
Better Necessary Conditions for Rearrangeably
Nonblocking f -cast d-ary Multi-log Networks under

Fanout and Crosstalk Constraints
Hung Q. Ngo, Yang Wang, Anh Le

Department of Computer Science and Engineering
State University of New York at Buffalo

Amherst, New York 14260
Email: {hungngo, yw43, anhle}@cse.buffalo.edu

Xiaohong Jiang
School of Information Sciences

Tohoku University,
Sendai, Japan

Email: jiang@ecei.tohoku.ac.jp

Abstract—We derive necessary conditions for the d-ary multi-
log switching networks to be f -cast rearrangeably nonblocking
when the input stage does not have fanout capability, with
and without crosstalk-free constraint. In electronic switching
networks, connection routes cannot share a link but they can
share a switching node. This is the case when there is no crosstalk-
free constraint. In optical switching networks, it is often desirable
to enforce the crosstalk-free constraint which forbids connection
routes to share switching nodes.

The most novel contribution of this paper is the analytical
technique, which addresses the problem from an algebraic angle.
Our necessary conditions are much better than previously known
conditions. Moreover, our results are on general d-ary multi-log
networks, while known results are on 2-ary networks only.

Keywords: multicast, switches, f -cast, rearrangeably non-
blocking, d-ary multi-log switching networks, crosstalk-free,
fanout constraints.

I. INTRODUCTION

Many current and future Internet applications demand mul-
ticast support. To support multicast efficiently, the switching
networks which serve as the switching fabric architectures at
the core of electronic routers, or as the switching topology for
optical cross-connects must be multicast capable.

Current multicast switch designs mostly focus on the broad-
cast case [1]–[3]. Although broadcast switches are certainly
capable of supporting multicast with any fanout requirement,
they are not scalable due to their prohibitively high hard-
ware requirement. Almost all the multicast applications are
restricted to a group of users, where broadcasting is rarely
required. Hence, allocating expensive broadcast capability to
each network switch is cost-inefficient for most practical pur-
poses. Moreover, from the viewpoints of resource fairness and
network security (e.g., limiting virus and worm propagation),
we have other good reasons to impose a restriction on the
maximum fanout of each request.

Consequently, there have been some recent research efforts
on designing and analyzing the so-called f -cast switches, in
which the maximum fanout of each request is upperbounded
by the parameter f [?], [4]–[8]. An f -cast switch usually
requires significantly lower hardware cost than its broadcast

0
0
0
0

0
0
0
1

0
0
1
0

0
0
1
1

0
1
0
0

0
1
0
1

0
1
1
0

0
1
1
1

1
0
0
0

1
0
0
1

1
0
1
0

1
0
1
1

1
1
0
0

1
1
0
1

1
1
1
0

1
1
1
1

0
0
0
0

0
0
0
1

0
0
1
0

0
0
1
1

0
1
0
0

0
1
0
1

0
1
1
0

0
1
1
1

1
0
0
0

1
0
0
1

1
0
1
0

1
0
1
1

1
1
0
0

1
1
0
1

1
1
1
0

1
1
1
1

0
1
0
0
1

1
0
1
0
1

Fig. 1. The inverse Banyan network BY−1(5)

counterpart. Furthermore, a good design of an f -cast switch
covers both the unicast design (f = 1) and the broadcast
design (f = N) as special cases. Consequently, studying
general f -cast switches is both mathematically pleasing and
practically useful, as the results potentially can offer network
designers more flexibility in selecting architectures for future
multicast-intensive networks.

The design of a scalable and hardware-inexpensive switch
usually employs the multistage architecture. The most pop-
ular multistage architectures are Banyan-type [9] and Clos-
type [10] architectures. This paper focuses on analyzing the
Banyan-type (e.g., see Figure 1). In particular, we study
the general d-ary multi-log switch architecture with multiple
vertically stacked inverse Banyan switches, as illustrated in
Figure 2. The d-ary multi-log switches have been attractive for
both electronic and photonic domains [11]–[17], because they
have small depth (O(log N)), absolute signal loss uniformity,
and good fault tolerance. Hereafter, we use logd(N, 0,m) to
denote a d-ary multi-log switch with m vertically stacked

Fig. 2. Illustration of the log3(27, 0, 2) network

inverse Banyan planes.

To support multicast (or generally f -cast) in a logd(N, 0,m)
switch, a certain degree of fanout capability must be provided
in the switch. Similar to that of the fanout definitions for
Clos network [5], a 1×m switch or a basic d× d switching
elements (SE) in a logd(N, 0,m) switch is said to have fanout
capability if any one-to-many mapping between its inputs and
outputs can be realized. We will say that the input stage (resp.
the middle Banyan stage) of a logd(N, 0,m) network has the
fanout capability if each of its 1 × m switches (resp. d × d
SEs) has the fanout function. Thus, the fanout capability of a
logd(N, 0,m) switch can be provided either in its input stage,
or in its central Banyan stage or in both. The additional fanout
requirement of a stage usually makes its implementation more
complex and costly than its unicast counterpart, so the fanout
capability should be carefully allocated for the efficient design
of a multicast-capable switch.

There are three levels of nonblockingness typically studied
in the switching network literature: rearrangeably nonblocking
(RNB), wide-sense nonblocking (WSNB), and strictly non-
blocking (SNB). The reader is referred to [4] for their precise
definitions.

In addition to the fanout constraint, we also consider both
the link-blocking and node-blocking (i.e. crosstalk-free) con-
straints. Under the link-blocking constraint, only one request
is allowed to use a link at one time, which is relevant to
electronic switches [1]–[8], [13], [14], [16]. The node-blocking
constraint allows only one request to use a switching element
at one time, reducing the crosstalk effect in all-optical cross-
connect designs [11], [12], [15], [17]–[19].

This paper focuses on analyzing the RNB f -cast
logd(N, 0,m) network, in which only the middle Banyan stage
has fanout capability. This is a continuation of the work done
in [7], where necessary conditions for a log2(N, 0,m) network
to be f -cast RNB were derived. In particular, let N = 2n, for
the case when only the Banyan stage has fanout capability, it

was shown in [7] that

m ≥

{√
N + 1 for n even√
2N + 1 for n odd

is necessary for log2(N, 0,m) to be f -cast RNB without
crosstalk-free constraint, and that

m ≥

{√
N for n even

1
2

√
2N + 1 for n odd

is necessary for log2(N, 0,m) to be f -cast RNB with
crosstalk-free constraint.

In this paper, we improve the above results in two fronts:
(1) we derive much better necessary conditions, and (2) our
results are applicable to the general d-ary network case. This is
done via an algebraic view of the multi-log network. However,
due to space limitation, we will only present our results for
the d = 2 case, leaving the general d-ary case for a future,
more complete version of the research.

The rest of the paper is organized as follows. Section II es-
tablishes basic notations and presents a simple algebraic view
of logd(N, 0,m) networks, which are used throughout the
paper. Section III presents the main results of this paper: better
necessary conditions for the logd(N, 0,m) network to be f -
cast RNB under link/node-blocking constraints when only the
central stage has fanout capability. Section IV concludes the
paper with a few remarks.

II. PRELIMINARIES

We first establish notations which will be used throughout
the paper. For any positive integers l, d, let

• [l] denote the set {1, . . . , l};
• Zd denote the set {0, . . . , d − 1} which can be thought

of as d-ary “symbols”;
• Zl

d denote the set of all d-ary strings of length l;
• bl denote the string with symbol b ∈ Zd repeated l times

(e.g., 34 = 3333);
• |s| denote the length of any d-ary string s (e.g., |31| = 2);
• si..j denote the substring si · · · sj of a string s =

s1 . . . sl ∈ Zl
d, when j > i we agree on the convention

that si..j is the empty string.
Let N = dn. We consider the logd(N, 0,m) network, which

denotes the stacking of m copies of the d-ary inverse Banyan
network BY−1(n) with N inputs and N outputs. We label the
inputs and outputs of BY−1(n) with d-ary strings of length
n. Specifically, each input x ∈ Zn

d and output y ∈ Zn
d have

the form x = x1 · · ·xn, y = y1 · · · yn, where xi, yi ∈ Zd,
∀i ∈ [n].

Also, label the d×d SEs in each of the n stages of BY−1(n)
with d-ary strings of length n − 1. It is easy to see that an
input x (resp. output y) is connected to the SE labeled x1..n−1

in the first stage (resp. y1..n−1 in the last stage).
For the sake of clarity, let us first consider a small example.

Consider the unicast request (x,y) = (01001, 10101) when
d = 2, n = 5. The input x = 01001 is connected to the SE
labeled 0100 in the first stage, which is connected to two SEs

labeled 0100 and 1100 in the second stage, and so on. The
unique path from x to y in BY−1(n) can be explicitly written
out (see Figure 1):

input x 01001
stage-1 SE 0100
stage-2 SE 1100
stage-3 SE 1010
stage-4 SE 1010
stage-5 SE 1010
output y 10101

We can see clearly the pattern: the prefixes of y1..n−1 are
“taking over” the prefixes of x1..n−1 on the path from x to
y. In general, the unique path from an arbitrary input x to an
arbitrary output y is exactly the following:

input x x1x2 . . . xn−1xn

stage-1 SE x1x2 . . . xn−1

stage-2 SE y1x2 . . . xn−1

stage-3 SE y1y2 . . . xn−1

...
...

stage-n SE y1y2 . . . yn−1

output y y1y2 . . . yn−1yn

Now, consider two unicast requests (a,b) and (x,y). In
the node-blocking case, these two requests cannot be routed
through the same copy of BY−1(n) if and only if the two
corresponding paths intersect at some SE in the middle (if they
were to be routed through the same copy). More precisely,
(a,b) and (x,y) are said to node-block each other if and
only if there is some j ∈ [n] such that b1..j−1 = y1..j−1 and
aj..n−1 = xj..n−1. In this case, the two paths intersect at a
stage-j SE. It should be noted that two requests’ paths may
intersect at more than one SE. In a logd(N, 0,m) network,
two requests which are node-blocking one another have to be
routed through different copies of BY−1(n).

For any two d-ary strings u,v ∈ Zl
d, let PRE(u,v) denote

the longest common prefix, and SUF(u,v) denote the longest
common suffix of u and v, respectively. For example, if
u = 0100110 and v = 0101010, then PRE(u,v) = 010 and
SUF(u,v) = 10. From the observation made in the previous
paragraph, the following proposition is immediate.

Proposition II.1. Let (a,b) and (x,y) be two unicast requests
in a logd(N, 0,m) network, then the two requests node-block
one another if and only if

|SUF(a1..n−1,x1..n−1)|+ |PRE(b1..n−1,y1..n−1)| ≥ n− 1.
(1)

In the link blocking case, two requests link-block each other
if and only if they share a common link in BY−1(n) (if they
were to be routed through the same copy). More precisely, two
requests (a,b) and (x,y) are said to link-block each other if
and only if there is some j ∈ [n] such that b1..j−1 = y1..j−1,
aj..n−1 = xj..n−1, b1..j = y1..j , and aj+1..n−1 = xj+1..n−1.
The four conditions are equivalent to just to conditions b1..j =

y1..j and aj..n−1 = xj..n−1. We easily obtain the link-blocking
analog of Proposition II.1 as follows.

Proposition II.2. Let (a,b) and (x,y) be two unicast requests
in a logd(N, 0,m) network, then the two requests link-block
one another if and only if

|SUF(a1..n−1,x1..n−1)|+ |PRE(b1..n−1,y1..n−1)| ≥ n. (2)

III. MAIN RESULTS

To find a necessary condition for log2(N, 0,m) to be RNB
f -cast, the most natural strategy is to construct a set R
of requests requiring as many copies of the inverse Banyan
network as possible. A more precise way to describe this
strategy is as follows.

For any (valid) request set R, construct a graph G(R) =
(R, E). The vertices of G(R) are requests in R. Two requests
R1, R2 are connected in G(R) (i.e. R1R2 ∈ E) if and only
if R1 and R2 node-block each other. In order to satisfy R,
it is necessary that m ≥ χ(G(R)) (the chromatic number of
G(R)). To see this, think of each copy of the inverse Banyan
network as a color. We thus want to construct a request set
R for which χ(G) is as large as possible. Formally, we can
summarize the above description in the following proposition.

Proposition III.1. The necessary and sufficient condition for
log2(N, 0,m) to be f -cast rearrangeable is

m ≥ max
R

χ(G(R)),

where the max function is over all valid request sets R.

To illustrate our idea, we consider three simple examples.

Example III.2. This example reproduces Theorem 1 and
Corollary 1 in [7], illustrating the power of our algebraic
approach. In the node-blocking case, let k = bn/2c; and define
R as follows.

R =
{
(x,y) | x = s0ku,y = 0ksu, s ∈ Zn−1−k

2 , u ∈ Z2

}
(3)

For any two requests (a,b) and (x,y) in R, we have

|SUF(a1..n−1,x1..n−1)|+ |PRE(b1..n−1,y1..n−1)|
≥ |0k|+ |0k| = 2k ≥ n− 1.

Hence, by Proposition II.1 any two requests in R node-block
each other. The graph G(R) is a complete graph of size |R| =
2n−k = 2dn/2e, which is precisely Theorem 1 in [7].

In the link-blocking case, let k = dn/2e, and define R
exactly like in (3). We have

|SUF(a1..n−1,x1..n−1)|+ |PRE(b1..n−1,y1..n−1)| ≥ 2k ≥ n.

Hence, by Proposition II.2 any two requests in R link-block
each other. The graph G(R) is a complete graph of size |R| =
2n−k = 2bn/2c, which is precisely Corollary 1 in [7].

Theorem III.3 (Necessary condition, basic version,
node-blocking case). Let k = bn/2c, N = 2n. Let

j be any integer such that 0 ≤ j ≤ (k − 1)/3. If
f ≥ 1 + 4 + · · · + 4j = (4j+1 − 1)/3, then for the
log2(N, 0,m) network to be f -cast RNB in the node-blocking
case it is necessary that m ≥ 2n−k+j .

Proof: We will create 2n−k+j f -cast requests, each of
which has fanout equal to (4j+1 − 1)/3 ≤ f . The inputs of
these requests are the x’s such that

xn−1−k+j = xn−k+j = · · · = xn−1 = 0.

In other words, we will create requests from inputs x for which
the last k − j bits of x1..n−1 are equal to 0. This means, the
number of such inputs x is 2n−k+j . The idea is to construct the
requests such that every two of them node-block each other.

Each such input x can be expressed in the following form

x = suv0k−jb,

where s ∈ Zn−1−k−2j
2 ,u ∈ Z2j

2 ,v ∈ Zj
2, and b ∈ Z2. More

precisely, x can also be written as

x = su1..2jv1..j0k−jb.

This input x requests a set Y (x) of outputs of size

1 + 4 + · · ·+ 4j = (4j+1 − 1)/3.

The output set Y (x) is defined as follows. For convenience,
define v0 = 0. For each i from 0 to j, and for each string
t ∈ Z2i

2 ,
• if vi = 0, add the following output to Y (x)

0k−1−j−2i1vi+1..jt1..2iu1..2iu2i+1..2jv1..isb,

• otherwise, if vi = 1, add the following output to Y (x)

0k−1−j−2i1vi+1..ju1..2it1..2iu2i+1..2jv1..isb,

Thus, for each 0 ≤ i ≤ j, there are 22i outputs, one for each
t ∈ Z2i

2 , that are added to Y (x), for a total of 1 + · · · + 4j

outputs in Y (x). It is straightforward to verify that all the sets
Y (x) are disjoint. Thus, the set f -cast requests is valid.

To this end, consider any two f -cast requests (x, Y (x)) and
(x, Y (x)), where

x = s u v 0k−jb

x = s u v 0k−jb.

To complete the proof, we will show that there are outputs
y ∈ Y (x) and y ∈ Y (x) such that

|SUF(x1..n−1,x1..n−1)|+ |PRE(y1..n−1,y1..n−1)| ≥ n− 1.

Suppose SUF(v,v) = j − i, for some 0 ≤ i ≤ j. We have

|SUF(x1..n−1,x1..n−1)| = |vi+1..j0k−j | = k − i.

To this end, consider two cases as follows.
Case 1: i = 0. In this case v = v. By definition, the following
output belongs to Y (x):

y := 0k−1−j1v1..ju1..2jsb

And, the following output belongs to Y (x):

y := 0k−1−j1v1..ju1..2jsb

Furthermore,

|PRE(y1..n−1,y1..n−1)| = |0k−1−j1v1..j | = k.

Hence,

|SUF(x1..n−1,x1..n−1)|+ |PRE(y1..n−1,y1..n−1)| ≥
(k − 0) + k = 2k ≥ n− 1.

Case 2: i ≥ 1. In this case we have vi 6= vi, vi+1..j = vi+1..j .
Without loss of generality, assume vi = 0 and vi = 1. Since
vi = 0 the following output belongs to Y (x):

y := 0k−1−j−2i1vi+1..ju1..2iu1..2iu2i+1..2jv1..isb

And, because vi = 1 the following output belongs to Y (x):

y := 0k−1−j−2i1vi+1..ju1..2iu1..2iu2i+1..2jv1..isb

Furthermore,

|PRE(y1..n−1,y1..n−1)| = |0k−1−j−2i1vi+1..ju1..2iu1..2i| =
(k − j − 2i) + (j − i) + 4i = k + j.

Consequently, as desired we obtain

|SUF(x1..n−1,x1..n−1)|+ |PRE(y1..n−1,y1..n−1)| ≥
(k − i) + (k + i) = 2k ≥ n− 1.

The proof of the following theorem is exactly the same as
that of Theorem III.3. The only difference is that, in this case
2k = 2dn/2e ≥ n.

Theorem III.4 (Necessary condition, basic version,
link-blocking case). Let k = dn/2e, N = 2n. Let
j be any integer such that 0 ≤ j ≤ (k − 1)/3. If
f ≥ 1 + 4 + · · · + 4j = (4j+1 − 1)/3, then for the
log2(N, 0,m) network to be f -cast RNB in the node-blocking
case it is necessary that m ≥ 2n−k+j .

Theorems III.3 and III.4 can be stated more precisely in
terms of f (instead of j) as follows.

Corollary III.5. Let kn = bn/2c, kl = dn/2e,

jn = bmin{(kn − 1)/3, log4(3f + 1)− 1}c ,

and
jl = bmin{(kl − 1)/3, log4(3f + 1)− 1}c .

Then,
(i) in the node-blocking case, the log2(N, 0,m) network is

f -cast rearrangeable only if m ≥ 2n−kn+jn; and, it is
broadcast rearrangeable only if

m ≥ 2n−kn+b(kn−1)/3c = 22n/3+O(1).

(ii) in the link-blocking case, the log2(N, 0,m) network is
f -cast rearrangeable only if m ≥ 2n−kl+jl ; and, it is
broadcast rearrangeable only if

m ≥ 2n−kl+b(kl−1)/3c = 22n/3+O(1).

It is intuitively obvious that the necessary lowerbound for
m gets higher as f is larger. This intuition is reflected in
Theorems III.3 and III.4 because each time f is increased
by a power of 4, the lowerbound is doubled. However, when
1+4+· · ·+4j−1 < f < 1+4+· · ·+4j , the lowerbounds in the
Theorems remain the same as the case when f = 1+4+ · · ·+
4j−1. It would thus be desirable to have better lowerbounds for
values of f in between “jumps” of powers of 4. The following
theorem partially fulfills this desire.

Theorem III.6 (Necessary condition, finer version,
node-blocking case). Let k = bn/2c, N = 2n. Suppose

1 + 4 + · · ·+ 4j−1 < f < 1 + 4 + · · ·+ 4j

for some integer j such that 0 ≤ j ≤ (k − 1)/3. Let

f = 1 + 4 + · · ·+ 4j − f.

Then, for the log2(N, 0,m) network to be f -cast RNB in the
node-blocking case it is necessary that

m ≥ 2n−k+j − f · 2n−k−j .

Proof: Note that f ≤ 4j . Let U ⊆ Z2j
2 be a fixed set of

strings of length 2j where |U | = f . Similar to the proof of
Theorem III.3, we will create requests from inputs x of the
form

x = su1..2jv1..j0k−jb,

where s ∈ Zn−1−k−2j
2 ,u ∈ Z2j

2 − U,v ∈ Zj
2, and b ∈ Z2.

This input x requests a set Y (x) of outputs of size

1 + 4 + · · ·+ 4j = (4j+1 − 1)/3.

The output set Y (x) is defined as follows. For convenience,
define v0 = 0.

For each i from 0 to j − 1, add outputs to Y (x) in exactly
the same manner as that in the proof of Theorem III.3.

When i = j, there is a slight difference. For each string
t ∈ Z2j

2 − U ,
• if vi = 0, add the following output to Y (x)

0k−1−j−2i1vi+1..jt1..2iu1..2iu2i+1..2jv1..isb,

• otherwise, if vi = 1, add the following output to Y (x)

0k−1−j−2i1vi+1..ju1..2it1..2iu2i+1..2jv1..isb,

Thus, for each 0 ≤ i ≤ j − 1, there are 22i outputs added to
Y (x); and, when i = j there are 22j − U outputs added to
Y (x). Thus,

|Y (x)| = 1 + 4 + · · ·+ 4j − f = f.

In other words, the requests created are all f -cast requests. It
is straightforward to verify that all the sets Y (x) are disjoint.

The rest of the proof is completely the same as that of
Theorem III.3. The number of requests created is 2n−k+j −
f · 2n−k−j , which are pairwise node-blocking as desired.

The same proof strategy works for the link-blocking case.
The only difference is that we set k = dn/2e in the link-
blocking case.

Theorem III.7 (Necessary condition, finer version, link-block-
ing case). Let k = dn/2e, N = 2n. Suppose

1 + 4 + · · ·+ 4j−1 < f < 1 + 4 + · · ·+ 4j

for some integer j such that 0 ≤ j ≤ (k − 1)/3. Let

f = 1 + 4 + · · ·+ 4j − f.

Then, for the log2(N, 0,m) network to be f -cast RNB in the
link-blocking case it is necessary that

m ≥ 2n−k+j − f · 2n−k−j .

Theorems III.6 and III.7 are only better than their respective
counterparts III.3 and III.4 when f ≤ 2j , or equivalently when

1 + 4 + · · ·+ 4j−1 + 2j < f < 1 + 4 + · · ·+ 4j .

The natural question is: can we give a lowerbound better than
that for f = 1+4+· · ·+4j−1 when the fanout f is in between
f = 1 + 4 + · · · + 4j−1 and f = 1 + 4 + · · · + 4j−1 + 2j .
The answer to this question seems to be positive, but we have
not found a sufficiently “neat” answer to be given here. Let
us show a better bound when j = 1 as an example.

Example III.8. In this example, we derive a necessary condi-
tion for the case when f = 3 = 1+21 (j = 1 in the language
of previous theorems). For simplicity, assume n = 2k +1 and
k ≥ 2. We will show that m ≥ 2k+1 + 2k−1 is necessary for
the network to be f -cast rearrangeable in the node-blocking
case. Note that Theorem III.6 only gives a lower bound of

m ≥ 2n−k+1 − 21 · 2n−k−1 = 2n−k = 2k+1.

Hence, our lowerbound here of 2k+1 + 2k−1 is better.
We will create requests from the inputs x of the following

forms: s000kc, s010kc, s100kc, s0010k−1c, s0110k−1c, where
c ∈ Z2, and s ∈ Zk−2

2 . The total number of such inputs is our
desired lowerbound of 5 · 2k−1 = 2k+1 + 2k−1.

For each such input x, we create a multicast request
(x, Y (x)) according to the following rules:

• For x = s000kc, set

Y (x) =
{
0k00sc, 0k−20110sc, 0k−21100sc

}
• For x = s010kc, set

Y (x) =
{
0k01sc, 0k−20100sc, 0k−21110sc

}
• For x = s100kc, set

Y (x) =
{
0k10sc, 0k−21000sc, 0k−21010sc

}

• For x = s0010k−1c, set

Y (x) =
{
0k−20101sc, 0k−21001sc, 0k−21101sc

}
• For x = s0110k−1c, set

Y (x) =
{
0k−20111sc, 0k−21011sc, 0k−21111sc

}
It is straightforward to check that these requests are valid and
that they pair-wise node-block one another.

IV. DISCUSSIONS

There are obviously several gaps in our results. The most
difficult task is to find sufficient conditions that will match
the necessary conditions. In this paper, we have used a simple
bound for the chromatic number of G(R): the clique-number
of the graph. Any attempt at a better bound must exploit
the structure of the graph much further than what derived
here. For sufficiency, any upperbound for graph coloring
gives a sufficient condition. In [20] we used Brook’s theorem
(greedy coloring) to show sufficiency conditions for the strictly
nonblocking case, which are certainly also sufficient for the
rearrangeably nonblocking case. We expect the sufficient con-
ditions for rearrangeability to be much better than those of
strictly nonblockingness, however. This question is wide open
for further research.

REFERENCES

[1] W. Kabacinski and G. Danilewicz, “Wide-sense and strict-sense non-
blocking operation of multicast multi-log2n switching networks,” IEEE
Transactions on Communications, vol. 50, pp. 1025–1036, Jun 2002.

[2] F.K.Hwang and B.-C. Lin, “Wide-sense nonblocking multicast
log2(n, m, p) networks,” IEEE Transactions on Communications,
vol. 51, pp. 1730–1735, Oct 2003.

[3] Y. Yang and G. M. Masson, “Nonblocking broadcast switching net-
works,” IEEE Trans. Comput., vol. 40, no. 9, pp. 1005–1015, 1981.

[4] F. K. Hwang, The mathematical theory of nonblocking switching net-
works. River Edge, NJ: World Scientific Publishing Co. Inc., 2004.

[5] H.-B. Chen and F. K. Hwang, “On multicast rearrangeable 3-stage
clos networks without first-stage fan-out,” SIAM Journal on Discrete
Mathematics, vol. 20, no. 2, pp. 287–290, 2006.

[6] A. Pattavina and G. Tesei, “Non-blocking conditions of multicast three-
stage interconnection networks,” IEEE Transactions on Communica-
tions, vol. 46, pp. 163–170, Dec. 2005.

[7] X. Jiang, A. Pattavina, and S.Horiguchi, “Rearrangeable f -cast multi-
log 2n networks,” IEEE Transactions on Communications, 2007. to
appear.

[8] F.K.Hwang, Y. Wang, and J. Tan, “Strictly nonblocking f-cast
logd(n, m, p) networks,” IEEE Transactions on Communications,
vol. 55, pp. 981–986, May 2007.

[9] R. R. Goke and G. J. Lipovski, “Banyan networks for partitioning
multiprocessor systems,” in Proceedings of the 1st Annual Symposium
on Computer Architecture (ISCA’73), pp. 21–28, Dec 1973.

[10] C. Clos, “A study of non-blocking switching networks,” Bell System
Tech. J., vol. 32, pp. 406–424, Mar 1953.

[11] C.-T. Lea, “Muti-log2 n networks and their applications in high speed
electronic and photonic switching systems,” IEEE Transactions on
Communications, vol. 38, no. 10, pp. 1740–1749, 1990.

[12] M. M. Vaez and C.-T. Lea, “Strictly nonblocking directional-coupler-
based switching networks under crosstalk constraint,” IEEE Transactions
on Communications, vol. 48, pp. 316–323, Feb 2000.

[13] F. Hwang, “Choosing the best log2(n, m, p) strictly nonblocking net-
works,” IEEE Transactions on Communications, vol. 46, pp. 454–455,
Dec 1998.

[14] D.-J.Shyy and C.-T. Lea, “log2(n, m, p) strictly nonblocking networks,”
IEEE Transactions on Communications, vol. 39, no. 10, pp. 1502–1510,
1991.

[15] G. Maier and A. Pattavina, “Design of photonic rearrangeable networks
with zero first-order switching-element-crosstalk,” IEEE Transactions on
Communications, vol. 49, no. 7, pp. 1268–1279, 2001.

[16] C.-T. Lea and D.-J.Shyy, “Tradeoff of horizontal decomposition versus
vertical stacking in rearrangeable nonblocking networks,” IEEE Trans-
actions on Communications, vol. 39, pp. 899–904, 1991.

[17] X.Jiang, H. Shen, M. M.R.Khandker, and S.Horiguchi, “Blocking be-
haviors of crosstalk-free optical banyan networks on vertical stacking,”
IEEE/ACM Trans. Networking, vol. 11, no. 6, pp. 982–993, 2003.

[18] V. R. C. et al, “Crosstalk in a lossy directional coupler switch,” J.
Lightwave Technol., vol. 13, no. 7, pp. 1530–1535, 1995.

[19] D.Li, “Elimination of crosstalk in directional coupler switches,” Optical
Quantum Electron.,, vol. 25, no. 4, pp. 255–260, 1993.

[20] Y. Wang, H. Q. Ngo, and X. Jiang, “Strictly nonblocking f -cast d-
ary multi-log networks under fanout and crosstalk constraints,” IEEE
Transactions on Communications, 2007. Submitted.

