to classi of output vertexy. In effect, we decompose the
request(x, T,w) into 5 separate requests(x, Ti, w).

The idea is to route the set of all(x, T0, w) using the clas-
sical n-distributorM. The routes in the classical distributor
are vertex disjoint, hence they will certainly satisfy the vertex
capacity constraint. Moreover, each output has at most one
request with weight> 1/2, implying that the set of requests
(x, T0, w) is valid for the distributor.

Then, route all requests(x, Ti, w) using theith copy ofN .
Note that the requests that a copy ofN is responsible for were

chosen so that each output has total requested weight at most
1/2. Hence,N can handle them easily by Lemma 3.

Note that our construction works regardless of the values
of β, B, andb. If β ≤ 1/2 then we do not need the classical
distributor in the stacking. However, asymptotically this fact
does not reduce the size of the multirate distributor.

Theorem 4 and Lemma 6 give the key result of this paper.

Theorem 7. For any b ≤ B ≤ β, and for any k ≥ 3,
we can construct a depth-k multirate n-distributor of size
O

(
n1+1/j (log n)1+1/j

(log log n)1−1/j

)
, wherej = dk/2e. This means

mrdβ[b,B](n, k) = O

(
n1+1/j (log n)1+1/j

(log log n)1−1/j

)
. (4)

Furthermore, we can also construct a multiraten-distributor
of sizeO(n log n). Thus,

mrdβ[b,B](n) = O(n log n). (5)

Proof. Consider first the fixed-depth case. For the4 copies of
N in Lemma 6, we use part (e) of Theorem 4. For classical
n-distributor of depthk, we can use the constructions in
[34] (see also [35]) with sizeO(n1+ 1

j (log n)
j−1
2 ), which is

asymptotically slightly smaller than our depth-k distributors
from part (e) of Theorem 4.

If there is no restriction in the network depth, we use part
(f) of Theorem 4 forN . The classicaln-distributorM of size
O(n log n) has was constructed in [36].

C. On the optimality of our distributor

For classical distributors, it has been known for a long time
that everyn-distributor must have sizeΩ(n log n) [37]. Is it
possible that, due to the internal speedup factor of1/β, one
can construct multiraten-distributors with size asymptotically
better thanO(n log n)? For example, when1/β is extremely
large (compared ton) it is easy to see thatone internal node is
sufficient because this node’s capacity can handle all requests.

In the following theorem, we show that, whenB is a
constant (this means the speedup factor1/β is bounded), we
cannot do better thanO(n log n), implying that our result in
Theorem 7 is optimal!

Theorem 8. Suppose0 = b < B ≤ β ≤ 1, where B is
a constant. Given any multiraten-distributor of sizet(n), we
can construct a classicaln-distributor of sizeO(t(n)) with the
same depth. Thus, any asymptotic lowerbound for classical
distributors is also an asymptotic lowerbound for multirate
distributors, whether or not the depth is specified.

In particular, a multirate n-distributor must have size
Ω(n log n); that is,

mrdβ[b,B] = Ω(n log n). (6)

Proof. Let c = b1/Bc, which is a constant. LetN be any
multiraten-distributor of sizet(n). We will construct a clas-
sical n-distributorM of sizec2t(n) = O(t(n)) and the same
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depth. By the aforementioned result,c2t(n) = Ω(n log n);
thus,t(n) = Ω(n log n), completing the proof.

The networkM is constructed as follows. Replace each
internal vertexv of N by c copiesv1, . . . , vc. For each edge
(u, v) of N , do the following:

• if u is an input andv is an output ofN , add the edge
(u, v) to M;

• if u is an input andv is an internal vertex ofN , create
c new edges(u, v1), . . . , (u, vc) in M;

• if u is an internal vertex andv is an output ofN , create
c new edges(u1, v), . . . , (uc, v) in M;

• and lastly, if bothu andv are internal vertices, then create
c2 new edges(ui, vj) in M, for all i, j ∈ [c].

We need to show thatM is indeed a classicaln-distributor.
Consider any distribution assignmentD in the space domain.
This assignment consists of requests of the form(x, T ), where
T is a subset of the outputs. Each output can only be requested
at most once. Now, create a distribution assignmentD′ for N
as follows. For each request(x, T ) in D, create a request
(x, T,B) and add toD′. Let R′ be a network state ofN
realizingD′. Obviously each internal node ofN belongs to
at mostc routes inR′. Thus, from the routes inR′ we can
construct a set of routes realizingD for M easily because
each vertexv of N hasc copies inM.

V. D ISCUSSIONS

Just like in the classical case, there are still small gaps
between the upper and lower bounds of depth-k distributors.
These are still open problems. The reader is referred to [23]
for more details. With more careful computation, the results
of Theorem 7 for given depths can be made better. Another
open problem is the asymptotic sizes of multirate distributors
whenβ is not a constant.

Last but not least, the wide-sense nonblocking case for
multirate distributors is still wide open for further research.

REFERENCES

[1] G. Niestegge, “Nonblocking multirate switching networks,” inProceed-
ings of the 5th ITC Seminar on Traffic Engineering for ISDN Design
and Planning, pp. 449–458, 1987.

[2] R. Melen and J. S. Turner, “Nonblocking multirate networks,”SIAM J.
Comput., vol. 18, no. 2, pp. 301–313, 1989.

[3] J. S. Turner and R. Melen, “Multirate clos networks,”Communications
Magazine, IEEE, vol. 41, no. 10, pp. 38–44, 2003.

[4] P. Coppo, M. D’Ambrosio, and R. Melen, “Optimal cost/performance
design of atm switches.,”IEEE/ACM Trans. Netw., vol. 1, no. 5, pp. 566–
575, 1993.

[5] J. Turner and N. Yamanaka, “Architectural choices in large scale ATM
switches,”IEICE Trans. Commun., vol. E81-B, no. 2, pp. 120–137, 1998.

[6] C. Clos, “A study of non-blocking switching networks,”Bell System
Tech. J., vol. 32, pp. 406–424, 1953.

[7] S.-P. Chung and K. W. Ross, “On nonblocking multirate interconnection
networks,”SIAM J. Comput., vol. 20, no. 4, pp. 726–736, 1991.

[8] D. Z. Du, B. Gao, F. K. Hwang, and J. H. Kim, “On multirate
rearrangeable Clos networks,”SIAM J. Comput., vol. 28, no. 2, pp. 464–
471 (electronic), 1999.

[9] G.-H. Lin, D.-Z. Du, X.-D. Hu, and G. Xue, “On rearrangeability of
multirate Clos networks,”SIAM J. Comput., vol. 28, no. 4, pp. 1225–
1231 (electronic), 1999.

[10] X.-D. Hu, X.-H. Jia, D.-Z. Du, and F. K. Hwang, “Monotone routing
in multirate rearrangeable clos networks,”J. Parallel Distrib. Comput.,
vol. 61, no. 9, pp. 1382–1388, 2001.

[11] H. Q. Ngo, “A new routing algorithm for multirate rearrangeable Clos
networks,”Theoret. Comput. Sci., vol. 290, no. 3, pp. 2157–2167, 2003.

[12] H. Q. Ngo and V. H. Vu, “Multirate rearrangeable Clos networks and
a generalized bipartite graph edge coloring problem,”SIAM Journal on
Computing, vol. 32, no. 4, pp. 1040–1049, 2003.

[13] J. R. Correa and M. X. Goemans, “An approximate König’s theorem
for edge-coloring weighted bipartite graphs,” inProceedings of the 36th
Annual ACM Symposium on Theory of Computing, (New York), pp. 398–
406 (electronic), ACM, 2004.

[14] S. C. Liew, M.-H. Ng, and C. W. Chan, “Blocking and nonblocking
multirate clos switching networks.,”IEEE/ACM Trans. Netw., vol. 6,
no. 3, pp. 307–318, 1998.

[15] J. A. Fingerhut, S. Suri, and J. S. Turner, “Designing least-cost non-
blocking broadband networks,”J. Algorithms, vol. 24, no. 2, pp. 287–
309, 1997.

[16] D. S. Kim and D.-Z. Du, “Multirate multicast switching networks,”
Theoret. Comput. Sci., vol. 261, no. 2, pp. 241–251, 2001. Computing
and combinatorics (Taipei, 1998).

[17] D. S. Kim and D.-Z. Du, “Multirate multicast switching networks.,”
Theor. Comput. Sci., vol. 261, no. 2, pp. 241–251, 2001.

[18] Y. Yang, “An analysis model on nonblocking multirate broadcast net-
works.,” in International Conference on Supercomputing, pp. 256–263,
1994.

[19] R. Melen and J. S. Turner, “Nonblocking multirate distribution net-
works.,” in INFOCOM, pp. 1234–1241, 1990.

[20] R. Melen and J. S. Turner, “Nonblocking multirate distribution net-
works,” IEEE Transactions on Communications, vol. 41, pp. 362–369,
Feb. 1993.

[21] N. Pippenger,The complexity of switching networks. PhD thesis, Depart-
ment of Electrical Engineering, Massachusetts Institute of Technology,
Cambridge, Massachusetts, 1973.

[22] D. B. West, Introduction to graph theory. Upper Saddle River, NJ:
Prentice Hall Inc., 1996.

[23] H. Q. Ngo and D.-Z. Du, “Notes on the complexity of switching
networks,” in Advances in Switching Networks(D.-Z. Du and H. Q.
Ngo, eds.), vol. 5 ofNetwork Theory and Applications, pp. 307–367,
Kluwer Academic Publishers, 2001.

[24] H. Q. Ngo, “Multiwavelength distribution networks,” inProceedings
of the 2004 Workshop on High Performance Switching and Routing
(HPSR), (Phoenix, Arizona, U.S.A.), pp. 186–190, IEEE, 2004.

[25] F. K. Hwang,The mathematical theory of nonblocking switching net-
works. River Edge, NJ: World Scientific Publishing Co. Inc., 1998.

[26] J. H. Hui, Switching and traffic theory for integrated broadband net-
works. Kluwer Academic Publishers, Boston/Dordrecht/London, 1990.

[27] L. G. Valiant, “Graph-theoretic properties in computational complexity,”
J. Comput. System Sci., vol. 13, no. 3, pp. 278–285, 1976. Working
papers presented at the ACM-SIGACT Symposium on the Theory of
Computing (Albuquerque, N. M., 1975).

[28] L. G. Valiant, “On non-linear lower bounds in computational com-
plexity,” in Seventh Annual ACM Symposium on Theory of Computing
(Albuquerque, N. M., 1975), pp. 45–53, Assoc. Comput. Mach., New
York, 1975.

[29] S. Hoory, N. Linial, and A. Wigderson, “Expander graphs and their
applications,”Bull. Amer. Math. Soc. (N.S.), vol. 43, no. 4, pp. 439–561
(electronic), 2006.

[30] J. Radhakrishnan and A. Ta-Shma, “Bounds for dispersers, extractors,
and depth-two superconcentrators,”SIAM J. Discrete Math., vol. 13,
no. 1, pp. 2–24 (electronic), 2000.
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