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~ Abstract—The theory of multirate switching networks, started  [20]) was the only one that deals directly with more general
in the late 80s, has been very practically useful. In particular, it constructions and complexities of multicast multirate switch-
has served as the theoretical foundation for the development of ing networks. In their paper, using Pippenger’s network [21]

most ATM switching systems. th th tructed bl ltirate distribut
Rearrangeable multirate multicast switching networks are cus- € autnors constructed a rearrangeablé multirate distributor

tomarily called distribution networks, or distributors for short. ~ With cross-point complexityO(n log®n). (Distributor, also
It has been known for more than 15 years that distributors with  called generalized connectpis a standard name referring to
cross-point complexity O(nlog® n) can be constructed, wheren  multicast switching networks.)

is the number of inputs. The problem of constructing optimal  The problem of constructing optimal multirate multicast

distributors remains open thus far switching networks remains open thus far. In this paper, we
In this paper, we give a general method for constructing given- g P ) paper,

depth rearrangeable multirate distributors. One of the rewards ~give @ general method for constructing rearrangeable multirate
of our construction method is a distributor with cross-point  distributors. One of the rewards of the method is a multicast

complexity O(nlogn), which we then show to be optimal. We distributor with cross-point complexity)(nlogn). We then

thus settle the aforementioned open problem. show that this is optimal, thus settling the aforementioned open
problem.
|. INTRODUCTION The rest of the paper is organized as follows. Section

Multi-rate switching networks are switching networks thaltI presents basic definitions and several fundamental com-

support varying bandwidth connections. The theory of mu&)_osmons of networks. Section Ill gives the definition and

tirate switching networks. perhanps started with the papers %onstruction of a special version of multirate concentrators,
g P P pap Which is crucial for the later constructions of multirate dis-

Niestegge [.1] and .Melen and Turner .[2]’ has proved to ngutors. Section IV contains the main results, including a
very useful in practice. For example, this theory has served as

the theoretical foundation for the development of most Asytg?_eneral distributor construction given the network depth. The

L > construction gives rise to a multirate-distributor of size
chronous Transfer Mode (ATM) switching systems from majo(s(nlg n) which is then shown to be optimal. Lastly, Section

ATM equipment man-ufac.:turer [31-[5]. Roughly ;peaklng, N concludes the paper with a few remarks and discussions on
opposed to space switching where each connection request]gl:j'%m

only be carried on an internal or external link of a switch, the Uire works.

multirate switches allow for connections with varying “rates” 1. PRELIMINARIES

or bandwidths to be carried on a single link, as long as tIAe

total connection rates does not exceed the link's capacity.
In the unicast case, one particularly fruitful line of research N the rest of the paper, l&tn] = {1,...,m} andZ,, =

on multirate switching networks has been on the multirate ré(l o ’7)? — 1} for any positive integern. For any fin_ite set
arrangeability of the Clos network [6], represented by the (stilt - 1612" denote the power set of . For any positive integer
we use(k) to denote the set of ali-subsets ofX. Graph

open) conjecture by Chung and Ross in 1991 [7] which statbs . . . X
that the Clos networkC(n, m,r) is multirate rearrangeably theoretic terminologies we use here are fairly standard. See

nonblocking when the numben of middle-stage switches is [22], for instance. . . :
at least2n — 1. This conjecture is interesting because it points A" (1, n2)-networkis a directed acyclic graph (DAGY =
towards a possible generalization of the Konig's theorem f ¥ B X, Y)’ where V" is the set of verticesk is the.s.et' of
edge coloring bipartite graphs. Later developments on t@QgES.X IS a set ofny nodes callednputs and Y — d'squt
conjecture and related problems were reported in [8]-[13]. St gm X —Is a set _Of"2 nodes .Ca"eObUtpL.’tS The vertices
also [14], [15] for several related lines of research. n V - X UY areinternal vertices. The in-degrees of the
In the multicast and broadcast cases, there have been not ts and th? qut—degrees of the outputs are zero, sire
few known results, though. The works presented in [14], [165— a netwqu is its number of edges. The Siz€ of a petwork
[18] concern conditions for the Clos network to be multicast the equivalence of theross-point complexitgf a switch.

capable. The study presented in [19] (the journal version 1&'€ DAG model is standard for studying the complexity of
b yp [19] (the | switching networks [23], [24]. Thelepthof a network is the
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the network/\ . Input nodes have capacity (normalized 10) size of a network with a given depth. The main theme
The factorl/g is often referred to as thepeed advantagef of research in switching network has been to address the
the system. Thisnternal speedufis a common technique for tradeoff between networks’ depths and sizes. This paper is

designing broadband switches [2], [25], [26]. no exception.
Given ann-network N' = (V,E;X,Y), a distribution Given the parameter$, B, and 3 as described above,
request(or multicast requestis a triple let mrdgp, g(n), mwdgp, pj(n), and msdgp, p)(n) denote
D= (z,5,w) € X x 9 b, B]. the minimum size of a multirate RNB, WSNB, and

SNB n-distributor, respectively. In the given-depth case, let
As we are only concerned with distribution networks in thigard g, 5)(n, k), mwdgy, g (n, k), andmsdgy, g (n, k) denote
paper, the term “request” should be implicitly understooghe minimum size of an RNB, WSNB, and SNBRdistributor
as “distribution request” henceforth, unless it is explicitlyith depthk, respectively.

specified otherwise. Theveight or rate w of the request |n the special case wheh = 0,B = § = 1, i.e.
satisfiesh < w < B for some given lower- and upper-boundshe case when there is no internal speedup and no request
0<b<B<L<B<LL rate restriction, we will drop the subscript§0, B] and use

A distribution assignmenis a setD of requests satisfying mrd(-), mwd(-), msd(-) to denote the corresponding func-
the following conditions: (a) total weight of requests comingons.

from any particular input does not excegd and (b) total

request weight to any output does not excgeih other words B. Classical networks

Z w< B, Vyey. In constructing multirate distributors, we will also need
<wvzg§e7ﬂ the notions of classical distributors, concentrators, super-

concentrators.

The classicah-distributor is defined similar to the multirate
distributor, except for the fact thaf = 1 and all request
weights arel. Thus, in a classical network state the distribution
routes are vertex disjoint trees. Also, since all request weights
arel, there is no need to include a weight to describe a request.
Given integersn > m > 0, an (n, m)-concentratoris an
m)-network, such that for any subsgtof m inputs there

A requestD is compatiblewith a distribution assignmern®
iff DU{D} is also a distribution assignment.

A distribution route (or just route) R for a requestD =
(z,S,w) is a (directed) tree rooted at whose leaves are
precisely the nodes ii§. We also say thaR realizesD, and
call w the weight (or rate) ofR. A stateof N is a setR of
distribution routes, where the total weight of routes containin{g7
any node_does not_excee_d the c_apaC|ty_ of that node. Each Se€§1<fieszts a set ofn vertex disjoint paths connectin§ to the
of NV realizes a unique distribution assignment, one route pér

request. A distribution assignmentis realizableiff there is a outputs. Let(n, m) ande(n, m, k) denote the minimum sizes
R . . . of an (n, m)-concentrator and afn, m)-concentrator of depth
network state realizing it. A requesti®mpatiblewith a state .
e : . o . . k, respectively.
if it is compatible with the distribution assignment realized by . L
An n-superconcentratoris an n-network with inputs X

the state. .
We are now ready to define the central notions of nonbloc nd outputsy” such that .for anys € X and T. g .Y with
| = |T| = k, there exist a set ok vertex disjoint paths

ingness in the multirate environment. In defining differe . . . : .
: . PR " connecting vertices ¥ to vertices inT". Let s(n) ands(n, k)
notions of distributors, we drop the “multirate” qualifier to L .
. . o . . denote the minimum sizes of ansuperconcentrator and an
avoid being too wordy. Distribution networks in this papers .
A . L n-superconcentrator of depth respectively.
are implicitly understood as multirate distribution networks, .
o . For n > m, an (n,m)-superconcentratoris a network
unless explicitly stated otherwise. . ;
obtained by removing anyn — m) outputs from ann-

A rearrangeable (RNB)n-distributor (or simply n- . .
L . : - T . superconcentrator. Obviously, &n,m)-superconcentrator is
distributor) is ann-network in which any distribution assign-
an (n, m)-concentrator. Hence,

ment is realizable.
A strictly nonblocking (SNBp-distributor is ann-network c(n,m) < s(n), (1)
N in which, given any network state reahzmg a'dlstnbutlon cln,m,k) < s(n, k). @)
assignmen® and a new requedd compatible withD, there
exists a route? such thatR U{ R} is a network state realizing Note that the concentrators and superconcentrators described
DuU{D}. above operate in thepace domairor the circuit switching
As requests come and go, a strategy to pick new routesvironment namely no two paths can share a vertex. It
for new requests is called ruting algorithm An n-network has been known for more than 3 decades that there are
is called awidesense nonblocking (WSNBYistributor with  concentrators and superconcentrators of linear sizes [27], [28].
respect to a routing algorithmA if A can always pick a new The constructions were based on a class of graphs called
route for a new request compatible with the current netwoekpanderswhose applications in mathematics and computer
state. We can also replagk by a class of algorithmsd. In  science are numerous [29].
general, am-network A/ is WSNB iff it is WSNB with respect ~ For the fixed depth case, the asymptotic behaviors of all
to somealgorithm. the s(n, k) were only completely characterized recently. Table
We will consider two classes of functions on each netwolksummarizes the results. The functiond, n) is the inverse
type: (a) the minimum size of a network, and (b) the minimuraf functions in the Ackerman hierarchy: they are increasing



TABLE | (n, m)-concentrator
MINIMUM SIZE OF n-SUPERCONCENTRATORS WITH DEPTH

Depthk | Sizes(n, k)

2 e (géﬁigg) [30]

3 O (nloglogn) [31]
2d,2d+1,d> 2 O (n(d, n)) 1321, [33]
In particular, fork = 4,5 | © (nlog* n) [32], [33]
Oa(n) o(n) 33

extremely slowly. The reader is referred to [33] for the
definitions of A\(d,n) anda(n) (which is actually callegB(n)

in their paper, but we change its name to avoid confusion with
our speedup parametg).

C. Basic compositions of networks (n, m)-superconcentrator

Let N7 and N> be any two(n, m)-networks. We useV; X
N5 to denote arjn, m)-network A" obtained by identifying the
inputs of A/; and N5 in any one-to-one manner, and identifying
the outputs of\Vy and/\/’g'in any one-to-one manner. We refer | ot p pe any concentration assignment. Note that the
to Nl X N> as thestackingof A; and N5. When stackinge inputs of these requests are not necessarily different from one
copies of a networkV, denote the result by* A another. As long as there are still two requestsw,) and

Given any k (n,m)-networks Ni,...,Ni, let () coming from the same input, replace them by a
F (M., Ni) denote  the (n,mk)-network obtained ne yequest, w; + ws). The new set of requests is still a
by identifying the inputs of\y,.... Ny in any one-to- \qiig concentration assignment. Moreover, a valid route for
one fashion. (In effect, we “paste” together the inputs Qf. ., + ) can be “decomposed” back into two routes with
Ni,...,Ng.) When theN; allere identical copies of th_e Same\Neight5w1 andw, to satisfy the requesi&:, w;) and(z, ws).

(n, m)-network ', we use—" A’ to denote the result insteadconsequently, we can assume that the inputs of these requests
of writing = (N, ..., N). Given an(n,m)-network M and 4re distinct.

a (m, l)-network \V, let M o N be the network obtained by  papition D into two subset®; andDs, whereD; consists
identifying the outputs ofM and the inputs ofA/ in any of all requests with weights 1/2. Let z = [D1, y = [Ds|
one-to-one fashion. |

Fig. 1. Construction of arn, m)-multirate concentrato€(n, m).

Fori = 1,2, let W; be the total weight of requests iB,.

. M ULTIRATE CONCENTRATORS Then, becaus® is a concentration assignment,

There are several obvious ways to generalize the notion m/2 > Wy + Wy > x/2 + Ws. 3)
of classical concentrators to multirate concentrators. To avoid
cumbersome notations, we will define here only a particuldhe set of requests i, can be routed through the concen-
type of multirate concentrators which are used in later sectiofigtor C so that no two routes share a vertex. Thus, the vertex
to construct good multirate distributors. capacity constraint is satisfied.

Given integersn. > m > 0. Consider an(n,m)-network Next, we route the requests I, through the superconcen-
C = (V,E;X,Y). A concentration requess a pair (z,w), tratorS to the othemn —x outputs that are unused after routing
wherez is an input andw < 1 is the weight of the request. D1. These requests are routed using the CAP algorithm.
A path fromz to some output is called mute realizing this ~ Lets = m—z. Partition they requests oD, into t = [y/s]
request. A set of routes ammpatibleif the total weight of groups of sizes each, with possibly the last group having less
routes containing any vertex is at mokt A concentration thans members. Assume the weights for these requests are
assignmenis a set of concentration requests such that each > wz > --- > w,. The partition is such that the first
input generates requests with total weight at mgsand that group consists ofs largest weightsw, ..., w,, the second
the total weight of all requests is at most/2. The network group consists of the nex largest weightsw, 1, . .., was,
C is called an(n, m)-multirate concentratorif and only if, and so forth.
for each concentration assignmept there exists a set of Becauses < m, for any group of requests, in they, m)-
compatible routes realizing requests in the assignment.  superconcentrato$ there ares vertex disjoint paths joining
the inputs of the requests in the group to sosneutputs.
We will use these paths as routes realizing the requests in the
group. This ensures that no two routes for requests in the same
group share any vertex.
Proof. The reader is referred to Figure 1 for an illustration of To this end, we need to show that no vertexsftcarries
C(n,m). To prove this lemma, we will use a routing algorithnroutes with total weight exceedirlg In the worst case, a vertex
adapted from the CAP algorithm proposed in [2]. carries one request from each group. Thus, the maximum

Lemma 1. Let C be any(n, m)-concentrator andS be any
(n,m)-superconcentrator. TherG(n,m) = C X S is an
(n, m)-multirate concentrator.



weight a vertex might carry is at most n/m subsetsd = Dy UD,U---UD,,, as follows. For each

requestD = (z,T,w) € D andi € {1,...,n/m}, let
W1 + Wet1 + -+ + W(-1)s+1 a ( ) { /mi

1 w1+"'+ws+_“+w(t—2)s+l+"'+w(t—1)s T,=Tn{GE—-1)ym+1,(i—-1)m+2,...,im}
-2 . .

1 W, 1 m/2—z/2 i Then', add(z, T;, w) into D;, unlessT; = ). Note that, if we
= 5 + 5 < 5 + Tm—z L. can find routes realizing all b, ..., D, ,,, then a natural

union of those routes will realiz®. For example, to realize
the requesD above, take the union of the routes realizing the
sub-request$z, Ty, w), ..., (, Ty /m, w).

The idea is to use the first concentrator and distributor to
realizeD, the second concentrator and distributor oy, and
so on. Since the construction is symmetric, we only need show
how to construct routes realizirB; .

Firstly, notice that the total weight of requests frdm is
at mostm/2, because there are at most outputs involved
in these requests, each with capacity< 1/2. Thus, there
are compatible routes i@ joining each inputz of a request
(2, T1,w) in Dy to an outputf(x) of C. For two inputsz and
2, f(x) and f(z') might be the same, though.
IV. REARRANGEABLE MULTIRATE DISTRIBUTORS L .

o Secondly, construct a distribution assignmépit for the

A. Distributors for the casé? < 3 < 1/2 correspondingm-distributor as follows. For each request

In this subsection, we construct distributors under the condie, 71, w) in Dy, add (f(z),T1,w) to Dj. By definition of
tion B < 8 < 1/2. In fact, we will construct slightly stronger compatibility, the total weight of compatible routes to any out-
distributors, where the capacity of input nodes are allowed pait of C is at mostl. ConsequentlyD; is a valid distribution
be 1. Obviously, any distributor with capacityinputs is also assignment, which can be realized by some network féate
a distributor with capacity? inputs. The outputs’ capacities Finally, each requeste, 71, w) in D; can be realized by the
remain equal tg5 < 1/2. concatenation of the route i and the corresponding route

in Rj. O

The last inequality follows from (3). O

Corollary 2. An (n, m)-multirate concentrator of depth can
be constructed with the same asymptotic complexity(ask)
shown in Table I.

Proof. This follows directly from the fact that, removing
any n — m outputs from a classicah-superconcentrator
yields an(n, m)-superconcentrator, which is also ém, m)-
concentrator. Thus, in fact oun, m)-multirate concentrator
of depthk is of size at mosRs(n, k). O

(n, m)-multirate concentratof

We can now construct multirate distributors for the case
B < < 1/2. The following theorem can be made slightly
better with more careful calculus. We state a somewhat weaker
version for the sake of clarity.

m-distributor M

O OO

Theorem 4. For § < 1/2, we can construct-distributors of
(a) depthk = 3 and sizeO (n3/2 )

logn

Vloglog n

(b) depthk = 4 and sizeO (n/2y/loglogn).
(c) depthk =5 and sizeO (n4/3% .
(d) depthk =6 and sizeO (n*/3(logn)*?).

m-distributor M

OO0 O

(log n)1+1/J'
(loglogn)1—1/i

(e)

any depthk > 3 and sizeO (nl“/j
wherej = [k/2].
sizeO(nlogn).

).

()

Proof. The reader is referred to Table | and Corollary 2
when examining the following reasoning. We will use the
In the following lemma, we ignore the issue of divisibilityconstruction of Lemma 3.

(n, m)-multirate concentrato€

Fig. 2. Recursive construction of distributors with capadityrputs.

for the sake of clarity. It is simple but tedious to deal directlyz) Letm = /n llogn . ChooseC of depth2 and size

with divisibility. The following construction is the multirate log?n \ oglogn

version of Pippenger’s network [21]. 0 (nloglogn)' Chose M to be the completen x m
bipartite graph.

Lemma 3. Let m be a factor ofn. Let C be an (n,m)- (b) Let m = /nloglogn. ChooseC of depth3 and size

multirate concentrator. Lefl be any multiratem-distributor
with capacityd inputs. Then, the network” = /™ (Co M)
is an n-distributor with capacityt inputs. Note that, we only
consider the case wheB < § < 1/2.

Proof. The reader is referred to Figure 2 for an illustration(d) Letm = n?/3 1°g1°g273.

of NV. Consider a distribution assignmebt PartitionD into

O (nloglogn). Chose M to be the completen x m
bipartite graph. ‘
(c) Letm = n2/3%. ChooseC of depth2, and M
the depth3 m-distributor constructed in part (a).
ChooseC of depth3, and M the

. (logn) .
depth3 m-dlStI’IEutOl’ constructed in part (a).




(e) We induct ork. For2 < k < 6, the previous cases servechosen so that each output has total requested weight at most
as the bases for our induction hypothesis. WHes; 25  1/2. Hence A/ can handle them easily by Lemma 3. O

. . _o1-1/j (log log n) (29 =1/ G+1) )
with j > 4, choosen = n Io € of  Note that our construction works regardless of the values

: 5
depth3 and sizeO (nloglogn), and M to be the depth- ot 3 p ands. If g < 1/2 then we do not need the classical
(k — 3) m-distributor inductively constructed. The casgjistinutor in the stacking. However, asymptotically this fact
whenk = 2j — 1 is similar. does not reduce the size of the multirate distributor.

(f) In this part, we choosen = n/2, C to be the linear  rhaorem 4 and Lemma 6 give the key result of this paper.
size multirate concentrator (with depti{n) as in Table

). The network M is recursively constructed this way.Theorem 7. For any b < B < 3, and for anyk > 3,
Suppose th& are of sizecn for some constant. The We can construct a depth-multirate n-distributor of size

total size is thus O (n1+1/ﬂ‘(1§g‘1igim), wherej = [k/2]. This means

n
2-cn+d-cm o287 — = O(nlogn).  (logn)1+1/i
2 olog n—1 mrdgp, 5 (n, k) = O (n1+1/1 (Ogm)l_l/) L@
0 (loglogn)t—1/i
Furthermore, we can also construct a multiratedistributor
B. Distributors for the general case of sizeO(nlogn). Thus,
We first need a technical lemma. mrdgp, g)(n) = O(nlogn). (5)

Lemma 5. Let S be a set ofk positive real numbers

{wi,...,wi}, wherew; < 1/2, Vi € [k], and 31 w; < 1.

Then, S can be partitioned into at most four subsets, each B0of. Consider first the fixed-depth case. For theopies of

whose sums is at mosy2. N i.n L.emma 6, we use part (e) of Theorem 4. For 'classi.cal

. _ n-distributor of depthk, we can use the constructions in
Proof. Let S; = {w;} for eachi € [k]. We will gradually [34] (see also [35]) with size)(n'*7 (logn)*z ), which is
merge theses; until there are only at most four sets left withasymptotically slightly smaller than our depthdistributors
the desired property. For each séfletw(X) denote the sum from part (e) of Theorem 4.

of elements inX. Call X a typej set if 1/27*! < w(X) < If there is no restriction in the network depth, we use part
1/29. . _ . (f) of Theorem 4 for\. The classicah-distributor M of size

as there are two setS;, S, of type j, mergeS; and S;..
The merge results in a typg-— 1) set. When it is no longer L .
possible to merge, we have at m@ssets of typet, and at C. On the optimality of our distributor

most 1 set of typej for eachj > 1. To this end, merge all  For classical distributors, it has been known for a long time
sets of typej for all j > 1. Becausel /4 +1/8 +--- = 1/2, that everyn-distributor must have siz€(n logn) [37]. Is it

the resulting set of this last merge has sum at mgst [ possible that, due to the internal speedup factot 4f, one
) o can construct multirate-distributors with size asymptotically
Lemma 6. Let M be any classicah-distributor. Let\ be better thanO(n logn)? For example, whem/3 is extremely

a distributor as in Lemma 3. Then, the stacking/ef and4 5,46 (compared te) it is easy to see thameinternal node is
copies of V' is a multirate n-distributor for any parameters g icient because this node’s capacity can handle all requests.
O<b<B=<f=<Ll In the following theorem, we show that, wheR is a

Proof. Consider any distribution assignmeht For each out- constant (this means the speedup fadtos is bounded), we
put vertexy, consider the set of weights of requests involvingannot do better that(n logn), implying that our result in
this vertex. Partition this weight set into at mdstclasses. Theorem 7 is optimal!
CIas;p consists of. (at most) one weight which is 1/2. Theorem 8. Suppose) = b < B < 3 < 1, where B is
Partition all the weights< 1/2 into 4 sets using Lemma 5, 5 ¢onstant. Given any multirate-distributor of sizet(n), we
then label the sets classedo 4. = _ can construct a classical-distributor of sizeD(t(n)) with the

For each requestr, T', w) € D, partitionT" into at most5  game depth. Thus, any asymptotic lowerbound for classical
classeslo, 7%, ..., Ty, wherey € T; iff the weightw belongs - gigprinutors is also an asymptotic lowerbound for multirate
to class: of output vertexy. In effect, we decompose theisyrihytors, whether or not the depth is specified.

request(z, T, w) into 5 separate requests, T, w). In particular, a multirate n-distributor must have size
The idea is to route the set of dlt, Ty, w) using the clas- Q(nlogn); that is

sical n-distributor M. The routes in the classical distributor

are vertex disjoint, hence they will certainly satisfy the vertex mrdgp, g = Q(nlogn). (6)

capacity constraint. Moreover, each output has at most one

request with weight> 1/2, implying that the set of requests

(z, Ty, w) is valid for the distributor. Proof. Let ¢ = |1/B], which is a constant. LelV" be any
Then, route all requesis, T;, w) using theith copy of . multirate n-distributor of sizet(n). We will construct a clas-

Note that the requests that a copy/éfis responsible for were sical n-distributor M of size ¢?t(n) = O(t(n)) and the same



depth. By the aforementioned resulft(n)
thus,t(n) = Q(nlogn), completing the proof.

The network M is constructed as follows. Replace eac
internal vertexv of A/ by ¢ copiesuvy, ..., v.. For each edge
(u,v) of N, do the following: (13]

« if w is an input andv is an output of\/, add the edge

Q(nlogn); 1]

2]

(u,v) to M; 14
« if w is an input andv is an internal vertex of\/, create [14]
c new edgesu,vy), ..., (u,v.) in M;

« if wis an internal vertex and is an output of\/, create [15]
c new edgesuy,v), ..., (uev) in M;

« and lastly, if bothu andwv are internal vertices, then creatg16]
¢ new edgegu;,v;) in M, for all i, 5 € [d].

We need to show thaM is indeed a classical-distributor. [17]
Consider any distribution assignmeftin the space domain.
This assignment consists of requests of the fam"), where [18]
T is a subset of the outputs. Each output can only be requested
at most once. Now, create a distribution assignni@nfor A~ [19]
as follows. For each request,T) in D, create a request [20]
(z,T,B) and add toD’. Let R’ be a network state of\V’
realizing D’. Obviously each internal node d¥ belongs to
at mostc routes inR’. Thus, from the routes iR’ we can
construct a set of routes realizirfg for M easily because
each vertexw of A/ hasc copies inM. O

[21]

(22]

[23]
V. DISCUSSIONS

Just like in the classical case, there are still small gan
between the upper and lower bounds of déepttiistributors. 24]
These are still open problems. The reader is referred to [23]
for more details. With more careful computation, the resulgd]
of Theorem 7 for given depths can be made better. Anotq%]
open problem is the asymptotic sizes of multirate distributors
when 3 is not a constant. [27]

Last but not least, the wide-sense nonblocking case for

multirate distributors is still wide open for further research.
[28]
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